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DISCLAIMER

The use of company or product name(s) is for identification only and does not imply endorsement by the
Agency for Toxic Substances and Disease Registry.
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UPDATE STATEMENT

A toxicological Profile for PCBs, Draft for Public Comment, was released in December 1998.  This
edition supercedes any previously released draft or final profile.  Toxicological profiles are revised and
republished as necessary, but no less than once every three years.  

For information regarding the update status of previously released profiles, contact ATSDR at:

Agency for Toxic Substances and Disease Registry
Division of Toxicology/Toxicology Information Branch

1600 Clifton Road NE, E-29
Atlanta, Georgia 30333
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Disease Registry
*Legislative Background

The toxicological profiles are developed in response to the Superfund Amendments and
Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive
Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund).  This
public law directed ATSDR to prepared toxicological profiles for hazardous substances most commonly
found at facilities on the CERCLA National Priorities List and that pose the most significant potential
threat to human health, as determined by ATSDR and the EPA.  The availability of the revised priority
list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR
61332).  For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61
FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR
43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR
48801); and February 28, 1994 (59 FR 9486).  Section 104(i)(3) of CERCLA, as amended, directs the
Administrator of ATSDR to prepare a toxicological profile for each substance on the list.
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous
substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of
available toxicologic and epidemiologic information on a substance.  Health care providers treating
patients potentially exposed to hazardous substances will find the following information helpful for fast
answers to often-asked questions.

Primary Chapters/Sections of Interest

Chapter 1:  Public Health Statement: The Public Health Statement can be a useful tool for educating
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of
the general health effects observed following exposure.

Chapter 2:  Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets,
and assesses the significance of toxicity data to human health.

Chapter 3:  Health Effects: Specific health effects of a given hazardous compound are reported by type
of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length
of exposure (acute, intermediate, and chronic). In addition, both human and animal studies are
reported in this section. 

NOTE: Not all health effects reported in this section are necessarily observed in
the clinical setting.  Please refer to the Public Health Statement to identify
general health effects observed following exposure.

Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health
issues:
Section 1.6 How Can (Chemical X) Affect Children?
Section 1.7 How Can Families Reduce the Risk of Exposure to (Chemical X)?
Section 3.7 Children’s Susceptibility
Section 6.6 Exposures of Children

Other Sections of Interest:
Section 3.8 Biomarkers of Exposure and Effect
Section 3.11 Methods for Reducing Toxic Effects

ATSDR Information Center 
Phone:  1-888-42-ATSDR or (404) 639-6357  Fax:    (404) 639-6359
E-mail:  atsdric@cdc.gov  Internet:  http://www.atsdr.cdc.gov

The following additional material can be ordered through the ATSDR Information Center:

Case Studies in Environmental Medicine: Taking an Exposure History—The importance of taking an
exposure history and how to conduct one are described, and an example of a thorough exposure
history is provided. Other case studies of interest include Reproductive and Developmental
Hazards; Skin Lesions and Environmental Exposures; Cholinesterase-Inhibiting Pesticide
Toxicity; and numerous chemical-specific case studies.
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Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene
(prehospital) and hospital medical management of patients exposed during a hazardous materials incident. 
Volumes I and II are planning guides to assist first responders and hospital emergency department
personnel in planning for incidents that involve hazardous materials.  Volume III—Medical Management
Guidelines for Acute Chemical Exposures—is a guide for health care professionals treating patients
exposed to hazardous materials.

Fact Sheets (ToxFAQs) provide answers to frequently asked questions about toxic substances.

Other Agencies and Organizations

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease,
injury, and disability related to the interactions between people and their environment outside the
workplace.  Contact: NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, GA 30341-
3724 • Phone: 770-488-7000 • FAX: 770-488-7015.

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational
diseases and injuries, responds to requests for assistance by investigating problems of health and
safety in the workplace, recommends standards to the Occupational Safety and Health
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains
professionals in occupational safety and health.     Contact: NIOSH, 200 Independence Avenue,
SW, Washington, DC 20201 • Phone: 800-356-4674 or  NIOSH Technical Information Branch,
Robert A. Taft Laboratory, Mailstop C-19, 4676 Columbia Parkway, Cincinnati, OH 45226-1998
• Phone: 800-35-NIOSH.

 The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for
biomedical research on the effects of chemical, physical, and biologic environmental agents on
human health and well-being. Contact: NIEHS, PO Box 12233, 104 T.W. Alexander Drive,
Research Triangle Park, NC 27709 • Phone: 919-541-3212.

Referrals

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 •   Phone: 202-347-4976 •
FAX: 202-347-4950 • e-mail: aoec@dgs.dgsys.com  •      AOEC Clinic Director: http://occ-env-
med.mc.duke.edu/oem/aoec.htm.

 
The American College of Occupational and Environmental Medicine (ACOEM) is an association of

physicians and other health care providers specializing in the field of occupational and
environmental medicine.  Contact:  ACOEM, 55 West Seegers Road, Arlington Heights, IL
60005 • Phone: 847-228-6850 • FAX: 847-228-1856.
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Syracuse Research Corporation
Environmental Science Center
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THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS:

1. Green Border Review.  The Green Border Review assures the consistency of the profile with
ATSDR policy.

2. Health Effects Review.  The Health Effects Review Committee examines the health effects
chapter of each profile for consistency and accuracy in interpreting health effects and classifying
end points.

3. Minimal Risk Level Review.  The Minimal Risk Level Workgroup considers issues relevant to
substance-specific minimal risk levels (MRLs), reviews the health effects database of each
profile, and makes recommendations for derivation of MRLs.

4. Data Needs Review.  The Research Implementation Branch reviews data needs sections to assure
consistency across profiles and adherence to instructions in the Guidance.
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PEER REVIEW

A peer review panel was assembled for polychlorinated biphenyls (PCBs).  The panel consisted of the
following members: 

1. Larry Hansen, University of Illinois, College of Veterinary Medicine, Urbana, Illinois;

2. Joseph Jacobson, Wayne State University, Detroit, Michigan;

3. Helen Tryphonas, Bureau of Chemical Safety, Frederick G. Banting Research Center, Ottawa,
Ontario, Canada;

4. John Vena, University at Buffalo, Social and Preventive Medicine, Buffalo, New York

These experts collectively have knowledge of PCBs physical and chemical properties, toxicokinetics, key
health end points, mechanisms of action, human and animal exposure, and quantification of risk to
humans.  All reviewers were selected in conformity with the conditions for peer review specified in
Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, and Liability Act, as
amended.

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer
reviewers' comments and determined which comments will be included in the profile.  A listing of the
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their
exclusion, exists as part of the administrative record for this compound.  A list of databases reviewed and
a list of unpublished documents cited are also included in the administrative record.

The citation of the peer review panel should not be understood to imply its approval of the profile's final
content.  The responsibility for the content of this profile lies with the ATSDR.
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 1.  PUBLIC HEALTH STATEMENT

This public health statement tells you about polychlorinated biphenyls (PCBs) and the effects of

exposure.  

The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in

the nation.  These sites make up the National Priorities List (NPL) and are the sites targeted for

long-term federal cleanup activities.  PCBs have been found in at least 500 of the 1,598 current

or former NPL sites.  However, the total number of NPL sites evaluated for PCBs is not known. 

As more sites are evaluated, the sites at which PCBs are found may increase.  This information is

important because exposure to PCBs may harm you and because these sites may be sources of

exposure.

When a substance is released from a large area, such as an industrial plant, or from a container,

such as a drum or bottle, it enters the environment.  This release does not always lead to

exposure.  You are exposed to a substance only when you come in contact with it.  You may be

exposed by breathing, eating, or drinking the substance, or by skin contact.

If you are exposed to PCBs, many factors determine whether you’ll be harmed.  These factors

include the dose (how much), the duration (how long), and how you come in contact with them. 

You must also consider the other chemicals you’re exposed to and your age, sex, diet, family

traits, lifestyle, and state of health.

1.1 WHAT ARE POLYCHLORINATED BIPHENYLS?

PCBs are a group of synthetic organic chemicals that can cause a number of different harmful

effects.  There are no known  natural sources of PCBs in the environment.  PCBs are either oily

liquids or solids and are colorless to light yellow.  Some PCBs are volatile and may exist as a

vapor in air.  They have no known smell or taste.  PCBs enter the environment as mixtures

containing a variety of individual chlorinated biphenyl components, known as congeners, as well

as impurities.  Because the health effects of environmental mixtures of PCBs are difficult to
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evaluate, most of the information in this toxicological profile is about seven types of PCB

mixtures that were commercially produced.  These seven kinds of PCB mixtures include 35% of

all the PCBs commercially produced and 98% of PCBs sold in the United States since 1970. 

Some commercial PCB mixtures are known in the United States by their industrial trade name,

Aroclor.  For example, the name Aroclor 1254 means that the mixture contains approximately

54% chlorine by weight, as indicated by the second two digits in the name.  Because they don't

burn easily and are good insulating materials, PCBs were used widely as coolants and lubricants

in transformers, capacitors, and other electrical equipment.  The manufacture of PCBs stopped in

the United States in August 1977 because there was evidence that PCBs build up in the

environment and may cause harmful effects.  Consumer products that may contain PCBs include

old fluorescent lighting fixtures, electrical devices or appliances containing PCB capacitors made

before PCB use was stopped, old microscope oil, and old hydraulic oil.  You can find further

information on the physical properties and uses of PCBs in Chapters 4 and 5.

1.2 WHAT HAPPENS TO POLYCHLORINATED BIPHENYLS WHEN THEY ENTER
THE ENVIRONMENT?

Before 1977, PCBs entered the air, water, and soil during their manufacture and use in the

United States.  Wastes that contained PCBs were generated at that time, and these wastes were

often placed in landfills.  PCBs also entered the environment from accidental spills and leaks

during the transport of the chemicals, or from leaks or fires in transformers, capacitors, or other

products containing PCBs.  Today, PCBs can still be released into the environment from poorly

maintained hazardous waste sites that contain PCBs; illegal or improper dumping of PCB

wastes, such as old transformer fluids; leaks or releases from electrical transformers containing

PCBs; and disposal of PCB-containing consumer products into municipal or other landfills not

designed to handle hazardous waste.  PCBs may be released into the environment by the burning

of some wastes in municipal and industrial incinerators.

Once in the environment, PCBs do not readily break down and therefore may remain for very

long periods of time.  They can easily cycle between air, water, and soil.  For example, PCBs can

enter the air by evaporation from both soil and water.  In air, PCBs can be carried long distances
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and have been found in snow and sea water in areas far away from where they were released into

the environment, such as in the arctic.  As a consequence, PCBs are found all over the world.  In

general, the lighter the type of PCBs, the further they may be transported from the source of

contamination.  PCBs are present as solid particles or as a vapor in the atmosphere.  They will

eventually return to land and water by settling as dust or in rain and snow.  In water, PCBs may

be transported by currents, attach to bottom sediment or particles in the water, and evaporate into

air.   Heavy kinds of PCBs are more likely to settle into sediments while lighter PCBs are more

likely to evaporate to air.  Sediments that contain PCBs can also release the PCBs into the

surrounding water.  PCBs stick strongly to soil and will not usually be carried deep into the soil

with rainwater.  They do not readily break down in soil and may stay in the soil for months or

years; generally, the more chlorine atoms that the PCBs contain, the more slowly they break

down.  Evaporation appears to be an important way by which the lighter PCBs leave soil.  As a

gas, PCBs can accumulate in the leaves and above-ground parts of plants and food crops. 

PCBs are taken up into the bodies of small organisms and fish in water.  They are also taken up

by other animals that eat these aquatic animals as food.  PCBs especially accumulate in fish and

marine mammals (such as seals and whales) reaching levels that may be many thousands of

times higher than in water.  PCB levels are highest in animals high up in the food chain.  You

can find more information about what happens to PCBs in the environment in Chapter 6.

1.3 HOW MIGHT I BE EXPOSED TO POLYCHLORINATED BIPHENYLS?

Although PCBs are no longer made in the United States, people can still be exposed to them. 

Many older transformers and capacitors may still contain PCBs, and this equipment can be used

for 30 years or more.  Old fluorescent lighting fixtures and old electrical devices and appliances,

such as television sets and refrigerators, therefore may contain PCBs if they were made before

PCB use was stopped.  When these electric devices get hot during operation, small amounts of

PCBs may get into the air and raise the level of PCBs in indoor air.  Because devices that contain

PCBs can leak with age, they could also be a source of skin exposure to PCBs.
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Small amounts of PCBs can be found in almost all outdoor and indoor air, soil, sediments,

surface water, and animals.  However, PCB levels have generally decreased since PCB

production stopped in 1977.  People are exposed to PCBs primarily from contaminated food and

breathing contaminated air.  The major dietary sources of PCBs are fish (especially sportfish that

were caught in contaminated lakes or rivers), meat, and dairy products.  Between 1978 and 1991,

the estimated daily intake of PCBs in adults from dietary sources declined from about

1.9 nanograms (a nanogram is a billionth part of a gram) to less than 0.7 nanograms.  PCB levels

in sportfish are still high enough so that eating PCB-contaminated fish may be an important

source of exposure for some people.  Recent studies on fish indicate maximum concentrations of

PCBs are a few parts of PCBs in a million parts (ppm) of fish, with higher levels found in

bottom-feeders such as carp.  Meat and dairy products are other important sources of PCBs in

food, with PCB levels in meat and dairy products usually ranging from less than 1 part in a

billion parts (ppb) of food to a few ppb.

Concentrations of PCBs in subsurface soil at a Superfund site have been as high as 750 ppm.

People who live near hazardous waste sites may be exposed to PCBs by consuming PCB-

contaminated sportfish and game animals, by breathing PCBs in air, or by drinking

PCB-contaminated well water.  Adults and children may come into contact with PCBs when

swimming in contaminated water and by accidentally swallowing water during swimming. 

However, both of these exposures are far less serious than exposures from ingesting

PCB-contaminated food (particularly sportfish and wildlife) or from breathing PCB-

contaminated air.  

Workplace exposure to PCBs can occur during repair and maintenance of PCB transformers;

accidents, fires, or spills involving PCB transformers and older computers and instruments; and

disposal of PCB materials.  In addition to older electrical instruments and fluorescent lights that

contain PCB-filled capacitors, caulking materials, elastic sealants, and heat insulation have also

been known to contain PCBs.  Contact with PCBs at hazardous waste sites can happen when

workers breathe air and touch soil containing PCBs.  Exposure in the contaminated workplace

occurs mostly by breathing air containing PCBs and by touching substances that contain PCBs. 

You can find more information about exposure to PCBs in Chapter 6.
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1.4 HOW CAN POLYCHLORINATED BIPHENYLS ENTER AND LEAVE MY BODY?

If you breathe air that contains PCBs, they can enter your body through your lungs and pass into

the bloodstream.  We do not know how fast or how much of the PCBs that are breathed will pass

into the blood.  A common way for PCBs to enter your body is by eating meat or fish products or

other foods that contain PCBs.  Exposure from drinking water is less than from food.  It is also

possible that PCBs can enter your body by breathing indoor air or by skin contact in buildings

that have the kinds of old electrical devices that contain and can leak PCBs.  For people living

near waste sites or processing or storage facilities, and for people who work with or around

PCBs, the most likely ways that PCBs will enter their bodies are from skin contact with

contaminated soil and from breathing PCB vapors.  Once PCBs are in your body, some may be

changed by your body into other related chemicals called metabolites.  Some metabolites of

PCBs may have the potential to be as harmful as some unchanged PCBs.  Some of the

metabolites may leave your body in the feces in a few days, but others may remain in your body

fat for months.  Unchanged PCBs may also remain in your body and be stored for years mainly

in the fat and liver, but smaller amounts can be found in other organs as well.  PCBs collect in

milk fat and can enter the bodies of infants through breast-feeding.  For more information on

how PCBs can enter and leave your body, see Chapter 3.

1.5 HOW CAN POLYCHLORINATED BIPHENYLS AFFECT MY HEALTH?

Many studies have looked at how PCBs can affect human health.  Some of these studies

investigated people exposed in the workplace, and others have examined members of the general

population.  Skin conditions, such as acne and rashes, may occur in people exposed to high

levels of PCBs.  These effects on the skin are well documented, but are not likely to result from

exposures in the general population.  Most of the human studies have many shortcomings, which

make it difficult for scientists to establish a clear association between PCB exposure levels and

health effects.  Some studies in workers suggest that exposure to PCBs may also cause irritation

of the nose and lungs, gastrointestinal discomfort, changes in the blood and liver, and depression

and fatigue.  Workplace concentrations of PCBs, such as those in areas where PCB transformers

are repaired and maintained, are higher than levels in other places, such as air in buildings that
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have electrical devices containing PCBs or in outdoor air, including air at hazardous waste sites. 

Most of the studies of health effects of PCBs in the general population examined children of

mothers who were exposed to PCBs.  The possible health effects of PCBs in children are

discussed in Section 1.6.

To protect the public from the harmful effects of toxic chemicals and to find ways to treat people

who have been harmed, scientists use many tests.

One way to see if a chemical will hurt people is to learn how the chemical is absorbed, used, and

released by the body; for some chemicals, animal testing may be necessary.  Animal testing may

also be used to identify health effects such as cancer or birth defects.  Without laboratory

animals, scientists would lose a basic method to get information needed to make wise decisions

to protect public health.  Scientists have the responsibility to treat research animals with care and

compassion.  Laws today protect the welfare of research animals, and scientists must comply

with strict animal care guidelines.

Rats that ate food containing large amounts of PCBs for short periods of time had mild liver

damage, and some died.  Rats, mice, or monkeys that ate smaller amounts of PCBs in food over

several weeks or months developed various kinds of health effects, including anemia, acne-like

skin conditions, and liver, stomach, and thyroid gland injuries.  Other effects caused by PCBs in

animals include reductions in the immune system function, behavioral alterations, and impaired

reproduction.  Some PCBs can mimic or block the action of hormones from the thyroid and other

endocrine glands.  Because hormones influence the normal functioning of many organs, some of

the effects of PCBs may result from endocrine changes.  PCBs are not known to cause birth

defects.  Only a small amount of information exists on health effects in animals exposed to PCBs

by skin contact or breathing.  This information indicates that liver, kidney, and skin damage

occurred in rabbits following repeated skin exposures, and that a single exposure to a large

amount of PCBs on the skin caused death in rabbits and mice.  Breathing PCBs over several

months also caused liver and kidney damage in rats and other animals, but the levels necessary

to produce these effects were very high.  For more information on how PCBs can affect your

health, see Chapters 2 and 3.
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Studies of workers provide evidence that PCBs were associated with certain types of cancer in

humans, such as cancer of the liver and biliary tract.  Rats that ate commercial PCB mixtures

throughout their lives developed liver cancer.  Based on the evidence for cancer in animals, the

Department of Health and Human Services (DHHS) has stated that PCBs may reasonably be

anticipated to be carcinogens.  Both EPA and the International Agency for Research on Cancer

(IARC) have determined that PCBs are probably carcinogenic to humans.

1.6 HOW CAN POLYCHLORINATED BIPHENYLS AFFECT CHILDREN?

This section discusses potential health effects from exposures during the period from conception

to maturity at 18 years of age in humans.

Children are exposed to PCBs in the same way as are adults: by eating contaminated food,

breathing indoor air in buildings that have electrical devices containing PCBs, and drinking

contaminated water.  Because of their smaller weight, children’s intake of PCBs per kilogram of

body weight may be greater than that of adults.  In addition, a child’s diet often differs from that

of adults.  A Food and Drug Administration (FDA) study in 1991 estimated dietary intakes of

PCBs for infants (6 months) and toddlers (2 years) of less than 0.001 and 0.002 µg/kg/day. 

Children who live near hazardous waste sites may accidentally eat some PCBs through hand-to-

mouth behavior, such as by putting dirty hands or other soil/dirt covered objects in their mouths,

or eating without washing their hands.  Some children also eat dirt on purpose; this behavior is

called pica.  Children could also be exposed by playing with old appliances or electrical devices

that contain PCBs. 

It is possible that children could be exposed to PCBs following transport of the chemical on

clothing from the parent’s workplace to the home.  House dust in homes of workers exposed to

PCBs contained higher than average levels of PCBs.  PCBs have also been found on the clothing

of firefighters following transformer fires.  The most likely way infants will be exposed is from

breast milk that contains PCBs.  Fetuses in the womb are also exposed from the exposed mother.
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In one study of women exposed to relatively high concentrations of PCBs in the workplace

during pregnancy, their babies weighed slightly less at birth than babies born to women exposed

to lower concentrations of PCBs.  Studies of women who consumed high amounts of fish

contaminated with PCBs and other chemicals also had babies that weighed less than babies from

women who did not eat fish.  Similar observations have been made in some studies of women

with no known high exposure to PCBs, but not all studies have confirmed these findings.  Babies

born to women who ate fish contaminated with PCBs before and during pregnancy showed

abnormal responses to tests of infant behavior.  Some of these behaviors, such as problems with

motor skills and a decrease in short-term memory, persisted for several years.  However, in these

studies, the women may have been exposed to other chemicals.  Other studies suggest that the

immune system may be affected in children born to and nursed by mothers exposed to increased

levels of PCBs.  There are no reports of structural birth defects in humans caused by exposure to

PCBs or of health effects of PCBs in older children.  It is not known whether PCB exposure can

cause in skin acne and rashes in children as occurs in some adults, although it is likely that the

same effects would occur at very high PCB exposure levels.  

Animal studies have shown harmful effects in the behavior of very young animals when their

mothers were exposed to PCBs and they were exposed in the womb or by nursing.  In addition,

some animal studies suggest that exposure to PCBs causes an increased incidence of prenatal

death and changes in the immune system, thyroid, and reproductive organs.  Studies in monkeys

showed that young animals developed skin effects from nursing after their mothers were exposed

to PCBs.  Some studies indicate that very high doses of PCBs may cause structural birth defects

in animals.

Children can be exposed to PCBs both prenatally and from breast milk.  PCBs are stored in the

mother’s body and can be released during pregnancy, cross the placenta, and enter fetal tissues. 

Because PCBs dissolve readily in fat, they can accumulate in breast milk fat and be transferred

to babies and young children.  PCBs have been measured in umbilical cord blood and in breast

milk.  Some studies have estimated that an infant who is breast fed for 6 months may accumulate

in this period 6–12% of the total PCBs that will accumulate during its lifetime.  However, in

most cases, the benefits of breast-feeding outweigh any risks from exposure to PCBs in mother’s
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milk.  You should consult your health care provider if you have any concerns about PCBs and

breast feeding.  Because the brain, nervous system, immune system, thyroid, and reproductive

organs are still developing in the fetus and child, the effects of PCBs on these target systems may

be more profound after exposure during the prenatal and neonatal periods, making fetuses and

children more susceptible to PCBs than adults. 

More information regarding children’s health and PCBs can be found in Chapter 3 (Section 3.7).

1.7 HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO
POLYCHLORINATED BIPHENYLS?

If your doctor finds that you have been exposed to significant amounts of polychlorinated

biphenyls, ask whether your children might also be exposed.  Your doctor might need to ask

your state health department to investigate.

You and your children may be exposed to PCBs by eating fish or wildlife caught from

contaminated locations.  Certain states, Native American tribes, and U.S. territories have issued

fish and wildlife advisories to warn people about PCB-contaminated fish and fish-eating

wildlife.  These advisories will tell you what types and sizes of fish and game animals are of

concern.  An advisory may completely ban eating fish or game or tell you to limit your meals of

a certain fish or game type.  For example, an advisory may tell you not to eat a certain type of

fish or game more than once a month.  The advisory may tell you only to eat certain parts of the

fish or game and how to prepare or cook the fish or game to decrease your exposure to PCBs. 

The fish or wildlife advisory may have special restrictions to protect pregnant women, nursing

mothers, and young children.  To reduce your children’s exposure to PCBs, obey these

advisories.  Additional information on fish and wildlife advisories for PCBs, including states that

have advisories,  is provided in Chapter 6 (Section 6.7) and Chapter 8.  You can consult your

local and state health departments or state natural resources department on how to obtain PCB

advisories, as well as other important information, such as types of fish and wildlife and the

locations that the advisories apply to. 



PCBs 10

1.  PUBLIC HEALTH STATEMENT

Children should be told that they should not play with old appliances, electrical equipment, or

transformers, since they may contain PCBs.  Children who live near hazardous waste sites

should be discouraged from playing in the dirt near these sites and should not play in areas

where there was a transformer fire.  In addition, children should be discouraged from eating dirt,

and careful handwashing practices should be followed. 

As mentioned in Section 1.3, workplace exposure to PCBs can still occur during repair and

maintenance of old PCB transformers; accidents, fires, or spills involving these transformers or

other PCB-containing items; and disposal of PCB materials.  If you are exposed to PCBs in the

workplace, it may be possible to carry them home from work.  Your occupational health and

safety officer at work can tell you whether the chemicals you work with may contain PCBs and

are likely to be carried home on your clothes, body, or tools.  If this is the case, you should

shower and change clothing before leaving work, and your work clothes should be kept separate

from other clothes and laundered separately.  

 

1.8 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN
EXPOSED TO POLYCHLORINATED BIPHENYLS?

Levels of PCBs in the environment were zero before PCBs were manufactured.  Now, all people

in industrial countries have some PCBs in their bodies.  There are tests to determine whether

PCBs are in the blood, body fat, and breast milk.  These are not regular or routine clinical tests,

such as the one for cholesterol, but could be ordered by a doctor to detect PCBs in people

exposed to them in the environment and at work.  If your PCB levels are higher than the

background levels, this will show that you have been exposed to high levels of PCBs.  However,

these measurements cannot determine the exact amount or type of PCBs that you have been

exposed to, or how long you have been exposed.  Although these tests can indicate whether you

have been exposed to PCBs to a greater extent than the general population, they do not predict

whether you will develop harmful health effects.  Blood tests are the easiest, safest, and probably

the best method for detecting recent exposures to large amounts of PCBs.  Results of such tests

should be reviewed and carefully interpreted by physicians with a background in environmental

and occupational medicine.  Nearly everyone has been exposed to PCBs because they are found
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throughout the environment, and people are likely to have detectable amounts of PCBs in their

blood, fat, and breast milk.  Recent studies have shown that PCB levels in tissues from United

States population are now declining.  Additional information on tests used to determine whether

you have been exposed to PCBs can be found in Chapter 3 (Section 3.11) and Chapter 7

(Section 7.1).

1.9 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO
PROTECT HUMAN HEALTH?

The federal government develops regulations and recommendations to protect public health . 

Regulations can be enforced by law.  Federal agencies that develop regulations for toxic

substances include the Environmental Protection Agency (EPA), the Occupational Safety and

Health Administration (OSHA), and the Food and Drug Administration (FDA). 

Recommendations provide valuable guidelines to protect public health but cannot be enforced by

law.  Federal organizations that develop recommendations for toxic substances include the

Agency for Toxic Substances and Disease Registry (ATSDR) and the National Institute for

Occupational Safety and Health (NIOSH).

Regulations and recommendations can be expressed in not-to-exceed levels in air, water, soil, or

food that are usually based on levels that affect animals; then they are adjusted to help protect

people.  Sometimes these not-to-exceed levels differ among federal organizations because of

different exposure times (an 8-hour workday or a 24-hour day), the use of different animal

studies, or other factors.

Recommendations and regulations are periodically updated as more information becomes

available.  For the most current information, check with the federal agency or organization that

provides it.  Some regulations and recommendations for PCBs include the following:

The EPA standard for PCBs in drinking water is 0.5 parts of PCBs per billion parts (ppb) of

water.  For the protection of human health from the possible effects of drinking the water or

eating the fish or shellfish from lakes and streams that are contaminated with PCBs, the EPA
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regulates that the level of PCBs in these waters be no greater than 0.17 parts of PCBs per trillion

parts (ppt) of water.  States with fish and wildlife consumption advisories for PCBs are identified

in Chapter 6 (Section 6.7) and Chapter 8. 

The FDA has set residue limits for PCBs in various foods to protect from harmful health effects.  

FDA required limits include 0.2 parts of PCBs per million parts (ppm) in infant and junior foods,

0.3 ppm in eggs, 1.5 ppm in milk and other dairy products (fat basis), 2 ppm in fish and shellfish

(edible portions), and 3 ppm in poultry and red meat (fat basis).

OSHA regulates that workers not be exposed by inhalation over a period of 8 hours for 5 days

per week to more than 1 milligram per cubic meter of air (mg/m3) for 42% chlorine PCBs, or to

0.5 mg/m3 for 54% chlorine PCBs.  

NIOSH recommends that workers not breathe air containing 42 or 54% chlorine PCB levels

higher than 1 microgram per cubic meter of air (µg/m3) for a 10-hour workday, 40-hour

workweek.

EPA requires that companies that transport, store, or dispose of PCBs follow the rules and

regulations of the federal hazardous waste management program.  EPA also limits the amount of

PCBs put into publicly owned waste water treatment plants.  To minimize exposure of people to

PCBs, EPA requires that industry tell the National Response Center each time 1 pound or more

of PCBs have been released to the environment.

For more information on federal and state regulations and guidelines for PCBs, see Chapter 8.
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1.10 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or

Agency for Toxic Substances and Disease Registry
Division of Toxicology
1600 Clifton Road NE, Mailstop E-29
Atlanta, GA 30333

* Information line and technical assistance

Phone: 1-888-42-ATSDR (1-888-422-8737)
Fax: 1-404-639-6359
Internet: http://www.atsdr.cdc.gov

ATSDR can also tell you the location of occupational and environmental health clinics.  These

clinics specialize in recognizing, evaluating, and treating illnesses resulting from exposure to

hazardous substances.

* To order toxicological profiles, contact

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Phone: 1-800-553-6847 or 1-703-605-6000
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2.1 Background and Environmental Exposures to PCBs in the United States

PCBs are a category of chemicals that were manufactured in the United States between about 1930 and

1977, predominantly for use as coolants and lubricants in electrical equipment such as capacitors and

transformers due to their general chemical inertness and heat stability.  PCBs are complex mixtures of

chlorinated biphenyls that vary in the degree of chlorination.  For example, the commercial product

Aroclor 1254 is a mixture of mono- through heptachlorinated biphenyl congeners with an average

chlorine content of approximately 54%.  However, significant lot-to-lot differences in congeneric

composition occurred among similar mixtures.  The manufacture of PCBs in the United States was

stopped due to evidence that they accumulate and persist in the environment and can cause toxic effects.

No known consumer product currently manufactured in the United States contains PCBs, but PCBs are

still released during some industrial processes.  Once released into the environment, the compositions of

commercial PCB mixtures are altered through processes such as volatilization and other kinds of

partitioning, chemical or biological transformation, and preferential bioaccumulation.  These processes

are dependent upon the degree of chlorination of the biphenyl molecule.  PCBs, particularly the higher

chlorinated congeners, adsorb strongly to sediment and soil, where they tend to persist with half-lives of

months to years.  PCBs bioaccumulate in food chains and are stored in fatty tissues due to their stability

and lipophilicity.  Bioaccumulated PCBs are of particular relevance to human health because of their

persistence in the body.

The general population may be exposed to PCBs by ingesting contaminated food and by inhaling

contaminated air (see Chapter 6).  Food consumption has been and continues to be the major source of

body burden of PCBs in the general population.  The estimated dietary intake of PCBs for an average

adult was about 0.03 µg/kg/day in 1978, but this had declined to <0.001 µg/kg/day by 1991.  There is

evidence that diets high in fish from PCB-contaminated waters, such as in the Great Lakes-St. Lawrence

River basins, can significantly increase a person’s dietary intake of PCBs.  Breast-fed infants of mothers

who have diets high in contaminated fish may have a particularly increased risk for PCB exposure due to

its presence in the milk.  Human PCB exposure has also been attributed to inhalation of indoor air,

especially at locations that still use electrical equipment containing PCBs.
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An important issue related to evaluating health effects of PCBs in humans is exposure assessment. 

Exposure to PCBs has been assessed by measuring PCBs in blood, breast milk, and adipose tissue.  

Umbilical cord blood also has been used to estimate exposure in utero.  In addition, fish consumption has 

been utilized as surrogate of PCB exposure in some studies, but this measure of exposure has not always

been reliable.  Mean serum PCB levels range from 0.9–1.5 ppb (µg/L), in recent years, in individuals who

do not have diets high in fish from waters contaminated with PCBs.  In the absence of human data,

environmental sampling (soil, sediment, air, food, water) has also been used to estimate exposure.

2.2 Summary of Health Effects

The preponderance of the biomedical data from human and laboratory mammal studies provide strong

evidence of the toxic potential of exposure to PCBs.  Information on health effects of PCBs is available

from studies of people exposed in the workplace, by consumption of contaminated rice oil in Japan (the

Yusho incident) and Taiwan (the Yu-Cheng incident), by consumption of contaminated fish, and via

general environmental exposures, as well as food products of animal origin.  As summarized below and

detailed in Chapter 3, health effects that have been associated with exposure to PCBs in humans and/or

animals include liver, thyroid, dermal and ocular changes, immunological alterations, neurodevelop-

mental changes, reduced birth weight, reproductive toxicity, and cancer.  The human studies of the Yusho

and Yu-Cheng poisoning incidents, contaminated fish consumption, and general populations are

complicated by the mixture nature of PCB exposure and possible interactions between the congeneric

components and other chemicals (see Chapter 3 for additional information).  Therefore, although PCBs

may have contributed to adverse health effects in these human populations, it cannot be determined with

certainty which congeners may have caused the effects.  Animal studies have shown that PCBs induce

effects in monkeys at lower doses than in other species, and that immunological, dermal/ocular, and

neurobehavioral changes are particularly sensitive indicators of toxicity in monkeys exposed either as

adults, or during pre- or postnatal periods.

Hepatic Effects.    The hepatotoxic potential of PCB mixtures is well-documented in animals by oral

and other routes of exposure.  The spectrum of possible hepatic effects in animals is broad and includes

microsomal enzyme induction, liver enlargement, increased serum levels of liver enzymes and lipids, and

histopathologic alterations that progress to fatty and necrotic lesions and tumors.  The findings of human

studies, however, are not as obvious.  Many of the human studies involving worker and other populations

with high body burdens of PCBs report associations between PCBs and hepatic indices such as liver

enzymes, lipids, and cholesterol.  Studies of people exposed to PCBs by ingestion of contaminated fish or
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contaminated rice oil in the Yusho or Yu-Cheng incidents have reported increases in serum levels of some

liver enzymes (e.g., γ-glutamyltranspeptidase [GGT], aspartate aminotransferase [AST], and/or alanine

aminotransferase [ALT]) that are suggestive of microsomal enzyme induction or possible liver damage. 

Tests for some nonroutinely-studied liver indices (e.g., accelerated erythrocyte sedimentation rate, high

titer in thymol turbidity, increased M fraction of lactate dehydrogenase, and increased alkaline

phosphatase and ribonuclease levels) also indicate possible liver damage in some Yusho patients.

Definitive conclusions regarding human hepatotoxiciy are hampered by limitations in study design of

available studies, such as exposure misclassification, lack of controls, lack of correction for common

confounding variables (e.g., age and alcohol consumption), and natural partitioning of PCBs to serum

lipids.  The lack of unequivocal evidence in humans that is seen in laboratory animals may result from

many factors, including species differences in susceptibility or sensitivity to PCBs, and dissimilarities in

exposure levels, durations, and mixture compositions.

Hepatotoxic effects commonly induced in laboratory animals exposed to commercial PCB mixtures

include increased serum levels of liver enzymes indicative of hepatocellular damage (e.g., AST and

ALT), serum and tissue biochemical changes indicative of liver dysfunction (e.g., altered levels of lipids,

cholesterol, porphyrins, and vitamin A), and histopathologic changes (particularly fat deposition),

fibrosis, and necrosis.  Intermediate- and chronic-duration oral studies have shown hepatotoxic effects in

monkeys that include fatty degeneration, hepatocellular necrosis, and hypertrophic and hyperplastic

changes in the bile duct at oral doses of PCBs as low as 0.1–0.2 mg/kg/day (Aroclor 1254 or 1248). 

Induction of microsomal enzymes appears to be the most sensitive hepatic alteration produced by

Aroclors and other PCB mixtures in laboratory animals.  While microsomal enzyme induction is not

necessarily adverse, it may have indirect implications for human health through protective or toxic effects

that are secondary to enhanced metabolic detoxification or bioactivation of exogenous or endogenous

substances.  Examples of this include possible interference with medical therapy due to increased

metabolism of administered drugs, the possibility of disease secondary to the altered metabolism of

endogenous substances such as hormones, and increased activation of promutagens and procarcinogens as

shown, for example, for the secondary carcinogen dimethylnitrosamine.

Hepatic porphyria is an indicator of liver dysfunction that has been induced in animals following

intermediate-duration oral or dermal exposure to Aroclors and other PCB mixtures.  Increased urinary

excretion of porphyrins has been reported in two studies of PCB workers, and Type B hepatic porphyria
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(a uroporphyrin/coproporphyrin ratio >1) was a consistent finding in Yu-Cheng patients, including

children born to exposed mothers.  However, clinically evident porphyrias have not been reported in

people with occupational or Yusho/Yu-Cheng PCB exposures.

The liver, which is the site of approximately 90% of the vitamin A in the body, has a major role in

vitamin A metabolism.  Altered vitamin A homeostasis, primarily manifested as decreased hepatic storage

of vitamin A, is another demonstrated effect of PCB mixtures and single congeners in orally-exposed rats

and rabbits.  Vitamin A is essential for normal growth and cell differentiation, particularly differentiation

of epithelial cells, and PCB-induced epithelial lesions in monkeys have been observed to resemble those

produced by vitamin A deficiency.  Whether the PCB-related disturbances in vitamin A homeostasis are

due to a direct effect on hepatic regulation or to effects on extrahepatic feedback processes has not been

established.

Endocrine Effects.    Concern about potential effects of PCBs on thyroid hormones is based on two

main considerations: (1) extensively corroborated findings in experimental animals that exposure to PCBs

in utero and/or during early development (e.g., through breast milk) can deplete levels of circulating

thyroid hormones in the fetus or neonate, which may give rise to a hypothyroid state during development;

and (2) the recognition of the importance of thyroid hormones in normal development of the brain, as is

evident from neurodevelopmental disorders and deficits associated with hypothyroidism.  The latter are

typified by iodine deficiency (e.g., endemic cretinism), which can produce a wide range of

neurodevelopmental deficits, including auditory, motor, and intellectual deficits.  These outcomes

underscore the importance of thyroid hormones in the normal development of the fetal cochlea, basal

ganglia, and cerebral cortex, which begin to develop in humans during the second trimester of gestation. 

This is also the time period during which the fetal thyroid gland becomes functional.

Direct evidence linking PCB exposures to thyroid morbidity in humans is limited.  The risk for goiter was

significantly increased among the Yu-Cheng cohort, indicating the possibility of excess thyroid disease in

an adult population that experienced relatively high exposures to mixtures of PCBs and polychlorinated

dibenzofurans (PCDFs).  Other more limited observations in adults include reports of increased thyroid

gland volume among workers and nearby residents of a PCB production facility.  Studies that examined

relationships between PCB exposure and thyroid hormone status in children or adults reported a variety of

different results, with findings of both positive and negative correlations between PCB exposure and

circulating levels of thyroid stimulating hormone (TSH) or thyroxine (T4) or triiodothyronine (T3)

hormones.
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The most compelling evidence for a potential thyroid hormone involvement in PCB toxicity in humans is

based on observations made in experimental animals, including rodents and nonhuman primates.  Major

findings include (1) histological changes in the thyroid gland indicative of both stimulation of the gland

(similar to that induced by TSH or a hypothyroid state) and a disruption of the processing of follicular

colloid needed for normal production and secretion thyroid hormone; (2) depression of T4 and T3

hormone levels, which may effectively create a hypothyroid state; (3) increased rates of elimination of T4

and T3 from serum; (4) increased activities of T4-UDP-glucuronyl transferase (UDP-GT) in liver, which is

an important metabolic elimination pathway for T4 and T3; (5) decreased activity of iodothyronine

sulfotransferases in liver, which are also important in the metabolic elimination of iodothyronines; (6)

decreased activity of iodothyronine deiodinases including brain Type-2 deiodinase, which provide the

major pathways for the production of the active thyroid hormone, T3; and (7) decreased binding of T4 to

transthyretin, which is an important transport protein for both T4 and T3.  These observations indicate that

PCBs can disrupt the production of thyroid hormones, both in the thyroid and in peripheral tissues, can

interfere with their transport to peripheral tissues, and can accelerate the metabolic clearance of thyroid

hormones. 

The most convincing evidence that PCBs can exert toxicity by disrupting thyroid hormone system derives

from two studies in rats.  In one study, neurobehavioral deficits in pups exposed to Aroclor 1254 in utero

and during nursing, were significantly attenuated by subcutaneous injections of T4 that increased serum T4

and T3 concentrations that were otherwise depressed in the PCB-exposed animals.  While this study

examined relatively high doses of Aroclor 1254, it nevertheless demonstrated neurodevelopmental effects

that are directly relevant to observations made in epidemiological studies and to neurological sequelae of

fetal hypothyrodism, including disturbances of motor function and hearing.  In the second study,

increased testes weight and sperm production in rats that were administered Aroclor 1254 on postnatal

days 1–25 were attenuated by injections of T4 on postnatal days 1–25, which also prevented the

depression in serum T4 concentrations.  These observed effects may reflect a disruption of the normal

sexual maturation process, which is known to be associated with neonatal hypothyroidism in humans. 

Other effects of PCBs on endocrine function that have been observed in experimental animals include

effects on the adrenal glands and serum adrenal steroid levels.

There is suggestive evidence that PCBs can produce both agonistic and antagonistic estrogenic responses. 

A wide variability of responses observed across PCB type and assays indicates the involvement of

multiple mechanisms.  The specific mechanism of action appears to vary, with competitive binding to

estrogen receptors being congener/metabolite specific.  Anti-estrogenic activities appear to be more
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strongly associated with PCBs that are Ah receptor agonists, whereas hydroxylated metabolites of PCBs

seem to be at least partly responsible for responses to PCBs that may involve changes in estrogen

receptor-dependent physiological processes.  In general, results from both in vitro and in vivo studies

indicate that PCBs have much lower estrogenic potency than the endogenous hormone, 17β-estradiol. 

PCB mixtures have been shown to produce comparatively weak estrogenic responses, and mixtures

having multiple ortho chlorines (or their hydroxylated metabolites) have been suggested to be to partly

responsible for some observed estrogenic responses.   For example, immature female offspring of

laboratory animals exposed to a PCB congener mixture simulating the congener content of human milk

from 50 days prior to mating until birth showed significantly increased uterine weights, a parameter

known to be under estrogenic influence.  In the case of anti-estrogenic responses to PCBs, effects appear

to be concentration dependent.  Anti-estrogenic responses have been observed in studies using tissues

from both humans and rodents.

Dermal and Ocular Effects.    Dermal lesions including skin irritation, chloracne, and pigmentation

of nails and skin have been observed in humans following occupational exposure to PCBs, and from the

accidental ingestion of rice oil contaminated with high concentrations of PCBs, chlorinated dibenzofurans

(CDFs) and other halogenated chemicals during the Yusho and Yu-Cheng poisoning incidents.  Of the

dermal effects observed in workers, chloracne (a dermatologic condition that starts with formation of

comedones [keratin plugs in the pilosebaceous orifices] and inflammatory folliculitis) is the most likely to

have been associated with exposure to PCBs.

Ocular effects including hypersecretion of the Meibomian glands, abnormal pigmentation of the

conjunctiva, and swollen eyelids have also been observed in humans occupationally exposed to PCBs. 

These ocular alterations almost always accompany chloracne.  Ocular effects may continue to appear after

exposure has ceased, possibly as a result of accumulation of the causative agent in skin adipose.  Chronic-

duration oral exposure studies in monkeys showed that adverse dermal and ocular effects can occur at

dose levels as low as 0.005 mg/kg/day.

Immunological Effects.    There are indications of altered immune status in adult and infant human

populations that were orally exposed to mixtures of PCBs and other chemicals.  The most conclusive

findings were in the Yusho and Yu-Cheng populations that experienced the highest levels of PCB

exposure and least complex exposure mixture.  Interpretation of the data from the other human studies is

complicated by responses that were generally subtle and exposures that included a number of persistent

toxic substances in addition to PCBs that are also potentially immunotoxic.  As detailed in Chapter 3



PCBs 21

2.  RELEVANCE TO PUBLIC HEALTH

(Section 3.2.3.2), there appears to be an overall consistency of effects among the human studies

supporting sensitivity of the immune system to PCBs and these other chemicals, particularly in infants

exposed in utero and/or via breast feeding.  For example, susceptibility to respiratory tract infections was

increased in Yusho/Yu-Cheng adults and their children, and there was an association between infectious

illnesses and PCBs in the children of the mothers who consumed Lake Michigan or Sheboygan River fish. 

Children born to Yu-Cheng mothers also had an increased prevalence of middle ear infections, and the

incidence of acute otitis media was increased in Inuit infants of mothers whose diets were based on

marine mammal fat.  Serum IgA and/or IgM antibody levels were decreased in the Yusho and Yu-Cheng

populations as well as in the Inuit children.  Monocyte counts were reduced in Yu-Cheng patients and in

the infants of a Dutch mother-child study, and changes in T lymphocyte subsets were found in the

Yu-Cheng, Inuit child, and Dutch child populations. 

Substantial evidence of the immunotoxicity of PCBs in research animals lends strong support to the

human data.  Particularly relevant findings in animals include reduced antibody responses and levels of

T-lymphocytes and their subsets, which are similar to changes observed in some of the human

populations.  The antibody response to sheep red blood cell (SRBC) antigens is the immune parameter

most commonly and consistently shown to be affected by PCBs in animals; reduced responses have been

demonstrated in most tested species, including adult and infant monkeys, which are sensitive to this effect

at chronic PCB doses as low as 0.005 mg/kg/day (Aroclor 1254).  A no observed adverse effect level for

immunological effects was not identified.

Studies of rats, mice, guinea pigs, and rabbits showed that intermediate-duration exposures to relatively

high doses of commercial PCB mixtures caused morphological and functional alterations in the immune

system.  Effects observed in these species included thymic and splenic atrophy, reduced antibody

responses to SRBC and other foreign antigens, increased susceptibility to infection by viruses and other

microbes, reduced skin reactivity to tuberculin, and increased proliferation of splenic lymphocytes in

response to mitogenic stimulation.

Oral studies of Aroclor mixtures in monkeys confirm that the immune system is sensitive to PCBs. 

Immunological effects of PCBs in monkeys include decreased antibody responses to SRBC, increased

susceptibility to bacterial infections, altered lymphocyte T-cell subsets, decreased lymphoproliferative

response to mitogens, and histopathologic changes in the thymus, spleen, and lymph nodes.  Results of

studies in gestationally- and lactationally-exposed infant monkeys are consistent with the data in adult

animals showing immunosuppressive effects of PCBs at doses as low as 0.005 mg/kg/day (Aroclor 1254), 
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with reductions in IgM and IgG antibody levels to SRBC and mitogen-induced lymphocyte

transformation that generally paralleled the findings in maternal animals.  Immunological alterations were

induced in infant monkeys that were orally exposed to a PCB congener mixture simulating the congener

content of human milk at a dose level of 0.0075 mg/kg/day for the first 20 weeks of life.

Neurological Effects.    The neurological effects of PCBs have been extensively investigated in

humans and animals.  Substantial data suggest that PCBs play a role in neurobehavioral alterations

observed in newborns and young children of women with PCB burdens near background levels.  In

general, the observed alterations are subtle.  In some studies, those alterations were found to disappear as

the children grow older (2–4 years old), while other studies have reported neurobehavioral deficits still

present in 11-year-old children mostly due to in utero exposure to PCBs.  Laboratory animal studies

provide strong substantiating evidence that PCBs can induce adverse neurological effects in developing

animals as well as in adults.

Epidemiological findings in infants and children include abnormal reflexes and deficits in memory,

learning, and IQ.  Prospective studies of children born to mothers exposed to PCBs by consumption of

contaminated fish from the Great Lakes and of children from women in North Carolina, the Netherlands,

and Germany strongly suggest that PCBs play a significant role in neurodevelopmental toxicity observed

in some of these children at birth and continuing during early life.  In the various cohorts studied, some

common findings of neurodevelopmental effects have been reported, although affected end points have

not been the same in all studies.  For example, newborns from women who ate high amounts of

contaminated Lake Michigan fish (high PCB exposure) had a greater number of abnormal reflexes and

more motor immaturity than newborns of mothers who consumed less fish (low PCB exposure).  Similar

observations were made in a North Carolina study of children born to women with low PCB levels, and in

an Oswego, New York study of children from women with high consumption of PCB-contaminated fish

from Lake Ontario.  There was a significant association between poorer habituation and autonomic scores

for the newborns and highly chlorinated (7–9 chlorines) PCB congeners in umbilical cord blood of Lake

Ontario fisheaters, but not with abnormal reflexes.  No significant association was found between any

neurological scores in newborns of the Lake Ontario fisheaters and lightly (1–3 chlorines) or  moderately

(4–6 chlorines) chlorinated PCBs, DDE, lead, mercury, or hexachlorobenzene.  A study of Dutch children

found that neither reflex nor postural cluster scores of a neurological examination were associated with

prenatal exposure to four predominant nonplanar PCB congeners (measured in maternal or umbilical cord

plasma).  However, hypotonia, although not with abnormal reflexes, was related to levels of coplanar

(dioxin-like) PCBs in breast milk.  
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Assessment of infants from the various cohorts with the Bayley Scales of Infant Development has

revealed additional consistency across studies.  This group of tests yields a mental development index

(MDI) and a psychomotor development index (PDI) score, both of which are scaled like a standard IQ

test.  In the North Carolina cohort, a significant decrease in PDI scores at the ages of 6 and 12 months was

associated with prenatal exposure to PCBs (assessed as PCBs in maternal milk at birth), but the

association lost statistical significance at the ages of 18 and 24 months.  No significant association was

observed between PDI scores between 6 and 24 months of age and postnatal exposure to PCBs (in milk

during breast feeding).  There was no significant association between MDI scores and either prenatal or

postnatal exposure to PCBs.

Alterations in memory functions were reported in children from the Michigan cohort at 7 months, 4 years,

and 11 years of age.  Memory and IQ score deficits were associated with prenatal exposure to PCBs, as

measured by PCBs in umbilical cord blood.  The most highly exposed children were 3 times as likely to

have low average IQ scores and twice as likely to be at least 2 years behind in reading comprehension.

Central nervous system effects of PCBs have been confirmed in laboratory animals.  For example,

decreased performance on a memory task was reported in 60-day-old rats exposed in utero to ortho-

substituted PCB congeners.  In monkeys, effects included neurobehavioral changes in juvenile animals

that were treated postnatally for 20 weeks with a low-dose (7.5 µg/kg/day) of a mixture of PCB congeners

representing 80% of the congeners found in human milk.  At age 20 weeks PCB levels were 1.7–3.5 ppm

in fat and 1.84–2.84 ppb in blood, which are very similar to levels found in the general population.  These

monkeys showed deficits in several tasks, including spatial delayed alternation, acquisition of fixed

interval, and differential reinforcement of low rate performance, which were indicative of impaired

learning, perseveration, and ability to inhibit inappropriate responding.  Numerous studies have

investigated neurotransmitter levels in the prefrontal cortex (important in the regulation of short-term

memory or representational memory for spatial information) and other brain areas following exposure of

laboratory mammals to PCBs.  The most consistent finding in such studies has been a decrease in the

concentration of dopamine in different areas of the brain; however, more information is necessary to

associate specific behavioral alterations with specific neurochemical changes.

It is unknown which specific PCB congeners may be neurodevelopmental toxicants in humans.  Data

from the Oswego fisheater study showed that behavioral alterations in newborn children were associated

with the presence of highly chlorinated (7–9 chlorines) PCB congeners in umbilical cord blood.  This is
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consistent with findings that the distribution of PCB congeners in Great Lakes contaminated fish is

shifted toward more highly chlorinated congeners.  Studies with single PCB congeners suggest that both

dioxin-like (coplanar) and non-dioxin-like PCB congeners are capable of inducing neurobehavioral

alterations in animals, but it appears that ortho-substituted PCB congeners are more active than coplanar

PCBs in modifying cognitive processes.  

A relatively small amount of information is available on neurological effects of PCBs in adult humans.  In

a study of aging adults exposed to PCBs through consumption of contaminated sportfish from Lake

Michigan, no adverse neurological effects were found attributable to exposure to PCBs.  Other studies of

adult populations with occupational exposure to PCBs have not been as conclusive for adverse

neurological effects attributable solely to PCB exposure. 

Reproductive Effects.    Limited data indicate that menstrual disturbances in women and effects on

sperm morphology and production, which are effects that can result in difficulty in a couple conceiving,

may be associated with exposure to PCBs .  Overall, the studies of reproductive end points in humans are

limited; however, the weight of the existing human and animal data suggests that PCBs present a potential

reproductive hazard to humans.

In a small number of occupationally-exposed women, there was no apparent effect of Aroclors 1254,

1242, and/or 1016 on mean number of pregnancies.  A study of the general population found that blood

PCB levels were higher in women who had repeated miscarriages, but levels of other organochlorine

compounds were also elevated.  Studies that examined reproductive end points in women whose diets

contained Great Lakes fish found suggestive evidence that consumption of the fish may be associated

with a slightly shorter length of menstrual cycle and reduced fecundability among couples attempting

pregnancy, but not with increased risk of conception delay.  The slight decreases in menstrual length seen

in this population were considered of unknown clinical relevance.  Menstrual cycle changes (altered

intervals, duration, and flow) have also been observed in women exposed to higher doses of PCBs during

the Yusho poisoning incident.  However, another general population study did not find an association

between endometriosis or increased risk for spontaneous fetal death and concentrations of PCBs in the

blood.

These reproductive effects are supported by a number of studies in laboratory animals.  Menstrual

alterations in monkeys and estrus changes in rats have been observed following oral exposure to Aroclor

PCB mixtures.  For example, high doses of Aroclor 1254 causes prolonged estrus cycle in adult rats
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exposed for several weeks, delayed first estrus in offspring of rats following gestational and lactational or

lactational-only exposure, and altered estrus cycle patterns in young and mature offspring of rats

following lactational exposure.  In monkeys, menstrual cycle durations became erratic or longer following

exposure to $0.1 mg/kg/day Aroclor 1248 for 7–9 months, although no clear changes in menstrual

cyclicity resulted from chronic exposure to lower dose levels (0.005–0.08 mg/kg/day) of Aroclor 1254. 

In addition, delayed onset of estrus was also observed in adult mink and their offspring in a 2-generation

reproduction study involving exposure to Great Lakes fish.  

The reproductive toxicity of commercial PCB mixtures in female animals is well-established.  In addition

to estrus and menstrual changes, effects that have been observed in various species include reduced

implantation rate in adult rats and/or their offspring exposed during gestation and lactation, decreased

conception in mice, partial or total reproductive inhibition in minks, and decreased fertility in monkeys. 

Minks and monkeys are particularly sensitive, with effects occurring in these species at oral doses of

Aroclor 1254 and 1248 in the range of 0.1–1 mg/kg/day in intermediate-duration studies, and as low as

0.02 mg/kg/day in monkeys following chronic exposure to Aroclor 1254.  Reproductive failure in minks

associated with fetal death was attributed to degenerative changes in the placental vasculature.  Impaired

ability to conceive and decreased fetal survival are well-documented in female monkeys following

repeated oral exposure to Aroclors 1254 and 1248.  Reduced conception rates, as well as increased

incidences of abortions, resorptions, or stillbirths, were observed in monkeys fed Aroclor 1254 at dose

levels as low as 0.02 mg/kg/day for 37 months before breeding and subsequently throughout mating and

gestation.  

The ability of PCBs to cause reproductive effects in males is less clear-cut than in females.  Sperm counts,

fertility history, and testicular examinations were normal in workers who were exposed to Aroclor PCBs

for several years.  However, analysis of semen showed that increasing concentrations of some individual

congeners, but not total PCBs, were associated with decreasing sperm motility in infertile men.

A limited amount of information is available on reproductive effects of PCBs in male laboratory animals.

Four monkeys chronically exposed to 0.1 mg/kg/day Aroclor 1248 developed effects that included

clinical signs of toxicity, decreased libido, and marked hypoactivity of the seminiferous tubules, including

an absence of mature spermatozoa, after the first year of exposure.  Fertility was markedly reduced in

male offspring of rats that were lactationally exposed to relatively high doses of Aroclor 1254.  The

reduction in male fertility appears to be due to impaired ability of sperm to fertilize eggs because sperm

production, morphology, and motility were not affected and plasma follicle-stimulating hormone (FSH)
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and testosterone concentrations were not reduced.  Oral and subcutaneous studies with single congeners

have also shown that gestational and neonatal exposures can adversely affect morphology and production

of sperm and fertility in male rats and mice.

Developmental Effects.    This section summarizes effects of PCBs on anthropometric measures at

birth as well as physical growth during infancy.  Effects of perinatal exposure to PCBs on other end

points in the offspring, such as the thyroid gland and thyroid hormone status, end points known to be very

important for structural and functional aspects of normal development of the brain and sexual organs, are

discussed in the Endocrine Effects and Reproductive Effects sections, respectively.  Neurodevelopmental

effects of PCBs are summarized in the Neurological Effects section.

Studies of the children of environmentally-exposed women have produced mixed results.  While some

studies have shown significant, negative associations between anthropometric measures at birth (and at

early ages) and exposure to PCBs, other studies have reported either significant positive associations or 

no associations at all.  The wide range of results may reflect the different degree of controlling for

confounders and/or the different exposure measures.  For example, of the studies of women who

consumed contaminated fish from the Great Lakes, the study of Lake Michigan fisheaters found that

reduced birth weight, head circumference, and gestational age in newborns, as well as body weight at

4 years, were associated with prenatal exposure to PCBs (measured in umbilical cord blood).  In the

Oswego cohort (Lake Ontario fish consumption), there was no significant association between birth

weight, head circumference, or gestational age and prenatal exposure to PCBs, as assessed by the same

fish consumption measures used in the Michigan study, which had higher levels of PCB exposure.  In two

additional studies of Lake Michigan women, fish consumption had a positive effect on birth weight.  It

has been postulated that this may be related to the beneficial effects of certain fatty acids in fish.  A study

of Swedish wives of Baltic Sea fishermen found an increased risk of low birth weight with increasing

maternal blood concentrations of a PCB congener used as surrogate of PCB exposure during the year of

childbirth.  In a Dutch general population cohort, a reduced birth weight, but not head circumference or

body length at 10 days of age, was associated with prenatal exposure to PCBs (measured in umbilical

cord blood).  Reduced growth between birth and 3 months was associated with prenatal exposure in

formula-fed children, but no such association was seen in breast-fed children, suggesting that any

detrimental effect observed in newborns due to prenatal exposure to PCBs may have been counteracted

by the benefits of breast feeding.  In the Dutch children, no significant association was seen between

growth between the ages of 3–7 months, 7–18 months, or 18–42 months and any measure of exposure to
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PCBs.  In addition, a study of the general population in Finland found no significant association between

birth weight and the concentration of PCBs in breast milk.

Studies of rodents exposed to relatively high doses of PCBs have commonly found decreased birth

weight, and reduced weight gain after birth following exposure in utero and through suckling.  The latter

finding suggests that significant transfer of PCBs may occur through breast feeding.  Long-term studies

with much lower doses of Aroclors 1016 and 1248 in monkeys also reported decreased birth weight. 

Studies with low doses of Aroclor 1254 (0.0005–0.08 mg/kg/day) in monkeys found no significant effects

on anthropometric measures at birth or on growth thereafter, although dermal and ocular signs of PCB

intoxication were noted.

Cancer.    Carcinogenicity of PCBs in humans has been investigated in retrospective occupational

studies that evaluated cancer mortality in workers exposed during capacitor manufacturing and repairing,

and in case-control studies of the general population that examined associations between cancer and

serum or adipose tissue levels of PCBs resulting from environmental exposures.  Based on indications of

PCB-related cancer at several sites, particularly the liver, biliary tract, intestines, and skin (melanoma),

the human studies provide suggestive evidence that PCBs are carcinogenic.  There is unequivocal

evidence that PCBs are hepatocarcinogenic in animals. 

The suggestive evidence for the carcinogencity of PCBs in humans is supported by extensive conclusive

evidence in animals.  PCBs have been classified as probable human carcinogens by both IARC and EPA,

based mainly on the sufficient evidence of carcinogenicity in animals.  The human evidence of

carcinogenicity is regarded as limited by IARC and inadequate but suggestive by EPA, although neither

assessment is based on all currently available studies.  NTP similarly concluded that PCBs are reasonably

anticipated to be carcinogenic in humans based on sufficient evidence of carcinogenicity in animals. (See

Chapter 3 [Section 3.2.8] for a detailed discussion of the bases for these determinations.)

2.3 Minimal Risk Levels

As indicated above in the beginning of Section 2.1, people are environmentally exposed to PCB mixtures

of different congeneric composition than commercial PCB mixtures.  Although the toxicity or potency of

environmental PCB mixtures consequently may be greater or less than that of commercial mixtures, there

are insufficient mixture toxicity data on which to directly base minimal risk levels (MRLs) for
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environmental PCBs.  One approach that has been widely considered for estimating the risk from

environmental exposure to PCBs is the toxic equivalency factor (TEF) method.  As discussed in

Chapter 3 (Section 3.5.2), the TEF approach can be used to estimate the potency of PCB mixtures by

comparing the relative toxicity of individual PCB congeners to that of 2,3,7,8-tetrachlorodibenzo-

p-dioxin (2,3,7,8-TCDD), which is the most toxic and extensively studied of these structurally-related

halogenated aromatic hydrocarbons.  Although TEFs are used to some extent to guide public health

decisions because of the limited toxicological data for complex environmental mixtures and many of their

components, the approach has received limited validation and has a number of limitations related to

assumptions that the components jointly act in an additive manner through a common Ah-receptor

mechanism of toxicity.  In particular, the TEF approach does not account for evidence that non-Ah-

receptor-binding congeners are major components in PCB-containing environmental mixtures that may

contribute to induction of health effects (Hansen 1998; Safe 1998a, 1998b).  Although there is certainly a

large body of data to support the TEF approach to assessing PCB toxicity, this is by no means without

question, primarily because of evidence of non-additive interactions between specific PCB congeners and

between some PCB congeners and 2,3,7,8-TCDD (see Chapter 3, Section 3.9), as well as increasing

evidence that PCB-induced effects may involve Ah-receptor-dependent mechanisms, Ah-receptor-

independent mechanisms, or both.  Because of the likelihoods that (1) multiple mechanisms may be

involved in PCB-induced health effects, (2) different PCB congeners may produce effects by different

mechanisms, and (3) humans are exposed to complex mixtures of interacting PCBs with differing

biological activities, commercial PCB mixtures (e.g., Aroclor 1254) and experimental PCB mixtures (e.g.,

formulations representing the congeners found in human breast milk) are used to develop health guidance

values, such as MRLs, for environmental mixtures in assessing health risks from exposure.

Inhalation MRLs

No inhalation MRLs were derived for PCB mixtures due to lack of adequate human and animal data.

Oral MRLs

• An MRL of 0.03 µg/kg/day has been derived for intermediate-duration oral exposure
(15–364 days) to PCBs.

The intermediate oral MRL is based on a LOAEL of 0.0075 mg/kg/day for neurobehavioral alterations in

infant monkeys that were exposed to a PCB congener mixture representing 80% of the congeners
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typically found in human breast milk (Rice 1997, 1998, 1999b; Rice and Hayward 1997, 1999a).  The

MRL was estimated by dividing this LOAEL by an uncertainty factor of 300 (10 for extrapolation from a

LOAEL to a NOAEL, 3 for extrapolation from monkeys to humans, and 10 for human variability). 

Groups of five and eight male monkeys were orally administered doses of 0 or 0.0075 mg/kg/day,

respectively, from birth to 20 weeks of age.  The dose level represents the approximate daily intake of a

nursing human infant whose mother’s milk contains 50 ppb PCBs.  Beginning at 3 years of age, the

monkeys were tested for behavioral effects using a series of nonspatial discrimination reversal problems

followed by a spatial delayed alternation task.  Additional testing was done at 4.5 and 5 years of age. 

Treated monkeys showed decreases and variable increases in response latencies across three tasks of

nonspatial discrimination reversal, as well as retarded acquisition of a delayed alternation task and

increased errors at short delay task responses (Rice 1997). These findings were interpreted as a

learning/performance decrement rather than an effect on memory per se.  Treated monkeys also displayed

alterations in fixed-interval and fixed-ratio performance tasks that were interpreted as impaired learning,

perseverative behavior, and/or inability to inhibit inappropriate responding as a result of postnatal PCB

exposure (Rice 1997).  Testing of the monkeys at 4.5–5 years of age showed that treated animals

performed in a less efficient manner than controls under a differential reinforcement of low rate (DRL)

schedule of reinforcement (Rice 1998).  There were no differences between groups on the accuracy of

performance on a series of spatial discrimination reversal tasks, although some treated monkeys made

more errors than others on certain parts of the experiment.  Further tests conducted at about 5 years of age

did not find treatment-related effects on a series of concurrent RI-RI (random interval) schedules of

reinforcement (Rice and Hayward 1999a).  This schedule was designed to study behavior in transition

(learning) as well as at steady state.  However, there was a difference between treated and control

monkeys on performance on a progressive ratio (PR) schedule, which may be indicative of retarded

acquisition of the steady-state PR performance.

The 0.0075 mg/kg/day LOAEL is a particularly relevant basis for MRL derivation due to the composition

of the PCBs (a congener mixture analogous to that in human breast milk), dose level (approximate daily

intake of a nursing human infant whose mother’s milk contains 50 ppb PCBs), and resulting PCB adipose

tissue and blood levels (near background concentrations found in the general human population).  Support

for the 0.0075 mg/kg/day LOAEL is provided by occurrence of minimal immunological alterations in the

same monkeys (Arnold et al. 1999), as well as clinical signs of toxicity (ocular and dermal changes) and

decreased antibody responses in offspring of other monkeys that were exposed to a similarly low dose

level of a commercial PCB mixture (0.005 mg/kg/day Aroclor 1254) for approximately 46 weeks during

gestation and nursing (Arnold et al. 1995).  The next highest intermediate-duration dose level (i.e., above
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0.0075 mg/kg/day) tested in any species is 0.02 mg/kg/day, which is a serious LOAEL for fetal toxicity in

monkeys (Arnold et al. 1995).  Additional information on the critical and supporting studies used to

derive the intermediate-duration MRL is provided in Appendix A.

• An MRL of 0.02 µg/kg/day has been derived for chronic-duration oral exposure (365 days or
more) to PCBs.

The chronic oral MRL was is based on a LOAEL of 0.005 mg/kg/day for immunological effects in adult

monkeys that were evaluated after 23 and 55 months of exposure to Aroclor 1254 (Tryphonas et al. 1989,

1991a).  The MRL was estimated by dividing this LOAEL by an uncertainty factor of 300 (10 for

extrapolation from a LOAEL to a NOAEL, 3 for extrapolation from monkeys to humans, and 10 for

human variability).  This study included groups of 16 female Rhesus monkeys that self-ingested capsules

containing 0, 0.005, 0.02, 0.04, or 0.08 mg/kg/day doses of the PCBs.  Comprehensive immunological

evaluations showed that IgM (all doses except 0.02 mg/kg/day) and IgG (all doses) antibody levels to

SRBC were significantly reduced compared to controls after 23 months (Tryphonas et al. 1989). 

Secondary challenge with SRBC after 55 months showed decreasing dose-related trends in the IgM and

IgG anamnestic responses, although only IgM was significantly lower than controls at all dose levels

(Tryphonas et al. 1991a).  Other immunologic changes included changes in numbers of lymphocyte T-cell

subsets (significantly decreased ratio of T-inducer/helper cells to T-cytotoxic/suppressor cells) at

0.08 mg/kg/day (only dose level tested) after 23 months, and dose-related trends for several endpoints

(e.g., decreasing lymphocyte proliferation in response to mitogenic stimulation, decreasing phagocytic

activity of peripheral blood monocytes) after 55 months.  Support for the critical LOAEL is provided by

mild dermal and ocular manifestations of PCB toxicity, including eyelid swelling and various finger and

toe nail changes, in the same monkeys at 0.005 mg/kg/day and higher doses (Arnold et al. 1993a). 

Additionally, a number of other studies using higher dose levels of PCB have demonstrated

immunological and dermal/ocular effects in monkeys following intermediate or chronic exposures.  The

LOAEL resulted in PCB tissue and blood levels that are near background concentrations found in the

general human population (Kimbrough 1995).  The next highest dose level, 0.02 mg/kg/day, is a serious

LOAEL for reproductive toxicity (reduced conception) and fetal toxicity when monkeys from the same

study were bred after 37 months of exposure (Arnold et al. 1995).  Additional information on the critical

and supporting studies used to derive the chronic-duration MRL is provided in Appendix A.

As affirmed by a panel of international experts (see Appendix E), human data provide support for this

chronic oral MRL.  Using data from the North Carolina cohort (Gladen et al. 1988; Rogan et al. 1986a,
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1986b), Tilson et al. (1990) estimated a NOAEL of 0.093 µg/kg/day for developmental effects in humans. 

This NOAEL was calculated by first estimating the concentration of PCBs in breast milk that resulted in

no significant neurodevelopmental alterations in neonates as assessed with the Brazelton Scale; this

concentration was 3.4 ppm (Gladen et al. 1988; Rogan et al. 1986a).  The assumption was then made that

the concentration of PCBs in women’s breast milk is equal to the concentration of PCBs in the fat

throughout the rest of the body.  It can then be calculated that for 25-year-old women who weigh 60 kg

and have 25% body fat, 3.4 ppm would result from a lifetime daily PCB dose of 0.093 µg/kg/day (Tilson

et al. 1990).  Since the analytical method might have caused the researchers to overestimate the

concentration of PCBs in breast milk by a factor of 2 (Tilson et al. 1990), this NOAEL may be

appropriately estimated to be 0.05 µg/kg/day, rather than 0.093 µg/kg/day.  If an uncertainty factor of

3 were applied to the NOAEL of 0.05 µg/kg/day to account for intraspecies variation, this would result in

a rounded dose of 0.02 µg/kg/day, which is exactly equivalent to the chronic-duration oral MRL derived

above from data in monkeys.  It should be pointed out that because losses of PCBs through excretion,

lactation, and metabolism were not factored in the dose calculations, the actual dose that results in

3.4 ppm in breast milk fat would be higher than the reported NOAEL.  Also, if dose calculations were

based on women older than 25 years, the estimated daily dose would be lower than the reported NOAEL. 

Finally, it is possible that exposure to other bioaccumulative toxic substances could, in part, have

contributed to other effects seen in this study.  Nonetheless, it is both meaningful and relevant that the

chronic oral MRL for PCBs is lower than the estimated NOAEL for the most sensitive human population

in the Tilson et al. (1991) cohort.
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3.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and

other interested individuals and groups with an overall perspective on the toxicology and epidemiology of

polychlorinated biphenyls (PCBs).  It contains descriptions and evaluations of toxicological studies and

epidemiological investigations, as well as toxicokinetic and other kinds of data pertinent to assessing the

health effects of PCBs.  Conclusions on the relevance of this information to public health, where possible,

are discussed in Chapter 2 (Relevance to Public Health).

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile.

The health effects of PCBs have been extensively tested.  Most studies investigated commercial PCBs

mixtures that were produced in the United States before 1977 under Aroclor trade names.  Health effects

studies are also available for PCB mixtures produced in foreign countries.  Among the most common

tested foreign commercial PCB mixtures are Kanechlors, which were produced in Japan, and Clophens,

which were produced in Germany.  As in the United States, PCBs are no longer produced in Japan or
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Germany.  Foreign PCB mixtures differed from Aroclors mainly in percentages of individual chlorinated

biphenyls, method of production, and level of contaminants.  As discussed in Chapter 4, commercial PCB

mixtures are comprised of various PCB congeners (there are 209 possible individual chlorinated

biphenyls), as well as contaminants from the manufacturing process, particularly chlorinated

dibenzofurans (CDFs).  Information regarding the numbering system for PCBs and other chemical terms

used to define the position of the chlorines on the biphenyl structure are provided in Chapter 4.  The

acronym PCBs is a general term used to refer to any commercial or other kind of mixture of congeners,

such as environmental mixtures or animal tissue residues.

Evaluation of the health effects of PCB mixtures is complicated by numerous factors, particularly their

congeneric composition, since ultimately, the toxicity of the mixture is due to the toxicity of the

individual congeners, their interactions, and interactions with other structurally related chemicals such as

CDFs and dioxins.  For example, lot-to-lot differences in the congener distribution of commercial PCBs

have been reported, which could contribute to some variations in toxicity observed among studies.  The

degree of CDF contamination is also a consideration in assessing the toxicity of commercial PCBs,

because reported concentrations of CDFs varied among Aroclor formulations as well as with time period

of manufacture.  Concentrations of CDFs usually were higher in the Japanese and European PCBs than in

Aroclors, and PCBs manufactured in the late 1970s had lower levels of contaminates than those produced

earlier.  In general, this profile is concerned with effects of PCBs in the presence of minimal CDF

contamination.  However, most health effects studies of PCB mixtures did not determine or report purity,

or provide lot numbers that could be used to locate information on CDF contamination or congener

distribution.  Toxicological data for Kanechlors and Clophens are included in this chapter when these data

provide information on effects that are not fully characterized for Aroclors because effects produced by

Aroclors, Kanechlors, and Clophens are generally considered to be similar, at least for mixtures with

equivalent percentages of chlorine (Kimbrough 1987).  In addition, the lowest observed adverse effect

levels for commercial PCB mixtures have been determined with Aroclors.  Selected toxicity and

mechanistic data on individual chlorinated biphenyl congeners also are included in this chapter because

this information is potentially useful for assessing health effects and interactions of environmental

mixtures of PCBs.  

Using current health effects evaluation procedures, toxicity data for individual congeners may over- or

underestimate the actual risk of PCB mixtures because the toxicity of congeners may be influenced by

other congeners and chemicals in an additive, more than additive (synergistic), or less than additive

(antagonistic) way.  As discussed in Chapter 2 (Section 2.3), the current approach to assessing risks uses a
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commercial mixture (Aroclor 1254) and an experimental mixture (a formulation representing the

congeners found in breast milk) to develop health guidance values for environmental exposure to PCBs.  

Information on health effects of PCBs in humans is available from studies of people exposed

occupationally, by consumption of contaminated rice oil in Japan (the Yusho incident) and Taiwan (the

Yu-Cheng incident), by consumption of contaminated fish and other food products of animal origin, and

via general environmental exposures.  As discussed in Chapter 6, people are environmentally exposed to

PCBs that differ from commercial PCB mixtures due to changes in congener and impurity composition

resulting from  processes such as volatilization and other kinds of partitioning, chemical or biological

transformation, and preferential bioaccumulation.  Due to their stability and lipophilicity, PCBs usually

accumulate in higher food-chain organisms and are stored in fatty tissues.  Food consumption has been

and continues to be the major source of body burden of PCBs in the general population.  There is

evidence that diets high in fish from PCB-contaminated waters, such as those in the Great Lakes and

St. Lawrence River basins, can significantly increase a person’s dietary intake of PCBs.  Breast-fed

infants of mothers who have diets high in contaminated fish may have a particularly increased risk for

PCB exposure due to its presence in the milk.

PCBs are 1 of 11 persistent toxic substances that have been identified as critical Great Lakes pollutants by

the International Joint Commission Water Quality Board (GLWQB 1985).  In 1990, Congress amended

the Federal Water Pollution Control Act and mandated the Environmental Protection Agency (EPA), in

consultation with the Agency for Toxic Substances and Disease Registry (ATSDR) and the Great Lakes

states, to submit a research report on the adverse human health effects related to water pollutants in the

Great Lakes.  Since then, ATSDR has awarded research grants and established cooperative agreements to

coordinate basin-wide human health effects research.  The primary interests of ATSDR’s Great Lakes

Human Health Effects Research Program are to document and characterize the exposure, identify

populations at higher risk, identify associations between the consumption of contaminated Great Lakes

fish and short and long-term harmful health effects, identify the most sensitive end points, establish

registries and surveillance cohorts, and identify ways to prevent or mitigate exposure and resulting health

effects (Johnson and DeRosa 1999; Johnson et al. 1998, 1999, 2000).  PCB-related findings from the

Great Lakes Research Program, as well as results from a number of other studies on health effects

associated with exposures to PCBs through fish consumption, are included in this chapter.

Health effects have been observed in humans who consumed rice oil contaminated with heat-degraded

Kanechlors in the Yusho and Yu-Cheng poisoning incidents.  There is a historical linkage between
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Yusho/Yu-Cheng and PCBs, and some health assessment documents ascribe effects from these incidents

to PCBs.  Unlike usual PCB mixtures, the Yusho and Yu-Cheng Kanechlors were heated in thermal heat

exchangers (before rice oil contamination occurred) and also during cooking, resulting in the production

of relatively high concentrations of CDF and polychlorinated quarterphenyl (PCQ) impurities.  The

concentrations of PCBs and PCQs in the rice oils were 100- to 500-fold greater than the CDFs.  CDFs are

generally considered the main causal agent, based on the following evidence: comparisons with Japanese

workers with higher PCB blood levels who had few or none of the symptoms present in the rice oil

poisonings; decreasing serum levels of PCBs in victims with persistent health effects; induction of Yusho

health effects in animals exposed to reconstituted mixtures of CDF congeners similar to those in Yusho

oils, but not by exposure to PCBs or PCQs alone; and comparative toxicity evaluations of PCB and CDF

congeners in the unheated source mixture, contaminated rice oil, and tissues of victims (Bandiera et al.

1984; Kunita et al. 1985; Ryan et al. 1990; Safe 1990; Tanabe et al. 1989).  Although there is a general

consensus that CDFs were main contributors to the health effects in the Yusho and Yu-Cheng victims,

certain PCB congeners have the same mechanism of action as CDFs and polychlorinated dibenzo-

p-dioxins (CDDs).  Effects of Yusho and Yu-Cheng exposure, therefore, are indirectly relevant to

assessing health effects of PCBs because they demonstrate the sensitivity of humans to dioxin-like

toxicity and suggest that humans might respond to dioxin-like PCB congeners in a similar manner. 

Additionally, recent evidence indicates that some of the subtle effects can be attributed to non-dioxin-like

PCB congeners (Guo et al. 1996; Soong and Ling 1997).  Brief summaries of the effects from the Yusho

and Yu-Cheng incidents are presented in this profile; a more complete discussion of the health effects

associated with the Yusho and Yu-Cheng incidents can be found in the ATSDR toxicological profile on

CDFs (ATSDR 1994) and CDDs (ATSDR 1998), and reviews by Hsu et al. (1994) and Masuda (1994).

Fires and other sources of high temperatures, such as hazardous waste incinerators and electrical

transformer fires, also can greatly increase the toxicity of PCB mixtures by formation of CDFs (Rappe

and Buser 1989).  For example, in a transformer fire in the Binghamton (New York) State Office Building

(BSOB), dielectric fluid composed of 65% Aroclor 1254 and 35% polychlorinated benzenes was

pyrolyzed.  The pyrolysis led to the formation of a fine, oily soot, which was distributed throughout the

building via ventilation shafts.  In addition to PCBs, the soot contained high levels of CDFs, CDDs,

including 2,3,7,8-tetrachlorodibenzodioxin (TCDD), chlorinated biphenylenes, and other chemicals. 

Limited information is available on health effects in people who were exposed to this soot dermally, by

inhalation, or by ingestion from eating with dirty hands.  A discussion of the health effects associated

with the BSOB incident can be found in the ATSDR toxicological profile for CDFs and reports by
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Schecter (1983, 1986, 1987), Schecter and Tiernan (1985), Schecter et al. (1985a, 1985b), and Fitzgerald

et al. (1986, 1989).

To help public health professionals and others address the needs of persons living or working near

hazardous waste sites, the information in this section is organized first by health effect (death, systemic,

immunological, neurological, reproductive, developmental, genotoxic, and carcinogenic effects), and then

by human and animal studies subdivided by type of exposure (e.g., occupational, contaminated fish

consumption, inhalation, oral, and dermal).  These data are discussed in terms of three exposure periods:

acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or

lowest-observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the

studies.  LOAELS have been classified into "less serious" or "serious" effects.  "Serious" effects are those

that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory

distress or death).  "Less serious" effects are those that are not expected to cause significant dysfunction

or death, or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a

considerable amount of judgment may be required in establishing whether an end point should be

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the

Agency has established guidelines and policies that are used to classify these end points.  ATSDR

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between

"less serious" and "serious" effects.  The distinction between "less serious" effects and "serious" effects is

considered to be important because it helps the users of the profiles to identify levels of exposure at which

major health effects may start to appear.  LOAELs or NOAELs should also help in determining whether

or not the effects vary with dose and/or duration, and place into perspective the possible significance of

these effects to human health.  

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and

figures may differ depending on the user's perspective.  Public health officials and others concerned with

appropriate actions to take at hazardous waste sites may want information on levels of exposure

associated with more subtle effects in humans or animals (LOAEL) or exposure levels at or below which

no adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike.



PCBs 38

3.  HEALTH EFFECTS

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of polychlorinated

biphenyls are indicated in Table 3-2 and Figure 3-2.  Because cancer effects could occur at lower

exposure levels, Figure 3-2 also shows a range for the upper bound of estimated excess risks, ranging

from a risk of 1 in 10,000 to 1 in 10,000,000 (10-4 to 10-7), as developed by EPA.

Estimates of exposure levels posing minimal risk to humans (Minimal Risk Levels or MRLs) have been

made for PCBs as discussed in Chapter 2 (Section 2.3) .  An MRL is defined as an estimate of daily

human exposure to a substance that is likely to be without an appreciable risk of adverse effects

(noncarcinogenic) over a specified duration of exposure.  MRLs are derived when reliable and sufficient

data exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a specific

duration within a given route of exposure.  MRLs are based on noncancerous health effects only and do

not consider carcinogenic effects.  MRLs can be derived for acute, intermediate, and chronic duration

exposures for inhalation and oral routes.  Appropriate methodology does not exist to develop MRLs for

dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990),

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an

example, acute inhalation MRLs may not be protective for health effects that are delayed in development

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic

bronchitis.  As these kinds of health effects data become available and methods to assess levels of

significant human exposure improve, these MRLs will be revised.

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs.
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3.2 DISCUSSION OF HEALTH EFFECTS

3.2.1 Death

3.2.1.1 Human Studies

No studies were located regarding deaths in humans from acute exposure by any route.  Some studies of

longer-term occupational exposures found increased mortality from cardiovascular disease and cancer, as

discussed in Sections 3.2.2.2.1 and 3.2.8.2, respectively.

3.2.1.2 Animal Studies

Inhalation Exposure.  Intermittent exposure to near-saturation vapor concentrations of heated

Aroclor 1242 (8.6 mg/m3) over 24 days was not lethal in rats, mice, rabbits, or guinea pigs, and no signs

of intoxication were reported (Treon et al. 1956).  Pneumonia, apparently unrelated to PCB exposure,

caused death in some of the test and control animals except those exposed to 8.6 mg/m3 Aroclor 1242. 

The vapor concentrations are unknown, as the technique used to estimate them has since been shown to

be invalid; possible CDF contamination was not reported because CDFs had not then been discovered. 

Similar exposures to lower concentrations of heated Aroclors 1242 and 1254 were also found not to

produce lethality in these species.  No data were located regarding lethality or decreased longevity of

animals due to acute or chronic inhalation of PCBs.

Oral Exposure.  There are no marked differences in acute LD50 values of Aroclor PCB mixtures for

observation periods of <30 days.  Single-dose LD50 values of 4,250 mg/kg for Aroclor 1242 (Bruckner et

al. 1973), 1,010 to 1,295 mg/kg for Aroclor 1254 (Garthoff et al. 1981; Linder et al. 1974), and

1,315 mg/kg for Aroclor 1260 (Linder et al. 1974) have been reported in rats.  In minks, single-dose LD50

values ranged between 750 and 1,000 mg/kg for Aroclor 1221, and were >3,000 mg/kg for Aroclor 1242

and 4,000 mg/kg for Aroclor 1254 (Aulerich and Ringer 1977).  In addition to differences in PCB

congener composition, the variation in LD50 values may be related to factors such as animal strain, age,

sex, or formulation purity.  There is evidence, for example, that immature rats (3–4 weeks old) are more

susceptible than adults (Grant and Phillips 1974; Linder et al. 1974).  Causes of death from acute

exposure are unclear, but principal signs of toxicity in rats included diarrhea and respiratory depression,

and dehydration may be a principal contributing factor (Bruckner et al. 1973).  Single-dose oral lethality

data for species other than rats and minks were not located.
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Three of five mice fed Aroclor 1254 in the diet at an estimated dose of 130 mg/kg/day for 14 days died of

unspecified causes by day 15 (Sanders et al. 1974).  At the highest Aroclor 1254 dose of 520 mg/kg/day,

5 of 5 mice died within 7 days, but none of the 5 mice treated with 2.5 mg/kg/day died.

Estimated dietary doses of 4 mg/kg/day Aroclor 1248 for 2–3 months (Allen 1975; Allen and Norback

1976) and 0.12–4 mg/kg/day Aroclor 1242 for 92–245 days were lethal for monkeys (Becker et al. 1979). 

Survival effects were not clearly related to dose in the Becker et al. (1979) study, but this could be due to

the small numbers tested (one per dose), which is not unusual in studies of nonhuman primates. 

Tryphonas et al. (1984) dosed Cynomolgus monkeys (Macaca fasicicularis) with Aroclors 1248 and

1254 at 2 and 5 mg/kg/day for 3 days/week for 4 weeks.  Aroclor 1248 was more toxic than

Aroclor 1254.  Minks and monkeys appear to have similar susceptibility to lethal effects of intermediate-

duration oral PCB exposure (Aulerich and Ringer 1977; Aulerich et al. 1986; Bleavins et al. 1980;

Hornshaw et al. 1986; Ringer et al. 1981).  LD50 values of 7.1–7.3 and 1 mg/kg/day were determined for

minks fed Aroclor 1254 for 28 days (Aulerich et al. 1986; Hornshaw et al. 1986) and 9 months (Ringer

et al. 1981), respectively.  Death occurred in 33% of the minks fed 2.8 mg/kg/day Aroclor 1254 for

4 months (Aulerich and Ringer 1977).  The average time to death in minks fed 1.9 mg/kg/day

Aroclor 1242 ranged from 156 to 171 days, with .67% mortality occurring by 247 days (Bleavins et al.

1980).  Death in minks was generally due to visceral hemorrhagic lesions.  Female minks are more

sensitive than males.  Intermediate-duration gavage and feed studies in rats and mice reported that much

higher doses of Aroclor 1254 or 1260 caused death (Garthoff et al. 1981; Kimbrough et al. 1972; Koller

1977).  Although this may be due to species differences in susceptibility, the shorter and intermittent

duration of exposure (2.5 weeks, 2 days/week) and mode of administration (gavage) in rats may account

for some of the apparent differences.

Decreased survival occurred in male rats fed diets containing estimated doses $1.25 mg/kg/day

Aroclor 1254 for 104–105 weeks (NCI 1978).  A dose of 2.5 mg/kg/day induced a 34% decrease in

survival.  The cause of death was not specified.  There was no effect on survival in similarly treated

female rats, and a NOAEL for mortality was not identified.  There was no attempt to identify or quantitate

impurities in the Aroclor 1254 test compound.  Decreased survival is not a universal finding in chronic

PCB studies, as survival was unchanged or lifespan was extended in rats treated with estimated doses of

3.45–5 mg/kg/day 60% chlorine PCB mixtures (Aroclor 1260 and Clophen A60) via diet (Norback and

Weltman 1985; Schaeffer et al. 1984).
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Dermal Exposure.  A single topical dose of 2,273 mg/kg Aroclor 1254 was fatal to hairless mice within

24 hours (Puhvel et al. 1982).  It was not specified whether all three treated mice died or whether the

Aroclor was administered in pure acetone or in acetone-mineral oil emulsion.  Median lethal doses for

single dermal applications of PCBs to rabbits were between 794 and 1,269 mg/kg for Aroclors 1242 and

1248, between 1,260 and 3,169 mg/kg for Aroclors 1221 and 1262, and between 1,260 and 2,000 mg/kg

for Aroclors 1232 and 1260 (Fishbein 1974; Nelson et al. 1972).  These PCBs were applied undiluted

except for Aroclors 1260 and 1262, which were administered in corn oil.  Other details regarding the

exposure protocol were not provided.  Cause of death was not reported, and there was no clear trend of

toxicity with degree of chlorination.  Lethality data for other species or durations of exposure were not

located.  The lethal dose from the Puhvel et al. (1982) study is recorded in Table 3-3.

3.2.2 Systemic Effects

3.2.2.1 Respiratory

3.2.2.1.1  Human Studies

There are limited data on potential respiratory effects of PCB exposure in humans.  Cross-sectional

studies provide suggestive evidence for an association.  Upper respiratory tract or eye irritation (48%),

cough (14%), and tightness of the chest (10%) were noted among 326 capacitor workers exposed to

0.007–11 mg/m3 mean air concentrations of various Aroclors for >5 years (Fischbein et al. 1979;

Warshaw et al. 1979).  The significance of these effects is unknown due to lack of a control group;

however, the prevalence of upper respiratory tract or eye irritation (48%) raises concern that they are

exposure-related.  Other limitations of this study include discrepancies between the reports of Fischbein et

al. (1979) and Warshaw et al. (1979), poor definition of the cohort, and failure to distinguish between past

and present symptoms.  Additionally, capacitor manufacturing plants typically used large amounts of

volatile degreasing agents that may have contributed to pulmonary symptom complaints.  Chest pain

while walking occurred more frequently (16%) in a group of 55 male transformer workers exposed to

Aroclor/trichlorobenzene mixtures (Askarels) than in age-matched workers never occupationally exposed

to PCBs (Emmett et al. 1988a).  The workers were employed for a mean duration of 3.75 years, and the

range of PCB personal exposures (primarily Aroclor 1260) measured in the breathing zone was

0.00001–0.012 mg/m3.  CDF contamination ranged from 13 to 116 ppb by weight.  The chest pain

symptom was not investigated further and was not attributed to a specific cause.  A correlation between

coughing on the job or soon after work and PCB blood levels in electrical capacitor manufacturing
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workers has been reported (Smith et al. 1982).  These workers were exposed to various Aroclors and

Askarels, in PCB concentrations ranging from 0.003 to 0.08 mg/m3 (duration of exposure was not

reported).

In addition to these reported respiratory tract symptoms, changes in lung function were observed in the

PCB workers discussed above.  These include a significant decrease in 1-second forced expiratory

volume (FEV1) in the transformer workers (Emmett et al. 1988b); this is the same cohort evaluated by

Emmett et al. (1988a).  However, when adjusted for smoking habits, FEV was not statistically significant. 

Fourteen percent of 243 workers examined in the Warshaw et al. (1979) study showed reduced forced

vital capacity (FVC) as compared to standard values.  Decreased FVC was noted in 8% of the

nonsmokers (12.5% males, 4.3% females) and in 17% of the current and former smokers (16% males,

18.7% females).  Of all workers with reduced FVC, 80% demonstrated a restrictive pattern of impairment

(increased FEV1/FVC) without radiologic changes.  Similar results were initially found in another

spirometry study of 179 workers from the same plant population as that studied by Warshaw et al. (1979)

(Lawton et al. 1986).  The 1976 findings were not confirmed by followup evaluations performed in 1979

and 1983 after no further PCB exposure, and were considered to be artifactual due to deficient pulmonary

function testing in 1976 and lack of radiologic changes to account for the restrictive impairment observed

(Lawton et al. 1986).  The workers had a history of clinically recognized respiratory illness and/or

symptomatology, and obstructive impairment (increased FVC, decreased FEV1/FVC) was found in about

15% of the workers in the initial and followup evaluations (1976 and 1979), but these effects could not be

attributed solely to PCB exposure.  The occurrence of self-reported respiratory effects was not elevated

among residents who lived within 0.5 mile of three PCB-contaminated waste sites (Stehr-Green et al.

1986a).  

Potential respiratory effects have also been reported in Yusho and Yu-Cheng patients.  More frequent or

severe respiratory infections (Kuratsune 1989; Rogan 1989) and chronic bronchitis accompanied by

persistent cough and sputum production (Nakanishi et al. 1985; Shigematsu et al. 1971, 1977) have been

reported.  
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3.2.2.1.2  Animal Studies

No studies were located regarding respiratory effects in animals after inhalation exposure to PCBs.  There

were no histological alterations in the lungs of rats administered a single 4,000 mg/kg dose of

Aroclor 1242 by gavage and evaluated 24 hours posttreatment or in rats treated with 100 mg/kg/day

Aroclor 1242 by gavage every other day for 3 weeks (Bruckner et al. 1973).  Mice fed a diet that provided

.22 mg Aroclor/kg/day for 6 weeks had no changes in lung weight or histology (Loose et al. 1978a,

1978b).  Lung inflammation was observed in rats that died following dietary exposure to Phenoclor DP6

at .25 mg/kg/day for 8 days or .50 mg/kg/day for 6 days (Narbonne et al. 1978).  Other respiratory end

points were not examined in these studies.  No histopathologic changes were observed in the trachea or

lungs of male or female rats that were fed Aroclor 1016, 1242, 1254, or 1260 for 24 months at intake

levels of 8.0–11.2, 4.0–5.7, 4.3–6.1, or 4.1–5.8 mg/kg/day, respectively (Mayes et al. 1998).  Rhesus

monkeys receiving daily doses of 0.005, 0.020, 0.040, or 0.080 mg/kg/day Aroclor 1254 for 72 months

showed no effects on lung tissue (Arnold et al. 1997).  

Intermediate-duration dietary exposure to single congeners did not result in histological damage in the

lungs of rats fed diets providing #4.1 mg/kg/day of PCB 153 (Chu et al. 1996a), #4.2 mg/kg/day of

PCB 128 (Lecavalier et al. 1997), #7.4 mg/kg/day of PCB 126 (Chu et al. 1994), #4.0 mg/kg/day of

PCB 105 (Chu et al. 1998b), #3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), #0.77 mg/kg/day of PCB 77

(Chu et al. 1995), or #0.17 mg/kg/day of PCB 118 (Chu et al. 1995).

The highest NOAEL values and all reliable LOAEL values for respiratory effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.2.2 Cardiovascular

3.2.2.2.1  Human Studies

A number of occupational exposure studies have investigated the possible relationship between PCB

exposure and increased risk of cardiovascular disease or altered blood pressure; the inconsistency of the

results precludes drawing conclusions from these studies.  Mortality from circulatory diseases was

significantly increased in the high exposure subgroup of a cohort of 242 male capacitor manufacturing

workers with >5 years exposure and >20 years latency (Gustavsson and Hogstedt 1997).  The

standardized mortality ratio (SMR) in the subgroup was 328 (5 observed/1.52 expected deaths, 95%
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confidence interval [CI] 33–61, p value not reported).  Kimbrough et al. (1999a) found no significant

increases in mortality related to ischemic heart disease, hypertension with heart disease, other diseases of

the heart, cerebrovascular disease, or circulatory system (arteries, veins, pulmonary circulation) in a study

of 7,075 male and female capacitor workers.  One of the subgroups (male salaried workers) in this study

had a significantly decreased risk of mortality from ischemic heart as indicated by an SMR lower than

100 (44 observed/97.5 expected deaths, SMR=45, 95% CI 107–766, p<0.01).  Neither of these studies

reported adequate quantitative exposure data.  The inconsistent results of these studies could be due to

differences in exposure levels, durations, and latencies, as well as types of Aroclors and cohort sizes. 

Additional information on these studies is provided in Section 3.2.8.2.1.  

Blood pressure measurements (systolic and diastolic) and electrocardiograms were normal in

194 capacitor plant workers (152 male, 43 female) who were exposed to Aroclors 1254, 1242, and

1016 for an average duration of 17 years (Lawton et al. 1985a).  Limited exposure characterization,

consisting of monitoring in one area of the plant several months prior to the cardiovascular evaluations,

showed a geometric mean PCB concentration of 0.69 mg/m3.  No correlation was found between diastolic

blood pressure in capacitor manufacturing workers, when adjusted for age and sex, and serum PCBs

(Smith et al. 1982).  Abnormal blood pressure measurements or other cardiovascular abnormalities were

not reported in other studies of PCB-exposed workers that underwent general physical examinations and

medical histories (Baker et al. 1980; Chase et al. 1982; Emmett et al. 1988a; Fischbein et al. 1979).  

A 30% increase over the national average incidence of borderline and definite hypertension was observed

in Triana, Alabama, residents (Kreiss et al. 1981).  Increased systolic and diastolic blood pressure were

significantly associated with serum PCB levels.  However, the relationship between systolic blood

pressure and serum PCB levels disappeared when serum cholesterol and triglyceride levels were factored

in, but that between diastolic blood pressure and PCBs remained significant.  Consumption of

contaminated fish was the only known source of PCB exposure; the actual intake of PCBs was not

reported.  The population was also exposed to dichlorodiphenyltrichloroethane (DDT) via consumption of

fish.  Serum DDT and serum PCB levels were highly correlated.  Multivariate analysis showed that the

PCB-blood pressure association was independent of serum DDT levels, age, sex, and weight.  The excess

prevalence of hypertension cannot be attributed solely to PCBs (or DDT) with any degree of certainty due

to the lack of a matched control group, co-linearity of DDT and PCB serum concentrations, and unknown

effects of DDT residues on the metabolism or toxicity of PCBs (Kreiss 1985).  Subsequent studies of

environmentally exposed populations without exposure to DDT have failed to show an association

between hypertension and PCBs.  No excess of hypertension was found in 106 people who had lived near
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PCB-containing hazardous waste sites for at least 5 years (Stehr-Green et al. 1986a).  Mean PCB blood

levels were <10 ppb.  A significant association between increased diastolic blood pressure and serum

PCB levels was observed, but the association failed to achieve statistical significance (p=0.08) when

possible confounding effects of both age and smoking were controlled.  There was no association

between elevated systolic or diastolic blood pressure and serum levels of PCBs in 840 residents of New

Bedford, Massachusetts, who were exposed via consumption of contaminated fish (Massachusetts

Department of Public Health 1987).  However, most subjects in this study had serum PCB levels that

were within the typical range of the U.S. population.

3.2.2.2.2  Animal Studies

Data on the cardiovascular toxicity of PCBs in animals are limited to several oral exposure studies

conducting histological examinations of the heart and blood vessels.  Pericardial edema occurred in four

of six monkeys given 12 mg/kg/day Aroclor 1248 in the diet for 3 months (Allen et al. 1973).  However,

Rhesus monkeys receiving daily doses of 0.005, 0.020, 0.040, or 0.080 mg/kg/day Aroclor 1254 for

25 months showed no effects on cardiac tissue (Arnold et al. 1997).  Histological examination of the heart

was normal in rats evaluated 24 hours following a single 4,000 mg/kg dose of Aroclor 1242 or

100 mg/kg/day Aroclor 1242 every other day for 3 weeks administered by gavage (Bruckner et al. 1973). 

No histopathologic changes were observed in the heart of male or female rats that were fed Aroclor 1016,

1242, 1254, or 1260 for 24 months at dose levels of 8.0–11.2, 4.0–5.7, 4.3–6.1, or 4.1–5.8 mg/kg/day,

respectively (Mayes et al. 1998).  Rhesus monkeys receiving daily doses of 0.005, 0.020, 0.040, or

0.080 mg/kg/day Aroclor 1254 for 25 months showed no effect on cardiac tissue (Arnold et al. 1997). 

In a series of 13-week dietary exposure studies using single PCB congeners, no histological alterations in

the heart or thoracic aorta were observed in rats fed diets providing #4.1 mg/kg/day of PCB 153 (Chu et

al. 1996a), #4.2 mg/kg/day of PCB 128 (Lecavalier et al. 1997), #7.4 mg/kg/day of PCB 126 (thoracic

aorta was not examined) (Chu et al. 1994), #4.0 mg/kg/day of PCB 105 (Chu et al. 1998b),

#3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), #0.77 mg/kg/day of PCB 77 (Chu et al. 1995), or

#0.17 mg/kg/day of PCB 118 (Chu et al. 1995). 

Hennig and associates (Hennig et al. 1999; Slim et al. 1999) demonstrated in in vitro studies that exposure

to PCB 77 disrupts endothelial barrier function in the vascular endothelium; this was not seen for

PCB 153.
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The highest NOAEL values and all reliable LOAEL values for cardiovascular effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.2.3 Gastrointestinal

3.2.2.3.1  Human Studies

Clinical observations suggestive of gastrointestinal damage have been reported in workers exposed to

airborne PCBs and in the Yusho cohort.  A statistically significant increase in loss of appetite was

reported by PCB-exposed transformer workers (20%) as compared to the control group (4%) (Emmett

et al. 1988a).  PCB levels, primarily Aroclor 1260, ranged from 0.00001 to 0.012 mg/m3.  Gastrointestinal

symptoms (anorexia, nausea, vomiting, and abdominal pain) and weight loss were also reported in 18% of

capacitor workers exposed to various Aroclors at mean concentrations of 0.007–11 mg/m3 (Fischbein

et al. 1979).  The statistical significance of the effects cannot be determined since a control group was not

examined.  A significant association was found between loss of appetite and increasing PCB blood levels

in electrical equipment manufacturing workers who were exposed to various Aroclors and Askarels at

PCB concentrations of 0.003–0.08 mg/m3 (Smith et al. 1982).

Postprandial epigastric distress, epigastric pain with or without a burning sensation, postprandial

headache, and intolerance to fatty foods were noted in 50% of workers exhibiting liver effects (Maroni

et al. 1981a).  The workers (40 males and 40 females) were exposed to concentrations of Pyralene 3010 or

Apirolio (Italian PCB formulations) ranging from 0.048 to 0.275 mg/m3 for an average duration of

12 years.  Both of these products were PCB mixtures of unreported purity that had a 42% chlorine

content.  Some of these workers were also exposed to a PCB mixture containing 54% chlorine.  There

was no control group in this study, precluding a determination of the significance of the results. 

Gastrointestinal effects (vomiting and diarrhea) have been observed in Yusho patients (Kuratsune 1989). 

No signs of gastrointestinal effects were reported in community members exposed to PCB-contaminated

sludge or in PCB exposed workers (Baker et al. 1980).
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3.2.2.3.2  Animal Studies

No histopathologic effects were observed in the stomach or intestines of six rats 24 hours following a

single near-lethal dose of 4,000 mg/kg of Aroclor 1242 by gavage (Bruckner et al. 1973).  In contrast,

hemorrhage into the stomach and foci of ulceration in the stomach and duodenum were observed in rats

given a single lethal gavage dose (inadequately quantified) of Aroclor 1254 or 1260 (Kimbrough et al.

1972).  Gastric ulcers were observed in two pigs that were treated with 100 mg/kg/day Aroclor 1254 for

11 days (Hansen et al. 1976).  The lesions in the pigs were similar in gross and histological appearance to

those observed in intermediate-duration studies with monkeys discussed below.

Intermediate-duration dietary administration of Aroclor 1248 (Allen 1975; Allen and Norback 1973,

1976; Allen et al. 1973, 1974a) and Aroclor 1242 (Becker et al. 1979) to monkeys produced gastritis with

hypertrophy and hyperplasia of the gastric mucosa.  The gastric changes progressed to include mucous-

filled cysts in the mucosa penetrating into the submucosa, ulceration of the gastric mucosa resulting from

ruptured cysts or erosion, and hemorrhage.  Estimated doses of $1.3 mg/kg/day Aroclor 1248 or

$0.12 mg/kg/day Aroclor 1242 for 2 months produced these gastric changes in monkeys (Allen 1975;

Allen and Norback 1976; Allen et al. 1974a; Becker et al. 1979).  Only a minimal number of

Aroclor 1242-exposed animals were tested (mostly one monkey per dose group), although the severity of

the histopathologic changes was dependent on both exposure length and dose.  Gastric ulcers also

occurred in minks at similar dietary doses of Aroclor 1016, 1242, or 1254 (Bleavins et al. 1980;

Hornshaw et al. 1986), and there is evidence of gastric erosion and necrosis in pigs treated with

9.2 mg/kg/day Aroclor 1242 or 1254 for 91 days (Hansen et al. 1976).  In seasoned sows, which are prone

to gastric hyperemia, erosions were more severe in two of five sows receiving 9.2 mg/kg/day

Aroclor 1242 (Hansen et al. 1975).  Gastrointestinal lesions were also observed in Baltic seals, and found

to be directly associated with body burdens of PCBs and/or metabolites (Bergman and Olsson 1985;

Olsson et al. 1994).  There were no histological changes in the stomach or intestines of rats treated with

100 mg/kg/day Aroclor 1242 by gavage 3 times/week for 3 weeks (Bruckner et al. 1973). 

Re-examination of the National Cancer Institute (NCI 1978) cancer bioassay showed Aroclor 1254-

induced intestinal metaplasia and some adenocarcinoma in the glandular stomach of Fischer 344 rats

following chronic dietary treatment (Morgan et al. 1981; Ward 1985) (see Section 3.2.8.3.2).  The

intestinal metaplasia appeared to be dose-related.  Nonproliferative gastric lesions were not observed.  No

histopathologic changes were observed in the gastrointestinal tract of male or female rats that were fed

Aroclor 1016, 1242, 1254, or 1260 for 24 months at dose levels of 8.0–11.2, 4.0–5.7, 4.3–6.1, or
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4.1–5.8 mg/kg/day, respectively (Mayes et al. 1998).  Moderate mucinous hypertrophic gastropathy was

evident in three of four Cynomolgus monkeys treated with 0.2 mg/kg/day Aroclor 1254 in the diet for

12–13 months (Tryphonas et al. 1984, 1986a) and in two of four Rhesus monkeys treated similarly for

28 months (Tryphonas et al. 1986b).  No effects on stomach tissue were observed in Rhesus monkeys

receiving daily doses of #0.080 mg/kg/day Aroclor 1254 for 72 months (Arnold et al. 1997).  

No histological alterations were observed in the organs and tissues of the gastrointestinal tract of rats

following a 13-week dietary exposure to #4.1 mg/kg/day of PCB 153 (Chu et al. 1996a), #4.2 mg/kg/day

of PCB 128 (Lecavalier et al. 1997), #7.4 mg/kg/day of PCB 126 (Chu et al. 1994), #4.0 mg/kg/day of

PCB 105 (Chu et al. 1998b), #3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), #0.77 mg/kg/day of

PCB 77 (Chu et al. 1995), or #0.17 mg/kg/day of PCB 118 (Chu et al. 1995).

The highest NOAEL values and all reliable LOAEL values for gastrointestinal effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.2.4 Hematological

3.2.2.4.1  Human Studies

In general, hematological effects have not been observed in humans occupationally exposed to PCBs. 

Capacitor plant workers (152 males, 43 females) exposed to Aroclors 1254, 1242, and 1016 for an

average duration of 17 years showed slightly decreased numbers of polymorphonuclear neutrophil (PMN)

white cells and slightly increased lymphocyte, monocyte, and eosinophil counts when compared to

normal values (Lawton et al. 1985a).  Limited exposure characterization, consisting of monitoring in one

area of the plant several months prior to hematological evaluation, showed a geometric mean PCB

concentration of 0.69 mg/m3.  Values for other white cells, erythrocytes, hemoglobin, and hematocrit

were within normal ranges.  Other studies of PCB-exposed workers have reported essentially normal

hematology including total and differential white blood cell counts (Chase et al. 1982; Emmett et al.

1988b; Fischbein et al. 1979; Maroni et al. 1981b; Ouw et al. 1976; Smith et al. 1982).  Mild normocytic

anemia and leukocytosis have been reported in Yu-Cheng patients (Rogan 1989).
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3.2.2.4.2  Animal Studies

Erythrocyte count, leukocyte count, and hemoglobin level were evaluated in 3–6 rabbits and guinea pigs

intermittently exposed to chamber concentrations of 5.4 mg/m3 Aroclor 1254 or 6.8 mg/m3 Aroclor 1242

over a period of 120 or 121 days, respectively (Treon et al. 1956).  Alterations included increased

erythrocytes in the rabbits (Aroclor 1254) and increased hemoglobin in the guinea pigs (both Aroclors);

however, although statistically significant, neither change was regarded as physiologically significant.

Packed blood cell volume was increased in male rats given single lethal doses of 4,000 or 6,000 mg/kg

Aroclor 1242 by gavage (Bruckner et al. 1973, 1974).  Crenated erythrocytes and increased PMNs were

observed at 4,000 mg/kg, but not at 6,000 mg/kg.  The investigators indicated that the effect on cell

volume reflected dehydration rather than a direct hematologic effect.

Anemia has been observed in monkeys treated with Aroclor 1248 or 1254 in intermediate-duration

studies (Allen 1975; Allen and Norback 1973, 1976; Allen et al. 1973, 1974a) and chronic-duration

studies (Allen 1975; Arnold et al. 1990; Tryphonas et al. 1984, 1986a, 1986b).  The anemia was

manifested by decreased hemoglobin content, decreased hematocrit, and hypocellularity of erythrocytic

and other precursor cells in the bone marrow, occurred at doses of $4 mg/kg/day for 2 months (Allen

1975; Allen and Norback 1976) and $0.2 mg/kg/day for 12–28 months (Arnold et al. 1990; Tryphonas

et al. 1986a, 1986b), and may be related to moribund condition of the monkeys.  The anemia was not

quantified in all studies, but the existing data indicate that it was moderate to severe after intermediate and

chronic exposure.  Numbers of circulating neutrophils were generally increased and lymphocytes were

decreased in these studies.  Hematological changes consistent with a picture of anemia have also been

observed in monkeys treated with 0.08 mg/kg/day Aroclor 1254 for 37 months; a dose of 0.02 mg/kg/day

produced a decrease in mean platelet volume (Arnold et al. 1993b).  Rhesus monkeys receiving daily

doses of #0.080 mg/kg/day Aroclor 1254 for 72 months, however, showed no effect on hematological

parameters (Arnold et al. 1997).  

Hematological changes do not appear to be a clear effect of PCB exposure in animals.  Small numbers of

rats (four per PCB) fed 50 mg/kg/day Aroclor 1248, 1254, or 1262 for 4–6 weeks showed marked

neutrophilia and slightly increased hemoglobin and hematocrit (Allen and Abrahamson 1973).  No

consistent hematologic effects were observed in rats (6 per dose) fed #1.5 mg/kg/day Aroclor 1242 for

2–6 months (Bruckner et al. 1974), in guinea pigs (12 per dose) fed #4 mg/kg/day Aroclor 1260 for

8 weeks (Vos and de Roij 1972), or in rabbits (7 per dose) fed #6.5 mg/kg/day Aroclor 1254 for 8 weeks
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(Street and Sharma 1975).  There were no treatment-related changes in hemoglobin levels or hematocrit

in minks (10 per PCB) fed 0.4 mg/kg/day Aroclor 1016, 1221, 1242, or 1254 for #39 weeks (Aulerich

and Ringer 1977).  Red blood cell count and hemoglobin concentration were reduced in female rats (50

per group) that were fed Aroclor 1016 or 1260 for 24 months at intake levels $2.7 or $1.4 mg/kg/day,

respectively (Mayes et al. 1998).  No hematologic effects were observed in female rats that were similarly

exposed to #5.7 mg/kg/day Aroclor 1242 or #6.1 mg/kg/day Aroclor 1254, or in male rats exposed to

Aroclor 1016, 1242, 1254, or 1260 at intake levels of #8.0, #5.7, #6.1, or #4.1 mg/kg/day, respectively.

Intermediate-duration exposure to single congeners has resulted in hematological effects in rats. 

Significant decreases in hemoglobin, hematocrit, mean corpuscular hemoglobin, mean corpuscular

volume, and decreased eosinophils were observed in rats treated with 4.0 mg/kg/day of PCB 105 (Chu et

al. 1998b).  Decreases in hemoglobin, hematocrit erythrocyte count, mean corpuscular hemoglobin, mean

corpuscular volume, and platelets were observed after exposure to 7.4 mg/kg/day of PCB 126 (Chu et al.

1994).  In contrast, no hematological effects were observed similarly treated rats exposed to

#0.77 mg/kg/day of PCB 77 (Chu et al. 1995), #0.17 mg/kg/day of PCB 118 (Chu et al. 1995),

#3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), or #4.2 mg/kg/day of PCB 128 (Lecavalier et al. 1997).

No effects on hemoglobin, hematocrit, or differential leukocyte count were observed in rabbits exposed to

60% chlorine PCBs in isopropanol (Aroclor 1260, Clophen A60, or Phenoclor DP6) applied to the shaved

back skin 5 days/week for 38 days at estimated doses of 42 mg/kg/day (Vos and Beems 1971).  Total

leukocyte count was reduced, but insufficient information was provided to determine whether this effect

was adverse, whether it was due to a direct effect on the reticuloendothelial system, or if it was secondary

to other toxicity (hepatic and renal damage also occurred).  CDFs were found only in the non-Aroclor

PCBs (detection limit, 1 ppm). 

The highest NOAEL values and all reliable LOAEL values for hematological effects for each study are

recorded in Tables 3-1, 3-2, and 3-3, and plotted in Figures 3-1 and 3-2.  
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3.2.2.5 Musculoskeletal

3.2.2.5.1  Human Studies

There are limited data on the musculoskeletal toxicity of PCBs in humans.  Only one report of

musculoskeletal effects was located (Fischbein et al. 1979).  Joint pain was reported by .11% of the

workers exposed to various Aroclors at mean area concentrations of 0.007–11 mg/m3.  A higher

prevalence was noted in female workers (15.2%) than in males (7.7%).  Muscle pain was reported by

<4% of the males and females.  Information on the severity or constancy of the joint and muscle pain was

not reported, physiological testing was not performed, and there was failure to distinguish between past

and present symptoms.  The statistical significance of these symptoms cannot be determined because a

control group was not examined.  No studies were located regarding musculoskeletal effects in humans

after oral exposure to PCBs, although a 10% prevalence of unspecified joint problems was reported

among farm families who consumed dairy products and beef that were contaminated with PCBs

(Humphrey 1983).

3.2.2.5.2  Animal Studies

Little information exists regarding musculoskeletal effects of PCBs in animals.  Changes in femur bone

morphology resulting in weaker bones occurred in growing (28-day-old) rats (10 per dose) that were

treated with Aroclor 1254 by gavage for 10–15 weeks (Andrews 1989).  Effects included increased femur

density at $0.1 mg/kg/day; decreased cross-sectional and medullary areas at $10 mg/kg/day; and

decreased femur weight, volume, length, and cortical area and strength at 25 mg/kg/day.  No definite

effects on bone flexibility were observed.  Serum and urinary calcium levels were increased, but there

were no treatment-related alterations in serum parathyroid hormone concentration

No histopathologic changes were observed in skeletal muscle of male or female rats that were fed

Aroclor 1016, 1242, 1254, or 1260 for 24 months at dose levels of 8.0–11.2, 4.0–5.7, 4.3–6.1, or

4.1–5.8 mg/kg/day, respectively (Mayes et al. 1998).  Similarly, there were no histological alterations in

skeletal muscle of rats exposed to #4.1 mg/kg/day of PCB 153 (Chu et al. 1996a), #4.2 mg/kg/day of

PCB 128 (Lecavalier et al. 1997), #4.0 mg/kg/day of PCB 105 (Chu et al. 1998b), #3.7 mg/kg/day of

PCB 28 (Chu et al. 1996b), #0.77 mg/kg/day of PCB 77 (Chu et al. 1995), or #0.17 mg/kg/day of

PCB 118 (Chu et al. 1995) in the diet for 13 weeks. 
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The highest NOAEL values and all reliable LOAEL values for musculoskeletal effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.2.6 Hepatic Effects

3.2.2.6.1  Summary

In humans, clinical studies of PCB workers reported associations between increased serum levels of liver-

related enzymes, lipids, and cholesterol and serum PCBs.  Studies of people exposed to PCBs by

ingestion of contaminated fish in Triana, Alabama or contaminated rice oil in the Yusho or Yu-Cheng

incidents have reported increases in serum levels of some liver enzymes characteristic of microsomal

enzyme induction or liver damage, but these effects cannot be attributed solely to PCBs due to the mixed

chemical nature of the contaminated fish and heated rice oil exposures.  Serum cholesterol, but not

triglycerides, was increased in consumers of contaminated fish, whereas increased serum triglycerides,

but not cholesterol, were associated with Yusho and Yu-Cheng exposure. 

Hepatotoxicity of PCBs is well-documented in animals exposed to commercial mixtures or single

congeners for acute, intermediate, or chronic durations by oral and other routes of exposure.  PCB-

induced liver effects in animals seem to be reversible when mild and include microsomal enzyme

induction, liver enlargement, increased serum levels of liver-related enzymes and lipids, altered porphyrin

and vitamin A metabolism, and histopathologic alterations that progress to non-neoplastic degenerative

lesions (particularly fatty and necrotic changes) and/or tumors with higher doses or longer duration

exposures.  Intermediate- and chronic-duration oral studies indicate that monkeys are more sensitive than

rats to PCB hepatotoxicity.

3.2.2.6.2  Human Studies

3.2.2.6.2.1  Liver Enzymes, Enlargement, and Pathology

Occupational Exposure.  Hepatic effects have been investigated in a number of epidemiology studies and

clinical surveys of PCB-exposed workers.  Increased serum levels of liver-related enzymes, particularly

gamma-glutamyl transpeptidase (GTP), alanine aminotransferase (ALT), aspartate aminotransferase

(AST), alkaline phosphatase (AP), and/or lactate dehydrogenase (LDH), were reported in many of these

studies (Chase et al. 1982; Emmett et al. 1988b; Fischbein 1985; Fischbein et al. 1979; Lawton et al.
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1985a; Maroni et al. 1981a, 1981b; Ouw et al. 1976).  Additionally, increases in levels of these serum

enzymes have been correlated with serum PCB levels (Baker et al. 1980; Chase et al. 1982; Emmett et al.

1988b; Fischbein 1985; Fischbein et al. 1979; Lawton et al. 1985a; Smith et al. 1982). 

Asymptomatic hepatomegaly and increased serum levels (elevated to slightly above normal range) of

GTP, AST, and/or ALT were found in 14 of 80 capacitor manufacturing or repair workers who were

exposed to non-Aroclor PCB mixtures with a 42% chlorine content (Italian formulations Pyralene 3010 or

Apirolio) for an average of 12 years (Maroni et al. 1981a, 1981b).  Two other workers had increased

serum enzyme levels without liver enlargement.  PCB levels ranged from 48 to 275 µg/m3 in the

workroom air, 2–28 µg/cm2 on the skin surface (palms), and 41–1,319 µg/kg in the blood.  The

investigators considered the liver enlargement indicative of hepatic microsomal induction.  Comparison

of the 16 workers with abnormal liver findings and the 64 without abnormal findings showed that those

with the abnormalities had statistically significant (p<0.01) higher mean concentrations of

trichlorobiphenyls, pentachlorobiphenyls, and total PCBs in the blood.  Additionally, significant positive

correlations were found between the frequency of workers with the abnormal liver findings and

increasing levels of blood trichlorobiphenyls (p<0.001), pentachlorobiphenyls (p<0.05), and total PCBs

(p<0.001).  No matched control group was included in the study, there was no apparent association

between severity of hepatomegaly and blood PCB levels, and hepatomegaly was not reported in other

studies that included physical examinations conducted even at similar or higher serum PCB levels (e.g.,

Fischbein et al. 1979; Smith et al. 1982).

Serum enzyme (AST, ALT, LDH, AP) and bilirubin levels were within normal limits in 16 workers

exposed to PCBs (type not reported) primarily via dermal contact with used transformer oil containing

.600,000 ppm PCBs or secondary contact with contaminated clothes or shoes (Brandt-Rauf and Niman

1988).  No correlation between serum triglyceride levels and serum PCB levels was found.  Physical

examinations showed no dermal or other abnormalities consistent with PCB exposure, but it is not

specifically mentioned if the examinations looked for liver enlargement.  Serum PCB concentrations in

the study group were low (generally <10 ppb) in comparison to other occupational studies.

Clearance of antipyrine, a known substrate for microsomal hepatic enzymes, was used to test liver

function in two studies of PCB-exposed workers (Alvares et al. 1977; Emmett et al. 1988b).  A

significantly lower mean half-life of antipyrine clearance from blood was found in five workers exposed

for an average of 9 years to various Aroclors, including Aroclor 1260, compared to five control subjects

matched for age, sex, and smoking/drinking habits (Alvares et al. 1977).  The antipyrine clearance half-
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lives were 10.8 and 15.6 hours in the exposed and control subjects (p<0.005), respectively, suggesting

that exposure induced hepatic microsomal enzymes.  The exposed workers were a subgroup of the

population studied by Fischbein et al. (1979) who were exposed to mean PCB concentrations ranging

from 0.007 to 11 mg/m3.  The second study (Emmett et al. 1988b) found no difference in antipyrine

plasma half-life in transformer maintenance workers primarily exposed to lower concentrations of

Aroclor 1260 (#0.012 mg/m3) for an average of 3.75 years compared with controls matched for age, race,

and marital status, but not for current smoking and drinking habits (Emmett et al. 1988b).  The reason for

the different antipyrine liver function test findings in these studies is not clear, but is most likely due to

levels and durations of exposure since serum PCB levels were higher (up to 125 ppb) in the responding

group (Fischbein et al. 1979) and (<15 ppb) in the Emmett et al. (1988b) group.  The difference might

also be related to smoking and/or drinking habits.  

Contaminated Fish Consumption.  Limited information is available on hepatic end points in populations

who consumed fish contaminated with PCBs and other chemicals in Triana, Alabama (Kreiss et al. 1981)

and the Baltic Sea area (Svensson et al. 1994).  No data were located on liver effects in fisheaters from the

Great Lakes/St. Lawrence River basin.

Serum γ-glutamyl transpeptidase (GGT) and cholesterol (Section 3.2.2.6.2.2), but not serum ALT or

bilirubin, were positively correlated with serum PCB levels in 458 residents of Triana, Alabama (Kreiss

et al. 1981).  These associations were independent of factors such as age and alcohol and fish

consumption, although the natural partitioning of PCBs into serum lipids could contribute to the

correlation.  Consumption of contaminated fish was the only known source of PCB exposure.  The mean

serum concentration of PCBs (analyzed as Aroclor 1260) was 17.2 ppb.  Levels of  DDT were also

increased in residents and fish, and there was a strong positive correlation between serum concentrations

of DDT and PCB.  Serum DDT levels did contribute to the variance in serum GGT and other effects, but

this does not preclude the possibility of an interaction between PCB and DDT.

A comparison of 23 Swedish males with a high consumption of Baltic Sea fish and 20 men with virtually

no fish consumption showed no statistically significant differences in serum levels of AST, ALT, GGT,

AP, or bilirubin (Svensson et al. 1994).  The fisheaters had elevated blood levels of PCBs and other

organochlorines, as well as increased erythrocyte levels of methylmercury.

Yusho and Yu-Cheng Exposures.  Clinical alterations that have been observed in people exposed during

the Yusho and Yu-Cheng PCB accidental ingestion incidents include increases in serum liver-related
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enzymes and triglycerides and urinary uroporphyrins (Kuratsune 1989; Rogan 1989).  Elevations in

serum AST and ALT are generally consistent findings in Yu-Cheng patients (Rogan 1989), although few

abnormalities in AST and ALT and other basic liver function indices have been associated with Yusho

exposure (Kuratsune 1989; Masuda 1994).  Results of non-routine serum tests (e.g., accelerated

erythrocyte sedimentation rate, high titer in thymol turbidity, increased M fraction of lactate

dehydrogenase, and increased alkaline phosphatase and ribonuclease levels) suggested liver damage in

some Yusho patients, particularly severe cases (Masuda 1994).  

The predominant morphological finding in the liver of Yusho patients appears to be ultrastructural

changes suggestive of microsomal enzyme induction, particularly alterations in the endoplasmic reticulum

and pleomorphic and enlarged mitochondria (Kuratsune 1989; Masuda 1994).  Mortality from cirrhosis of

the liver and from liver diseases excluding cirrhosis was increased in both sexes in a cohort of

1,940 Yu-Cheng victims (>95% of all registered cases) followed for 12 years after exposure (Hsieh et al.

1996).  SMRs for cirrhosis and other liver diseases were 2.79 (95% CI 1.39–5.00) and 5.40 (CI

1.47–13.82), respectively, compared to the Taiwan national populations; rates were similarly increased

compared to local populations.  Mortality from all liver diseases during the first 3 years after exposure

(SMR=10.76, 5.37–19.26) was more than 8 times higher than in the subsequent 9 years.

3.2.2.6.2.2  Serum Lipids, Triglycerides, and Cholesterol

Occupational Exposure.  Levels of liver-regulated serum lipids, particularly triglycerides and cholesterol,

have been studied in PCB-exposed workers.  Serum triglycerides, total cholesterol, ALT, and

albumin/globulin ratio were increased in capacitor plant workers with a mean length of employment of

17 years (Lawton et al. 1985a).  These workers were exposed to various Aroclor mixtures at a mean

concentration of 0.69 mg/m3 (range, 0.2–2.0), based on monitoring performed in only one area of the

plant several months prior to clinical evaluation.  In other studies, no changes in serum cholesterol,

triglycerides, high-density lipoproteins (HDL), low-density lipoproteins (LDL), very low-density

lipoproteins (VLDL), and/or serum albumin levels were found in workers exposed primarily to

Aroclor 1260 (#0.012 mg/m3) for a mean of 3.75 years (Emmett et al. 1988b) or to an unspecified Aroclor

mixture (PCB air concentration not reported) in transformer fluids for 4–17 years (Chase et al. 1982).  

Significant positive correlations between serum triglyceride or cholesterol levels and serum PCBs in

PCB-exposed workers have been reported (Baker et al. 1980; Chase et al. 1982; Emmett 1985; Emmett et

al. 1988b; Lawton et al. 1985a; Smith et al. 1982), but not all studies were adjusted for all major
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confounding variables.  For example, when adjusted for all confounders, Emmett et al. (1988b) found no

correlation between serum lipids and serum PCBs.  Evidence from this and other studies indicates that

correlations between serum lipids and PCBs may be due to the partitioning of PCBs between adipose

tissue and lipids in the blood (Brown and Lawton 1984; Emmett 1985; Emmett et al. 1988b; Lawton et al.

1985a).  Data from the Yusho and Yu-Cheng incidents (see subsection below) and animal studies (see

Section 3.2.2.6.3.2), however, indicate that elevated serum lipids are an effect of oral exposure to high

levels of PCBs.  

Contaminated Fish Consumption.  Serum cholesterol, serum GGT, and blood pressure, but not serum

HDL cholesterol or triglycerides, were positively correlated with serum PCB levels in 458 residents of

Triana, Alabama (Kreiss et al. 1981).  These associations were independent of age, sex, fish consumption,

body mass index, and alcohol consumption.  Consumption of contaminated fish was the only known

source of PCB exposure, but PCB intake was not estimated.  DDT was also increased in the serum of the

people and in the fish, and serum DDT and serum PCB levels were highly correlated.  Serum DDT levels

did not contribute to the variance in serum cholesterol, serum GGT, or blood pressure.

General Population Exposures.  Serum cholesterol and triglycerides were increased in individuals with

elevated serum PCB levels who had resided near waste sites for 5 years (Steer-Green et al. 1986a, 1986b). 

The increases were not substantially greater than normal, however, and neither levels of cholesterol nor

triglycerides correlated with serum PCB concentrations.  Other findings included a significant positive

correlation of total bilirubin with serum PCB levels, and significant negative correlations of serum

albumin with serum PCBs and of AST with serum lipid fraction-adjusted PCB levels.  This study used

pooled data from combined residential and occupational exposure.  Similar results were reported by

Steinberg et al. (1986) using uncorrected data.  In addition, a positive correlation between the activities of

ß-glucuronidase and 5N-nucleotidase and total serum PCBs was observed in individuals who lived or

worked near an electrical equipment manufacturing plant.  Similar positive correlations were also found

with serum dichlorodiphenyl dichloroethene (DDE) (a metabolite of DDT); no correlations were observed

when potential confounding factors (e.g., age, cholesterol) were removed.

Yusho and Yu-Cheng Exposures.  Markedly elevated serum triglyceride levels with unchanged total

serum cholesterol was a laboratory finding characteristic of Yusho and Yu-Cheng exposures (Oxymora et

al. 1979; Masuda et al. 1994; Uzawa et al. 1969).  The elevated triglycerides generally persisted for

several years following exposure and subsequently declined to normal levels.
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3.2.2.6.2.3  Porphyria

Occupational Exposure.  Sixty-seven PCB-exposed workers with a mean employment length of 12 years

(range, 2–32 years) exhibited increased urinary excretion of total porphyrins and porphyrin homologues

(coproporphyrin, pentaporphyrin, hexaporphyrin, heptaporphyrin, and uroporphyrin) compared to a

control population of unexposed electrical workers (Colombi et al. 1982).  No shift in the relative urinary

levels of porphyrin homologues was observed between the exposed and control groups.  The exposed

workers were exposed to Aroclor 1254 (unquantitated) for up to 17 years and, subsequently, to

0.048–0.275 mg/m3 Pyralene 3010 (42% chlorine content) for an unspecified duration; dermal exposure

to both PCB mixtures could not be ruled out.  In another study, urinary coproporphyrin, uroporphyrin,

and porphobilinogen did not correlate with serum PCB levels in workers exposed to various Aroclors and

Askarels in concentrations ranging from 0.003 to 0.08 mg/m3 for >13 years (Smith et al. 1982).

Urinary porphyrin excretion and serum GGT activity were significantly increased in 51 workers who

were exposed for a mean duration of 10 years, and 28 of 51 subjects had elevated concentrations of PCBs

in the blood (Maroni et al. 1984).  As discussed by James et al. (1993), average urinary excretion of

porphyrins was almost twice as high as unexposed control group values, but no correlation was found

between porphyrin excretion and blood PCB levels.

Yusho and Yu-Cheng Exposures.  Type B hepatic porphyria (i.e., a uroporphyrin/coproporphyrin ratio

greater than 1) is a consistent finding in Yu-Cheng patients, including children born to exposed mothers

(Chang et al. 1980; Gladen et al. 1988; Hsu et al. 1994; Lu et al. 1980).  Abnormal urinary porphyrin

levels have rarely been associated with Yusho exposure (Masuda et al. 1994).

3.2.2.6.2.4  Evaluation of Human Studies

There is no clear indication that environmental exposure to PCBs has caused adverse liver effects in

humans.  Evidence for liver effects of PCBs in humans has been sought in numerous studies of exposed

workers.  Hepatic end points in these studies are essentially limited to serum enzymes (e.g., AST, ALT,

and GGT) and other biochemical indices (e.g., bilirubin, serum lipids, and cholesterol) that are routinely-

examined in clinical assays.  Antipyrine elimination was evaluated in two studies of PCB workers

(Alvares et al. 1977; Emmett et al. 1988b).  Results suggest a threshold of 100 ppb in serum for

phenobarbital-type induction in humans (Brown 1994).  A positive correlation between the frequency of

workers with hepatomegaly and elevated serum enzyme values and increasing levels of PCBs in the blood
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was reported in one study (Maroni et al. 1981a, 1981b), but there was no apparent relationship between

severity of the effect and PCB levels, and no matched control group was included in the study.  Studies of

people exposed to PCBs by ingestion of contaminated fish (Kreiss et al. 1981) or contaminated rice oil in

the Yusho or Yu-Cheng incidents (Kuratsune 1989; Masuda 1994; Rogan 1989) have shown increases in

serum levels of some liver enzymes and other hepatic indices that are indicative of microsomal enzyme

induction or liver damage.  Ultrastructural changes indicative of microsomal enzyme induction are

predominant hepatic morphological findings in Yusho patients.  Due to the mixed chemical nature of the

fish and rice oil exposures, the results cannot be attributed solely to PCBs.

Increased levels of serum triglycerides and cholesterol have not been reported consistently in workers

with long-term occupational exposure to PCBs.  As discussed by James et al. (1993), the variable results

can be explained, at least partially, by failure of the studies to control for variables known to affect serum

lipid levels, particularly age, alcohol consumption, and medical history.  Because tissue concentrations

are generally considered to be a better measure of body burdens and dose received than serum lipid levels,

this may explain the difficulty in showing a correlation between serum lipid levels and PCB dose. 

Additionally, both Emmett et al. (1988b) and Lawton et al. (1985a) showed that associations with serum

lipid levels and serum PCB levels can be explained by the partitioning behavior of PCBs, suggesting that

serum lipid levels may affect serum PCB levels rather than PCB exposure affecting serum lipid levels. 

However, as described in the following section, animal data indicate that exposure to PCBs can indeed

increase serum lipid levels.  A limited  amount of information is available on serum lipid effects of PCBs

in nonoccupational populations.  Serum cholesterol, but not triglycerides, was increased in Triana,

Alabama, consumers of contaminated fish (Kreiss et al. 1981), and increases in serum triglycerides, but

not cholesterol, were associated with Yusho and Yu-Cheng exposure (Masuda et al. 1994; Oxymora et al.

1979; Uzawa et al. 1969). 

Increased urinary excretion of porphyrins appears to be associated with occupational exposure to PCBs

(Colombi et al. 1982; Maroni et al. 1984; Smith et al. 1982).  Hepatic porphyria was commonly observed

in people exposed during the Yu-Cheng PCB incident, although it was not a usual finding in Yusho cases

(Chang et al. 1980; Gladen et al. 1988; Hsu et al. 1994; Lu et al. 1980; Masuda et al. 1994).
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3.2.2.6.3  Animal Studies

The highest NOAEL values and all reliable LOAEL values for hepatic effects for each study are recorded

in Tables 3-1, 3-2, and 3-3, and plotted in Figures 3-1 and 3-2.

3.2.2.6.3.1  Liver Enzymes, Enlargement, and Pathology

Inhalation Exposure    

No histological changes occurred in the liver of adolescent male rats that were whole-body exposed to

0 or 900 ng/m3 Aroclor 1242 vapor 23 hours/day for 30 days (Casey et al. 1999).  The generation of the

vapor-phase test atmosphere was based entirely on the evaporation of a liquid PCB mixture using a

system that did not create aerosol droplets, and the concentration and congener composition of the test

atmosphere was well characterized.  Limitations of this study include only one exposure level and liver

end point and a relatively small number of animals (8/group); however, uptake of PCBs in the liver was

confirmed by tissue analysis, and the exposure was sufficient to induce effects in other tissues, including

the thyroid, which is known to be particularly sensitive to PCBs.  

Histopathologic lesions were found in the livers of rats, mice, rabbits, and guinea pigs that were

intermittently exposed to chamber concentrations of 1.5 mg/m3 Aroclor 1254 for 7 hours/day for 150 days

over a total of 213 days (Treon et al. 1956).  Alterations varied in severity depending upon species,

ranging from cytoplasmic vacuolation in guinea pigs to fatty metamorphosis and other degenerative

lesions in rats.  Similar exposures of rats, mice, rabbits, or guinea pigs to Aroclor 1242 for 7 hours/day at

1.9 mg/m3 for 150 of 214 days, or 8.6 mg/m3 for 17 of 24 days, did not produce histopathology in the

liver or other viscera.  Relative liver weight, measured in rats, guinea pigs, and rabbits exposed for

7 hours/day to 6.8 mg/m3 Aroclor 1242 for 82 of 120 days or 5.4 mg/m3 Aroclor 1254 for 83 of 121 days

was increased only in the rats exposed to Aroclor 1254; liver histology was not evaluated in these studies. 

None of the exposure scenarios produced treatment-related gross liver pathology in any of the species.  It

was necessary to vaporize the Aroclors by heating to 55–138 EC to attain the concentrations used in the

study, although these temperatures are too low to cause formation of CDFs (Morita et al. 1978).

No information was located on hepatotoxicity in animals following acute- or chronic-duration inhalation

exposure to PCBs.
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Oral Exposure      

Commercial PCB Mixtures.  Relatively little information is available on hepatic effects of acute-duration

oral exposure to PCBs.  Liver microsomal enzyme activity (aminopyrine N-demethylation and acetanilide

hydroxylation) was increased in rats exposed to 0.5 mg/kg/day (lowest tested level) Aroclor 1254 for

durations as short as 1–3 days (Bruckner et al. 1977); no other hepatic end points were evaluated in this

study.  Relative liver weight and serum total cholesterol were increased in rats that were fed estimated

doses of $1 mg/kg/day Aroclor 1254 for 4 days, but not 0.5 mg/kg/day (Carter 1984, 1985); histology

was not evaluated.  Acute-duration studies evaluating hepatic effects of PCBs other than microsomal

enzyme induction at doses lower than those in the Carter (1984, 1985) studies were not located.  Effects

in rats exposed to higher doses of PCBs in acute-duration studies included increased liver weight,

decreased liver glucose 6-phosphatase, and/or decreased serum cholesterol at $1.9 mg/kg/day

Aroclor 1254 (Carter and Koo 1984; Price et al. 1988) and 50 mg/kg/day Aroclor 1248 (Kato and

Yoshida 1980), as well as degenerative hepatic histopathological changes at PCB doses $50 mg/kg/day as

discussed below.  Additional information on PCB-induced hypercholesterolemia is included in

Section 3.2.2.6.3.2.  

The lowest reported hepatic effect levels in intermediate-duration oral studies are NOAELs for

microsomal enzyme induction in rats (Bruckner et al. 1974, 1977; Litterst et al. 1972).  Liver microsomal

nitroreductase and demethylase were induced in rats that were fed $0.03 mg/kg/day (lowest tested dose)

Aroclor 1242, 1248, 1254, or 1260 for 4 weeks (Litterst et al. 1972).  All of these PCB mixtures also

caused increased relative liver weight at $2.5 mg/kg/day and increased liver triglycerides at

$25 mg/kg/day; however, histology was not evaluated.  The effects were generally dose-related among

the mixtures and the maximum increase in liver triglycerides was caused by Aroclor 1248.  No

histological changes were found in the liver of adolescent rats exposed to dietary doses of 0 or

0.033 mg/kg/day Aroclor 1242 for 30 days (Casey et al. 1999).  Limitations of this study include a

relatively small number of animals (8/group) and the lack of more than one dose level and hepatic end

point, although tissue congener analyses confirmed uptake of PCBs in the liver.  Hepatic microsomal

enzymes, liver weight, and lipid deposition in the liver were increased in rats fed $0.25 mg/kg/day

Aroclor 1242 for $2 months; no other hepatic histopathologic changes were observed, and serum levels of

AST and ALT were not increased (Bruckner et al. 1974).  Dietary ingestion of $0.25 mg/kg/day

Aroclor 1254 for $35 days similarly induced hepatic microsomal enzymes in rats, but other liver effects

(increased liver weight and triglyceride content; histology was not evaluated) only occurred at a higher

dose of 1.25 mg/kg/day (Bruckner et al. 1977).  Another study with Aroclor 1254 found no significant
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change in liver weight in rats fed up to 2.5 mg/kg/day for 5 months (Byrne et al. 1988); no other hepatic

end points were evaluated.  

Increased relative liver weight and hepatocellular hypertrophy, but no additional histological changes in

the liver, occurred in mice that were fed 22 mg/kg/day Aroclor 1242 for 6 weeks (Loose et al. 1978a,

1978b).  Microsomal enzyme activity (as indicated by decreased pentobarbital-induced sleeping time) and

liver weight were increased in mice fed 32.5 or 130 mg/kg/day Aroclor 1254 for 2 weeks (Sanders et al.

1974).  No other liver end points (e.g., serum indices, histology) were evaluated, precluding the

determination of whether these doses were hepatotoxic in mice.  Liver weights were also increased in

mice that were fed an estimated dose of 37.5 mg/kg/day Aroclor 1260 for 14 days, but not in mice

administered a single 50 mg/kg dose by gavage (Whysner et al. 1998); no other liver toxicity end points

were included in either study.

Fatty degeneration and necrotic changes are characteristic hepatic histopathological effects of PCBs that

have been induced in rats and mice exposed to relatively high oral doses, including rats given a single

4,000 mg/kg dose of Aroclor 1242 by gavage (Bruckner et al. 1973); rats fed 100 mg/kg/day

Aroclor 1242 for 3 weeks (Bruckner et al. 1973), 50 mg/kg/day Aroclor 1248 or 1254 for 2–4 weeks

(Allen and Abrahamson 1973; Kling et al. 1978), or $6.5–7.5 mg/kg/day Aroclor 1254 or 1260 for

8 months (Kimbrough et al. 1972), and mice fed 4.88 mg/kg/day Aroclor 1254 for 6 months or

49.8 mg/kg/day for 11 months (Kimbrough and Linder 1974; Koller 1977).  Additionally, lipid

accumulation occurred in the liver of offspring of rats that were fed 1.5 mg/kg/day Aroclor 1254 or

1260 (Linder et al. 1974), and hepatocellular hypertrophy and vacuolar degeneration developed in

weanling rats that ingested $1.0 mg/kg/day Aroclor 1254 for 10 weeks (Gray et al. 1993).  Rabbits fed

2.1 or 6.5 mg/kg/day Aroclor 1254 for 8 weeks had increased relative liver weight, but no treatment-

related histological alterations (Street and Sharma 1975); other hepatic end points were not evaluated. 

Similarly, there were no histological changes in the livers of guinea pigs with significantly increased

relative liver weight fed #4 mg/kg/day Aroclor 1260 for 8 weeks (Vos and de Roij 1972).

The most comprehensive chronic toxicity study of PCBs in rodents provides comparative clinical and

histology data on four Aroclor mixtures (Fish et al. 1997; General Electric Co. 1997a, 1997b; Mayes et al.

1998).  Rats were fed Aroclor 1016, 1242, 1254, or 1260 for 24 months at two (Aroclor 1242) or three

dose levels per sex at ranges of 2.0–11.2, 2.0–5.7, 1.0–6.1, or 1.0–5.8 mg/kg/day, respectively.  Each lot

of the basal feed contained <0.15 ppm of PCBs (estimated dose <0.01 mg/kg/day).  As discussed in

Section 3.2.8.3.2, the Aroclor 1254 test mixture had levels of congener 3,3',4,4',5-pentaCB (PCB 126)
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that were about 2 times greater than that of “ordinary” Aroclor 1254.  The liver was a target of all four

PCB mixtures as indicated by increases in relative liver weight and hepatic mixed-function oxidases,

serum enzyme and cholesterol levels, nonneoplastic lesions, and/or tumors.  Hepatic enzyme induction

varied with time and declined after reaching maxima, demonstrating the dynamic nature of the CYP end

points (Fish et al. 1997).  These effects were usually much more severe in females than in males and

showed the following general pattern of Aroclor toxicity: 1254>1260.1242>1016.  Carcinogenicity data

from this study are summarized in Section 3.2.8.3.2.  Nonneoplastic liver effects induced by Aroclor 1016

included increased hepatocellular hypertrophy and vacuolization at $2.0 mg/kg/day, and increased

relative liver weight and bile duct hyperplasia at $2.7 mg/kg/day.  Effects caused by Aroclor 1242

included increased hepatocellular hypertrophy and vacuolization, altered hepatocellular foci, and bile duct

hyperplasia at $2.0 mg/kg/day, with increased liver weight, serum cholesterol, and bilirubin occurring at

5.7 mg/kg/day.  Aroclor 1254 induced hepatocellular changes (hypertrophy, vacuolization, altered foci),

bile duct hyperplasia, and increased serum cholesterol and liver weight at $1.0 mg/kg/day, with increases

in serum AST, ALT, and GGT occurring at $2.9 mg/kg/day.  Aroclor 1260 caused hepatocellular changes

(hypertrophy, vacuolization, altered foci), bile duct hyperplasia, and increased liver weight at

$1.4 mg/kg/day, and increased serum GGT and cholesterol at $2.8 mg/kg/day.

Histopathological changes in the liver also occurred in rats exposed to dietary Aroclor 1254 at

1.25–5 mg/kg/day for 2 years (Morgan et al. 1981; NCI 1978; Ward 1985), Aroclor 1260 at 5 mg/kg/day

for 16 months followed by 2.5 mg/kg/day for 8 months and then no treatment for 5 months (Norback and

Weltman 1985), or Aroclor 1260 at 5 mg/kg/day for 21 months (Kimbrough et al. 1975).  Although

preneoplastic and neoplastic liver lesions were induced in these as well as other rat studies (see

Section 3.2.8.3.2), no nonproliferative changes, or nonproliferative lesions that did not progress to liver

neoplasms after 1 year, were described.  

Intermediate- and chronic-duration studies in monkeys indicate that this species is more sensitive than

rodents to the hepatotoxic effects of PCBs.  For example, lipid accumulation and focal necrosis were

found in one female monkey that died after administration of 0.1 mg/kg/day Aroclor 1248 for 173 days

and in one female monkey that died after being fed 0.2 mg/kg/day Aroclor 1248 for 310 days (Barsotti

et al. 1976).  Although only one animal per dose was examined, it is likely that these effects are treatment

related due to the characteristic nature of the hepatic response and because similar effects on the liver

occurred in monkeys at higher doses in other intermediate-duration studies (Allen 1975; Allen and

Norback 1976; Allen et al. 1974a). 
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Cynomolgus monkeys that were fed relatively high doses of 2 mg/kg/day Aroclor 1248 or 5 mg/kg/day

Aroclor 1254 for up to 20–23 weeks had serum biochemistry changes (increased ALT, AST, AP, LDH,

cholesterol, triglycerides, and bilirubin) and histopathologic changes in the liver, including hyperplasia,

fatty degeneration and degeneration of hepatocytes, and gall duct/gall bladder epithelial cell hypertrophy

hyperplasia (Tryphonas et al. 1984).  Hepatic effects observed in Rhesus monkeys after 12–28 months of

dietary exposure to 0.2 mg/kg/day Aroclor 1254 included liver enlargement, fatty degeneration,

hepatocellular necrosis, and hypertrophic and hyperplastic changes in the bile duct (Tryphonas et al.

1986a, 1986b).  Rhesus monkeys that ingested capsules containing 0.005, 0.02, 0.04, or 0.08 mg/kg/day

Aroclor 1254 for 72 months had increased liver weight attributed to hyperplasia (unspecified) at

0.08 mg/kg/day, as well as decreased serum levels of total bilirubin and cholesterol and increased serum

triglycerides as summarized in Section 3.2.2.6.3.2 (Arnold et al. 1993b, 1997; Bell et al. 1994).

Defined Experimental Mixtures.  Female Long-Evans rats were pre- and postnatally exposed to pelleted

food containing Aroclor 1254 or a laboratory PCB mixture of 14 congeners resembling the congener

pattern in human breast milk (Hany et al. 1999b).  Exposure began 50 days prior to mating and was

terminated at the day of birth (postnatal day [PND] 0), and the offspring were subsequently exposed via

maternal milk until PND 21.  The reported estimated average daily PCB intake by the dams was the same

for both mixtures at 4 mg/kg/day.  Relative liver weight was significantly higher than controls on

PND 0 in both Aroclor 1254-exposed dams and their offspring, on PND 0 in offspring of the rats exposed

to the simulated mixture, and on PND 21 in nonpregnant (unsuccessfully mated) females exposed to

Aroclor 1254 or the simulated mixture.  Additional information on the experimental design and results of

this study, including the congener composition of the simulated mixture and nonhepatic data, are

summarized in Section 3.2.6 (Developmental Effects).  

Toxicity of a mixture of PCB congeners analogous to that in human breast milk (Canadian women) was

studied in monkeys (Arnold et al. 1999).  Groups of infant Cynomolgus monkeys (6 control males,

10 treated males) and Rhesus monkeys (2 control and 3 treated males, 1 control and 3 treated females)

ingested the congener mixture in a total daily dose of 0 or 7.5 µg PCBs/kg/day from birth until 20 weeks

old, and were observed until they were at least 66 weeks old.  The dose represented the approximate daily

intake of a nursing human infant whose mother’s milk contained 50 ppb PCBs (the Health Canada

guideline for maximum concentration in breast milk).  Reported hepatotoxicity-related end points are

limited to serum biochemical indices, including liver enzymes (ALT, AST, GGT, AP), bilirubin,

triglycerides, and cholesterol; data for liver weight and histology are not yet published (as of July 2000). 

Although there were no statistically significant differences between the exposed and control groups for
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any of the individual hepatic end points, significant increasing trends with time were found for serum

cholesterol in both strains of monkeys and serum GGT in Rhesus monkeys.  

Single Congeners.  Multiple hepatic end points were evaluated in comparative studies of individual

congeners in rats, mice, and monkeys.  In the most comprehensive series of studies, rats were exposed to

diets containing four dose levels of a congener for 13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b;

Gilroy et al. 1996, 1998; Lecavalier et al. 1997; MacLellan et al. 1994a, 1994b, 1994c; Peng et al. 1997;

Singh et al. 1996, 1997).  Eight congeners were tested based on frequent occurrence in environmental

samples and human tissues or toxic potency.  Hepatic effects included increased liver weight, biochemical

changes (e.g., increased serum enzymes and cholesterol, increased liver porphyrins, and decreased liver

vitamin A), and histopathology (e.g., cytoplasmic vacuolation and fatty alterations).  The most toxic

congener was PCB 126 with a LOAEL of 0.74 µg/kg/day, which was approximately 1/50 of the LOAEL

of 39 µg/kg/day for PCB 105 (the next most toxic congener) and 1/500 of the LOAEL of 425 µg/kg/day

for PCB 128 (the least toxic congener).  Considering dose-response and severity of liver effects, the order

of toxicity was PCB 126 > PCB 105 > PCB 118 . PCB 77 > PCB 153 . PCB 28 > PCB 128.  In general,

the non-ortho and mono-ortho substituted congeners were more potent than the di-ortho substituted

congeners.  

The comparative toxicity of four symmetrical hexachlorobiphenyl isomers was studied in mice (Biocca et

al. 1981).  Male mice were fed several dose levels of PCB 136, PCB 153, PCB 155, and PCB 169 daily

for 28 days.  The hepatic LOAEL (foamy cells and microabscesses) was 200 µg/kg/day for PCB 169 and

much higher for the other congeners at 21.4 mg/kg/day.  Liver effects induced at doses higher than the

LOAEL included fatty metamorphosis (PCBs 155 and 169) and increased liver porphyrins (PCB 169).  

Rhesus monkeys were exposed to PCB 52 or PCB 77 in estimated dietary doses of 0 or 60 µg/kg/day for

133 days (McNulty et al. 1980).  Pathologic changes, including dilation of the extrahepatic biliary tree

and hyperplastic intrahepatic biliary vessels, were induced by PCB 77 but not PCB 52.  Additional liver

data were not obtained for PCB 77 due to high systemic toxicity manifested as clinical signs, general

emaciation, and marked effects in nonhepatic tissues.

Dermal Exposure.    Limited information is available on liver toxicity of PCBs in dermally-exposed

animals.  Aroclor 1260, Clophen A60, or Phenoclor Dpb (all 60% chlorine PCB mixtures) was applied in

isopropanol to the shaved back skin of female New Zealand rabbits (four/group) on 5 days/week for 28 or

38 days at estimated doses of 0 or 42–44 mg/kg/day (Vos and Beems 1971; Vos and Notenboom-Ram
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1972).  Hepatic effects included increased relative liver weights, histopathologic changes (e.g.,

centrilobular degeneration and hepatocyte atrophy, focal necrosis, and cytoplasmic hyalin degeneration),

and increased fecal porphyrin levels.  In general, the effects occurred in all treated animals and were least

and most pronounced in the Aroclor 1260 and Clophen A60 groups, respectively.  The CDF content of

the Aroclor 1260 used in these experiments was below the detection limit (1 ppm); however, the

analytical techniques available then were relatively insensitive.

3.2.2.6.3.2  Serum Lipids, Triglycerides, and Cholesterol

Oral Exposure    

Commercial PCB Mixtures.  Serum total cholesterol, HDL-cholesterol, and relative liver weight were

increased in rats that were fed estimated doses of $1 mg/kg/day Aroclor 1254 for 4 days; no effects

occurred at 0.5 mg/kg/day (Carter 1984, 1985).  Serum LDL- and VLDL-cholesterol fractions were not

increased in any dose group (#3.9 mg/kg/day).  The lowest level causing increased HDL-cholesterol and

liver weight was 1 mg/kg/day in the Carter (1984) study and 1.9 mg/kg/day in the Carter (1985) studies. 

Effects in rats exposed to PCBs in other acute-duration studies included increased serum cholesterol and

liver weight at $1.9 mg/kg/day Aroclor 1254 (Carter and Koo 1984; Price et al. 1988) and 50 mg/kg/day

Aroclor 1248 for 4 days (Kato and Yoshida 1980), as well as degenerative hepatic histopathological

changes at 50 mg/kg/day Aroclor 1254 and 4,000 mg/kg/day Aroclor 1242 (Bruckner et al. 1973; Kling

et al. 1978) as summarized above in Section 3.2.2.6.3.1.

Changes in serum lipid profiles commonly occurred in rats exposed to PCBs in intermediate-duration

dietary studies (Andrews 1989; Bruckner et al. 1974, 1977; Gray et al. 1993; Kato et al. 1981a, 1981b,

1982b; Kling and Gamble 1982; Litterst et al. 1972).  Effects included increased liver lipids at

$0.3 mg/kg/day Aroclor 1242 for 2–6 months (Bruckner et al. 1974), increased liver triglycerides at

1.25 mg/kg/day Aroclor 1254 for 35 days (Bruckner et al. 1977), increased serum cholesterol at

$10 mg/kg/day Aroclor 1254 for 5 weeks (Andrews et al. 1989), and increased liver lipids and liver and

serum cholesterol at $15 mg/kg/day Aroclor 1248 for 20–24 days (Kato et al. 1981b, 1982b).  Serum

cholesterol, phospholipids, and triglycerides were similarly increased in rats fed 15 mg/kg/day

Aroclor 1248 for 68 days (Oda and Yoshida 1994).  Additional analyses performed by Oda and Yoshida

(1994) showed that serum total lipoproteins were also elevated, with increases in protein, cholesterol,

phospholipid, and triglycerides occurring among the lipoprotein fractions (VLDL, LDL, HDL1, HDL2).
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Increased serum cholesterol was one of several manifestations of liver toxicity in rats found in the

24-month comparative study of several Aroclor mixtures (General Electric Co. 1997a, 1997b; Mayes et

al. 1998) summarized in Section 3.2.2.6.3.1.  Serum cholesterol was increased in females exposed to

Aroclors 1242, 1254, and 1260 at  5.7, $1.4, and $2.8 mg/kg/day, respectively; no serum cholesterol

changes were induced by Aroclor 1016 at doses as high as 11.2 mg/kg/day.  Increased serum cholesterol

levels observed in most PCB-exposed males appeared to be treatment-related only for Aroclor 1254.  The

effect in Aroclor 1254 males was minimal as the increase was slight and not clearly dose-related

(statistically significant at 1.0 and 4.3 mg/kg/day, but not at 2.0 mg/kg/day).  Increases in serum

cholesterol in males exposed to Aroclor 1016, 1242, and 1260 were not consistently dose- or time-related

and were considered to be equivocal.  Considering the effect levels and sizes of increases in females, the

order of toxicity was Aroclor 1254 followed by 1260, 1242, and 1016.

  

Effects in monkeys that ingested Aroclor 1254 in capsules daily for 37 months included normal plasma

lipid profiles at doses #0.02 mg/kg/day, decreased total and VLDL + LDL cholesterol at

$0.04 mg/kg/day, and decreased HDL cholesterol and total carnitine (which is involved in fatty acid

metabolism) at 0.08 mg/kg/day (Arnold et al. 1993b; Bell et al. 1994).  Plasma triglycerides were

significantly elevated an apparent maximum of 30–40% at all tested doses (0.005–0.08 mg/kg/day) except

0.04 mg/kg/day.  Bell et al. (1994) found statistically significant correlations supporting a causal

relationship between PCB intake and the plasma lipid/lipoprotein changes, including an indication that

the elevation in plasma triglycerides was not due to the partitioning of PCBs between adipose tissues and

blood lipids.  No correlation was found between the increases in triglycerides and HDL cholesterol.

Single Congeners.  A comprehensive series of toxicity studies was performed in rats that were fed

various individual congeners for 13 weeks, as detailed in Section 3.2.2.6.3.1 (Chu et al. 1994, 1995,

1996a, 1996b, 1998b; Gilroy et al. 1996, 1998; Lecavalier et al. 1997; MacLellan et al. 1994a, 1994b,

1994c; Peng et al. 1997; Singh et al. 1996, 1997).  Effects included increased serum cholesterol levels that

were caused by exposure to PCB 126 at $7.4 µg/kg/day and PCB 105 at $3,960 µg/kg/day.  No changes

in serum cholesterol were induced by PCB 28 at #3,956 µg/kg/day, PCB 77 at #892 µg/kg/day, PCB 118

at #683 µg/kg/day, PCB 128 at #4,397 µg/kg/day, or PCB 153 at #4,125 µg/kg/day.
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3.2.2.6.3.3  Porphyria

Oral Exposure    

Commercial PCB Mixtures.  Urinary coproporphyrin levels were increased in rats that ingested 0.3 or

1.5 mg/kg/day Aroclor 1242 in the diet for 2–6 months (Bruckner et al. 1974).  Rats treated with

5 mg/kg/day Aroclor 1254 in the diet had maximum increases in liver microsomal P-450 concentration

and liver weight after 1 week, but onset of porphyria and induction of δ-aminolevulinic acid (ALA)

synthetase was delayed until 2–7 months of treatment (Goldstein et al. 1974).  A marked accumulation of

uroporphyrins occurred in the liver, and urinary excretion of coproporphyrin and other porphyrins was

increased; the largest increase was in uroporphyrins.  The uroporphyrins in the liver and urine of the

treated rats consisted primarily of 8- and 7-carboxyporphyrins.

Single Congeners.  Increased hepatic uroporphyin is one of the effects observed in rats that were fed

various single PCB congeners for 13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b; Gilroy et al.

1996, 1998; Lecavalier et al. 1997; MacLellan et al. 1994a, 1994b, 1994c; Peng et al. 1997; Singh et al.

1996, 1997).  Liver uroporphyrin was increased by exposure to PCB 126 at $0.74 µg/kg/day, PCB 105 at

$3,960 µg/kg/day, or PCB 128 at $4,210 µg/kg/day, but not by PCB 28 at #3,956 µg/kg/day, PCB 77 at

#892 µg/kg/day, PCB 118 at #683 µg/kg/day, or PCB 153 at #4,125 µg/kg/day.  Additional information

on the design and results of these studies is summarized in Section 3.2.2.6.3.1.

Dermal Exposure.    Groups of four New Zealand rabbits were dermally treated with 0 or

42–44 mg/kg/day estimated doses of Aroclor 1260, Clophen A60, or Phenoclor Dpb (all 60% chlorine

PCB mixtures), on 5 days/week for 28 or 38 days (Vos and Beems 1971; Vos and Notenboom-Ram

1972).  The PCBs were dissolved in isopropanol and applied to shaved back skin.  All three PCB

mixtures caused significantly increased fecal levels of coproporphyrin and protoporphyrin, and ultraviolet

fluorescence, indicative of porphyrin accumulation, was increased in the liver and other tissues.  Similar

dermal exposure to the congener PCB 153 caused higher fecal levels of coproporphyrin and

protoporphyrin than those in rabbits exposed to the same dose of Aroclor 1260 (Vos and Notenboom-

Ram 1972).
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3.2.2.6.3.4  Other Hepatic Effects

Vitamin A homeostasis was altered in rats that were exposed to 100 mg/kg/day (only tested dose) of

PCB 169 in the diet for 77 days (Bank et al. 1989).  Effects included significantly decreased hepatic

vitamin A, increased renal vitamin A, increased serum retinol, decreased plasma clearance and half-time

of injected retinol (i.e., intravenously administered [3H]retinol-labeled retinol binding protein-

transthyretin complex), decreased hepatic and increased renal uptake uptake of injected retinol, and

increased urinary and fecal excretion of injected retinol.

Vitamin A levels in the liver were also reduced in rats following oral exposure to various other congeners

for 13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b; Gilroy et al. 1996, 1998; Lecavalier et al.

1997; MacLellan et al. 1994a, 1994b, 1994c; Peng et al. 1997; Singh et al. 1996, 1997).  This effect

occurred following ingestion of PCB 126 at $0.74 µg/kg/day, PCB 77 at $768 µg/kg/day, and PCB 153

at $4,125 µg/kg/day), but not by exposure to PCB 28 at #3,956 µg/kg/day, PCB 105 at

#4,327 µg/kg/day, PCB 118 at #683 µg/kg/day, or PCB 128 at #4,397 µg/kg/day.

3.2.2.6.3.5  Evaluation of Animal Studies

The hepatotoxicity of commercial PCBs is well-documented in numerous intermediate- and chronic-

duration studies in animals, particularly in rats and monkeys, which are the most extensively tested

species.  These studies also indicate that monkeys are more sensitive to PCBs than rats and other

laboratory species.  Liver effects are similar in nature among species, appear to be reversible when mild,

and characteristically include hepatic microsomal enzyme induction, increased serum levels of liver-

related enzymes indicative of possible hepatocellular damage, liver enlargement, fat deposition, fibrosis,

and necrosis.  Ultrastructural changes include hepatocyte alterations associated with microsomal enzyme

induction (e.g., proliferation of endoplasmic reticulum, enlarged and pleomorphic mitochondria), lipid

droplets, and enlarged parenchymal cells.  There is relatively little information on hepatic effects of

commercial PCB mixtures in animals exposed by acute-duration oral exposure or the inhalation or dermal

routes, although available data are consistent with the findings of the intermediate- and chronic-duration

oral studies.  The results of a comprehensive comparative 24-month oral toxicity study in rats indicate

that the general pattern of hepatotoxicity was Aroclor 1254 > Aroclor 1260 . Aroclor 1242 >

Aroclor 1016 (Mayes et al. 1998).
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Other liver-related effects of PCBs include altered lipid and porphyrin metabolism.  Increased serum

levels of total lipids, triglycerides, and/or cholesterol are characteristic effects of short- and long-term oral

exposures to PCBs that are well-documented in rats and monkeys (Carter 1984, 1985; Kato and Yoshida

1980; Kato et al. 1982a, 1982b; Oda and Yoshida 1994; Quazi et al. 1984).  The results of comparative

studies in rats exposed to various Aroclor mixtures for 24 months (Mayes et al. 1998) or single congeners

for 13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b; Gilroy et al. 1996, 1998; Lecavalier et al.

1997; MacLellan et al. 1994; Peng et al. 1997; Singh et al. 1996, 1997) indicate that Aroclor 1254 and

3,3',4,4',5-pentaCB (PCB 126) are particularly effective in increasing serum cholesterol.  Hepatic

porphyria is a well-documented effect that has been induced in rats, rabbits, and other species following

oral or dermal exposure to PCBs (Bruckner et al. 1974; Chu et al. 1994, 1995, 1996a, 1996b, 1998b;

Gilroy et al. 1996, 1998; Goldstein et al. 1974; Lecavalier et al. 1997; MacLellan et al. 1994a, 1994b,

1994c; Peng et al. 1997; Singh et al. 1996, 1997; Vos and Beems 1971; Vos and Notenboom-Ram 1972).

3.2.2.7 Renal Effects

3.2.2.7.1  Human Studies

Urinalysis of PCB-exposed capacitor plant workers showed no abnormalities in blood urea nitrogen

(BUN) or other routinely-examined kidney function indices (Fischbein et al. 1979; Lawton et al. 1985a). 

Most of the workers studied by Fischbein et al. (1979) were exposed to mean concentrations of

Aroclors 1254 and 1242 and/or other PCBs ranging from 0.007 to 11 mg/m3 for $5 years; 40% of the

workers were employed for $20 years.  The workers in the Lawton et al. (1985a) study were exposed to

various Aroclor mixtures for a mean duration of 17 years; the mean PCB concentration was 0.69 mg/m3

(range, 0.2–2.0), based on monitoring performed in only one area of the plant several months prior to

clinical evaluation.

3.2.2.7.2  Animal Studies

Information on the renal toxicity of PCBs comes from an inhalation study, a number of oral exposure

studies, and several dermal exposure studies involving PCB mixtures or single congeners.  Slight

degeneration of the renal tubules was observed in rats exposed to chamber concentrations of 1.5 mg/m3

Aroclor 1254 over 213 days (Treon et al. 1956).  No information was reported on renal histological

effects in other species (mice, guinea pigs, and rabbits) exposed to Aroclor 1254 under the same

conditions or in rats, mice, guinea pigs, or rabbits similarly exposed to 1.9 mg/m3 Aroclor 1242. 
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Interpretation of gross pathology data in this study is complicated by imprecise reporting and/or small

numbers of animals, but it appears that there were no gross renal changes.  The concentrations of PCBs

are uncertain due to an invalid analytical technique and differential enrichment of the more volatile PCB

congeners in the vapor phase.

A single near-lethal gavage dose of 4,000 mg/kg of Aroclor 1242 produced renal tubular damage in an

unreported percentage of rats evaluated 24 hours following treatment (Bruckner et al. 1973).  Effects

included vacuolated tubular epithelial cells with fatty deposits and epithelial cells and proteinaceous casts

in the tubular lumens and urine.  Neither serum sodium or potassium ion concentrations or blood pH

values were altered significantly by treatment, but lack of changes in these indices does not necessarily

indicate that there was no functional damage in the kidney.  No effect on kidney weight was observed in

pregnant C57BL/6J mice given #21 mg/kg PCB by gavage on 5 consecutive days beginning on day 1, 6,

or 11 of pregnancy (Rodriguez et al. 1997).  

Cortical tubular protein casts were observed in the kidneys of rats treated with $1.0 mg/kg/day

Aroclor 1254 for 15 weeks (Gray et al. 1993).  The same group of investigators had previously observed

increased kidney weight and biochemical alterations suggestive of functional renal damage, including

increased urinary lactate dehydrogenase and urinary protein in rats treated with $10 mg/kg/day

Aroclor 1254 by gavage for 5–15 weeks (Andrews 1989).  Histology was not evaluated in the Andrews

(1989) study.  Renal histopathologic changes (lipid vacuolization and sloughing of the tubular epithelium)

occurred in rats with no increase in kidney weight when treated with 100 mg/kg/day Aroclor 1242,

3 days/week for 3 weeks (Bruckner et al. 1973); these degenerative effects are similar to those observed

in the acute study described above.  No histological effects were observed in the kidneys of rats treated

with 1.5 mg/kg/day Aroclor 1242 in the diet for 2–6 months (Bruckner et al. 1974).  Similarly, no renal

histopathologic changes were observed in male or female rats that were fed Aroclor 1016, 1242, 1254, or

1260 for 24 months at dose levels of 8.0–11.2, 4.0–5.7, 4.3–6.1, or 4.1–5.8 mg/kg/day, respectively

(Mayes et al. 1998).  There were no treatment-related renal organ weight changes or histological effects in

rabbits fed #6.5 mg/kg/day Aroclor 1254 for 8 weeks (Street and Sharma 1975) or guinea pigs fed

#4 mg/kg/day Aroclor 1260 for 8 weeks (Vos and de Roij 1972).  No renal histological effects were

observed in one monkey that died after 128 days of dietary treatment with 1.3 mg/kg/day Aroclor 1248

(Allen et al. 1974a).  Rhesus monkeys receiving daily doses of 0.005, 0.020, 0.040, or 0.080 mg/kg/day

Aroclor 1254 for 72 months also showed no effects on renal tissue (Arnold et al. 1997).
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In a series of 13-week dietary exposure studies using single PCB congeners, no histological alterations in

the kidneys were observed in rats fed diets providing #4.1 mg/kg/day of PCB 153 (Chu et al. 1996a),

#4.2 mg/kg/day of PCB 128 (Lecavalier et al. 1997), #7.4 mg/kg/day of PCB 126 (Chu et al. 1994),

#4.0 mg/kg/day of PCB 105 (Chu et al. 1998b), #3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), or

#0.77 mg/kg/day of PCB 77 (Chu et al. 1995).  In similarly treated rats exposed to PCB 118, minimal

histological damage (cytoplasmic shedding and inclusions in the renal tubules) was observed at

0.17 mg/kg/day (Chu et al. 1995). 

Hydropic degeneration of the convoluted tubules, destruction of tubular epithelial cells, tubular dilation,

and proteinaceous casts were observed in half of the rabbits treated with Aroclor 1260 in an isopropanol

vehicle applied 5 days/week for 38 days at an estimated dose of 42 mg/kg/day (Vos and Beems 1971). 

No kidney effects were observed in a similar study in which 44 mg/kg/day Aroclor 1260 was applied in

the same manner to adult female New Zealand rabbits 5 days/week for 28 days (Vos and Notenboom-

Ram 1972).  The reason for the discrepancy in the results is unclear since the doses are essentially the

same, but it may be related to the small numbers treated (four per study) and to the longer duration of the

1971 study.  The Aroclor 1260 used in both studies had undetectable (<1 ppm) levels of CDFs.

The highest NOAEL values and all reliable LOAEL values for renal effects for each study are recorded in

Tables 3-1, 3-2, and 3-3, and plotted in Figures 3-1 and 3-2.

3.2.2.8 Endocrine Effects

This section describes effects of exposure to PCBs on the thyroid and other non-reproductive endocrine

systems.  Estrogenic, anti-estrogenic, and anti-androgenic effects of PCBs are discussed in Sections 3.2.5

(Reproductive Effects), 3.5.2 (Mechanisms of Toxicity), and 3.6 (Endocrine Disruption).

3.2.2.8.1  Summary

A number of studies have examined the relationships between PCB exposure and thyroid hormone status

in both children and adults.  The results suggest that PCBs can induce thyroid toxicity as well as a variety

of changes in thyroid hormone levels.  Differing results have been reported for differing Aroclor mixtures

and PCB congeners, as well as for differing exposure scenarios and differing ages at the time of exposure. 

Increased thyroid gland volume has been found among workers at a  PCB production facility as well as

among nearby residents.  An elevated odds ratio for goiter has been found among the Yu-Cheng cohort. 
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In addition, numerous statistically significant positive and/or negative correlations (for a number of

different age groups) have been reported between circulating levels of TSH, T4, and T3, and varying

measures of PCB exposure.

Evidence for a thyroid hormone involvement in PCB toxicity in animals is much stronger and includes

findings in rodents and nonhuman primates.  Depending on dose and duration, PCBs can disrupt the

production and disposition of thyroid hormones at a variety of levels.  The major findings include

(1) histological changes in the thyroid gland indicative of both stimulation of the gland (e.g., similar to

that induced by TSH or a hypothyroid state) and a disruption of the processing of follicular colloid

needed for normal production and secretion of thyroid hormone; (2) depression of serum T4 and T3 levels,

which may effectively create a hypothyroid state (in some studies, low doses resulted in elevated serum

T4 levels while depressed levels occurred at higher PCB doses); (3) increased rates of elimination of T4

and T3  from serum; (4) increased activities of T4-uridine diphosphate-glucuronyl transferase (UDP-GT)

in liver, which is an important metabolic elimination pathway for T4 and T3; (5) decreased activity of

iodothyronine sulfotransferases in liver which are also important in the metabolic elimination of

iodothyronines; (6) decreased activity of iodothyronine deiodinases  including brain Type-2 deiodinase,

which provide the major pathways for the production of the active thyroid hormone, T3; and (7) decreased

binding of T4 to transthyretin, an important transport protein for both T4 and T3.  Other effects of PCBs on

endocrine function that have been observed in experimental animals include effects on the adrenal glands

and serum adrenal steroid levels.

3.2.2.8.2  Human Studies

Occupational Exposures.  Total thyroxine (T4) and free T4 (T4 index) were significantly lower

(approximately 10%)  in a group of 55 transformer maintenance workers compared to a comparison

control group of workers (Emmett et al. 1988b), even though thyroid hormone levels were in the normal

range for adults in both groups.  The transformer workers were primarily exposed to Aroclor 1260 at

levels ranging from 0.00001 to 0.012 mg/m3; the mean length of exposure was approximately 4 years. 

Although there was a statistically significant increase in thyroxine levels in the PCB-exposed cohort,

there was no correlation between PCB levels in serum or adipose tissue and serum T4 concentrations

(adjusted for age, smoking, and alcohol consumption). 

Langer et al. (1998) measured thyroid volumes in 238 employees of a factory that produced PCBs, and in

572 adults from “less polluted areas” of Slovakia, which formed a sex- and age-matched control group.
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Various serum indices of thyroid status were measured in subsamples of these groups, including total

serum T4, serum TSH, thyroglobulin (TGB); and antibodies for thyroid peroxidase (TPO Ab),

thyroglobulin (Tg Ab), and TSH receptor (TSHR Ab).  Mean thyroid volume was significantly greater in

the workers compared to the control group (18.85±0.69 mL vs. 13.47±0.48 mL, p<0.001).  Workers also

had a significantly elevated prevalence of TPO Ab, Tg Ab, and TSHR Ab.  There were no differences

between the worker and control groups with regard to serum T4, TSH, or TGB concentrations.  Although

larger thyroid volume could reflect a difference in the iodine intakes between the two groups, the

investigators indicated that this was not likely because iodine intakes were considered sufficient in

Slovakia and urinary iodine concentrations were similar in the worker and control groups (data not

reported).

Yusho and Yu-Cheng Exposures.  In a case-control study of the Taiwan Yu-Cheng cohort, 795 exposed

subjects and 693 sex- and age-matched controls were interviewed for information about health and

medical history (Guo et al. 1999).  The odds ratio (OR) for goiter (men and women combined) was

2.8 (CI, 1.2–7.1) and 4.0 (CI, 1.5–13.9) for goiter that was treated with medication or surgery.  The ORs

for hypothyroidism or hyperthyroidism were not significant (males, 0.95; females, 1.7).

General Population Exposures.  Several studies have examined relationships between indices of PCB

exposure and thyroid hormone status, as indicated from measurements of serum thyroid hormones.  The

results of these studies have been mixed, with negative, positive, or no correlations observed.  Osius et al.

(1999) examined the relationship between whole blood concentrations of various PCB congeners and

serum TSH, free T4, and free T3 in children who lived near a hazardous waste incinerator.  Although the

median and 5th–95th percentile ranges of the hormone concentrations in the study population

(671 children, ages 7–10 years) were within expected ranges for children, a significant positive (β=7.129,

p=0.039) association was found between concentrations of TSH in serum and PCB 118 in blood. 

Significant negative associations were found between serum T3 and PCBs 138, 153, 180, 183, and 187.

Several studies have examined relationships between thyroid hormone levels in infants and maternal or

neonatal PCB concentrations, or mixed PCB and CDD concentrations (Koopman-Esseboom et al. 1994a;

Longnecker et al. 2000; Nagayama et al. 1998a; Winneke et al. 1998a).  Hormone levels were within

normal ranges in these studies.  In describing hormone levels in the serum or plasma, the designations TT4

or TT3 have been used to denote total hormone concentrations, whereas free concentrations are denoted as

FT4 or FT3.  If  not specified in the report, the notations T4 or T3 have been used.  Longnecker et al. (2000)

compared PCB concentrations in breast milk of 880 mothers to serum TSH, TT4, and FT4 concentrations
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in cord blood at delivery.  The subjects in this study are from the North Carolina Breast Milk and Formula

Project cohort summarized in Section 3.2.4.2.1.2.  Concentrations of T4 and TSH were not shown to be

related to breast milk PCB concentrations.  However, a significant positive correlation (r=0.15,

p=0.029)was found between TSH concentrations in cord blood and total serum PCBs in 170 infants from

the German cohort in the European Background PCB Study summarized in Section 3.2.4.2.1.2 (Winneke

et al. 1998b).  Nagayama et al. (1998) examined the relationship between serum TSH, TT4, and TT3 in

infants and estimated intake of 2,3,7,8-TCDD toxic equivalent (TEQ) in breast milk during the first year

of postnatal life.  Significant negative correlations were found for serum TT4 and TT3; no relationship was

apparent between infant serum TSH or thyroxine binding globulin (TBG) and TEQ intake.  The mean

total TEQ intake was 34 ng/kg; however, the co-planar PCB contribution to the estimated TEQ intake,

and intakes of other PCBs were not reported.  As part of the Dutch Mother-Child Study cohort

summarized in Section 3.2.4.2.1.2, Koopman-Esseboom et al. (1994a) compared TEQ levels of PCBs and

dioxins in maternal milk with TT3 and TT4 concentrations in maternal plasma, TSH concentrations in cord

plasma at delivery, and TSH concentrations in venous plasma of the infants at ages 2 weeks and

3 months.  Higher levels of total PCB-dioxin TEQ, dioxin TEQ, and both planar and non-planar-PCB

TEQ in milk were significantly correlated with lower maternal plasma TT3 concentrations in the last

month of pregnancy, lower maternal plasma TT3 and TT4 concentrations in the 2nd week after delivery,

and higher plasma TSH concentrations in the infants at 2 weeks and 3 months of age.

 

Langer et al. (1998) measured thyroid volumes in 454 adolescents in Slovakia who lived near a factory

that produced PCBs, and in 956 adolescents who lived in “less polluted areas” of Slovakia, which formed

a sex- and age-matched control group.  Various serum indices of thyroid status were measured in

subsamples of these groups, including TSH and TPO Ab.  Mean thyroid volume was significantly greater

in the group who lived near the factory compared to the control group (9.37±0.17 mL vs. 8.07±0.10 mL,

p<0.001).  There were no differences between the groups with regard to serum TSH or TPO Ab

concentrations.  As with the worker cohort (discussed with the occupational studies), the investigators

indicated that a difference in the iodine intakes between the two groups was not likely because iodine

intakes were considered to be sufficient and urinary iodine concentrations were similar in the two groups

(data were not reported).

An ongoing epidemiologic study is investigating the potential for health effects in Native Americans from

exposure to persistent toxic substances (Dellinger et al. 1997; Tarvis et al. 1997).  Fish consumption,

species consumed, and medical histories were obtained from 541 Native Americans on eight reservations

in Minnesota, Wisconsin, and Michigan.  Preliminary results indicated elevated serum PCB levels (mean
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was 3.7 ppb and the maximum was 9.6 ppb) were correlated with self-reported diabetes and liver disease

in two of the cohorts (Ojibwa and Red Cliff).  The average annual fish consumption rate was 23 g/day. 

No additional information was available regarding the potential link between PCBs and diabetes,

although there is growing evidence of an association between dioxin exposure and diabetes (ATSDR

1998).

Evaluation of Human Studies.  The epidemiological literature suggests a link between PCBs exposure

and thyroid hormone anomalies in humans.  Studies that have examined relationships between PCB

exposure and thyroid hormone status, in children or adults, have reported a variety of different results,

with findings of both negative and positive significant correlations between PCB exposure and circulating

levels of TSH, T4 or T3 depending on the specific type of analysis for PCB exposure, the age of the

cohort, and the specific exposure scenario (Emmett et al. 1988b; Koopman-Esseboom et al. 1994a;

Langer et al. 1998; Longnecker et al. 2000; Nagayama et al. 1998; Osius et al. 1999; Winneke et al.

1998a).  A comparison of PCB levels in blood and breast milk in some of these studies is included in

Appendix A.  Although many of the populations examined had thyroid hormone levels within normal

ranges, many of these studies also showed statistically significant differences in circulatory thyroid

hormone levels in exposed cohorts compared to unexposed controls.  In addition, a significantly elevated

OR for goiter was found among the Yu-Cheng cohort (Guo et al. 1999), suggesting the possibility of

excess thyroid disease in a population that experienced relatively high exposures to mixtures of PCBs and

CDDs.  Other observations include reports of increased thyroid gland volume among workers at a  PCB

production facility, as well as among nearby residents (Langer et al. 1998).  Considering the

epidemiologic data as well as the much stronger findings in thyroid studies in animals discussed in the

following section, there is mounting evidence of thyroid hormone involvement in PCB toxicity in

humans.

3.2.2.8.3  Animal Studies

The highest NOAEL values and all reliable LOAEL values for endocrine effects for each study are

recorded in Tables 3-1 and 3-2, and plotted in Figures 3-1 and 3-2.

Effects on Thyroid Gland and Hormones    

Commercial PCB Mixtures.  Various effects on the thyroid gland and thyroid hormone system have been

observed in rats exposed to Aroclor 1254 by the oral route.  Descriptions of the histological changes in



3.  HEALTH EFFECTS - Systemic

PCBs 127

the rat are reasonably consistent across studies.  Typical findings, depending on the dose, include

hyperplasia, hypertrophy, and increased vacuolization of follicular cells, depletion of follicular colloid

and reduced follicular size, and thyroid enlargement (Collins and Capen 1980a; Collins et al. 1977). 

These changes are similar to the histological appearance of the gland during prolonged TSH stimulation

(Capen 2000).  Additional abnormalities have also been noted when the gland has been examined at the

ultrastructural level.  Collins and Capen (1980a) observed in PCB-treated rats the accumulation of colloid

droplets and large, abnormally shaped lysosomes in the follicular cells that were indicative of a disruption

of the normal lysosomal processing of colloid.  They also noted distinct abnormalities in follicular

microvilli (shortening and abnormal branching) that were uncharacteristic of the TSH-stimulated or

iodide-stimulated gland.  Thus, the effects of Aroclor 1254 on the thyroid gland are not completely

explained solely by a direct or indirect stimulation of the gland through a TSH mechanism.  A complex

mechanism is further indicated from observations of the forementioned structural changes with or without

concurrent changes in circulating thyroid hormone (T4 or T3) or TSH levels, or changes in hormone levels

without changes in thyroid gland, or changes in hormone levels that vary in magnitude and direction over

time (Hood et al. 1999; Saeed and Hansen 1997).  Thus, while a general consensus has emerged that

Aroclor 1254 produces a stimulation of the thyroid gland and thyroid hormone production (Byrne et al.

1987), it is not clear to what extent this results from a direct effect on the thyroid gland or as an indirect

effect resulting from changes in circulating thyroid hormone and induction of TSH.  It is likely that both

contribute to varying degrees depending on the dosage and duration of exposure (Saeed and Hansen

1997).  It is important to emphasize that characteristic structural changes that have been attributed to

Aroclor 1254 may not be apparent when the gland is viewed only at the light microscopic level, which

has been the approach used in most studies.  Furthermore, histopathology of the gland should not be

inferred from observed changes in circulating thyroid hormone or TSH levels, alone.  Experimental

studies that provide evidence for Aroclor-mediated effects on the thyroid gland and/or thyroid hormone

status are noted below.  In describing hormone levels in the serum or plasma, the designations TT4 or TT3

have been used to denote total hormone concentrations, whereas free concentrations are denoted as FT4 or

FT3.  If  not specified in the report, the notations T4 or T3 have been used.

In an acute-duration study, Hood et al. (1999) observed significant depression of serum TT4 and FT4 in

rats fed $25 ppm Aroclor 1254 in food (2.3 mg/kg/day) for 7 days and depression of TT3, but not FT3 in

rats fed $50 ppm (4.6 mg/kg/day).  PCBs at exposure levels up to 200 ppm (18 mg/kg/day) had no effect

of serum TSH levels or on thyroid structure.  TT4 levels were reduced in rats fed $2.5 mg/kg/day for

7 days, but there were no treatment-related changes in serum TT3 (Price et al. 1988).  This study reports

histological changes in the thyroid gland that are typical of Aroclor 1254-related changes that have been



3.  HEALTH EFFECTS - Systemic

PCBs 128

observed in intermediate- and chronic-duration studies; however, it is not clear from the report whether

the changes occurred at the 2.5 mg/kg/day dosage or at higher dosages. 

Collins et al. (1977) conducted one of the more comprehensive evaluations of the histopathology of

intermediate-duration exposures to Aroclor 1254 in rats.  Rats were fed 5, 50, or 500 ppm Aroclor 1254 in

food for 4 weeks (approximately 0.44, 4.4, or 44 mg/kg/day).  Ultrastructural changes in the thyroid were

evident at the lowest exposure level and became more pronounced and evident with light microscopy at

the 50 ppm exposure level (4.4 mg/kg/day).  Serum concentrations of TT4 were significantly depressed

(42%) at the 50 ppm level and both TT4 and TT3 were depressed (79 and 13%, respectively) at the

500 ppm level.  Thyroid lesions in rats that were exposed to 500 ppm for 6 weeks followed by 250 ppm

for 6 weeks were largely absent after a subsequent 12 weeks on a control diet, suggesting substantial

recovery, and were not evident at all after a period of 35 weeks on the control diet (Collins and Capen

1980a).  A similar time course of recovery of serum TT4 concentrations was observed.  Thus, the

observed lesions in this study and at these doses appeared to be reversible. 

In other intermediate-duration studies, oral exposures of rats for 1–5 months decreased serum levels of T4

and T3 and/or produced histological changes in the thyroid (Byrne et al. 1987; Gray et al. 1993; Kasza

et al. 1978). Thyroid effects in rats occurred at oral doses as low as 0.09 mg/kg/day for 35 days (Byrne

et al. 1987).  In Sprague-Dawley rats, serum levels of T4 decreased when rats received daily gavage

dosages of $0.1 mg/kg/day Aroclor 1254 for 15 weeks; however, no histopathologic alterations were

observed in the thyroid after gavage dosages of up to 25 mg/kg/day Aroclor 1254 (Gray et al. 1993).  The

lack of effect of this dose of Aroclor 1254 on the histological status of the thyroid in the Sprague-Dawley

rat, in comparison to histological changes observed in Osborne-Mendel rats at similar dosages and

durations (Collins and Capen 1980a; Collins et al. 1977), suggests a possible strain-related difference, or

some other unaccounted variable in either study.  Byrne et al. (1987) attempted to discern the relative

contributions of production and metabolism in the depression of serum T4 concentrations that occur

during Aroclor 1254 exposure.  In rats exposed to Aroclor 1254 in diet at concentrations $1 ppm

(0.09 mg/kg/day) for $35 days, serum TT4 and TT3 levels were depressed; however, the rate of clearance

of injected radiolabeled T4 was not changed by the PCB exposures, relative to a control group, suggesting

that the decline in T4, and possibly T3 concentrations, was primarily the result of a decline in T4

production in the thyroid.

In chronic-duration studies, enlarged thyroid glands and follicles with desquamated cells were observed

in Rhesus monkeys exposed to 0.2 mg/kg/day Aroclor 1254 for 28 months (Tryphonas et al. 1986b);
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serum levels of thyroid hormones were not evaluated.  In Cynomolgus monkeys, treatment for 12 months

with 0.2 mg/kg/day Aroclor 1254 did not induce histological alterations in the thyroid (Tryphonas et al.

1986a).  Rhesus monkeys receiving daily doses of 0.005, 0.020, 0.040, or 0.080 mg/kg/day Aroclor 1254

for 72 months showed no effect on thyroid tissue (Arnold et al. 1997).  After 37-months of exposure to

0.08 mg/kg/day Aroclor 1254, serum TT4 and FT4 (T4 index) were not different from controls (Arnold et

al. 1993b).  The incidence of follicular cell hyperplasia (generally minimal or mild) was increased in a

non-dose-related pattern in male rats that were fed Aroclor 1242, 1254, or 1260 for 24 months at dose

levels of $2.0, $1.0, and $1.0 mg/kg/day, respectively (Mayes et al. 1998).  This thyroid lesion was not

observed following exposure to similar doses of Aroclor 1016 in male rats or Aroclor 1016, 1242, 1254,

or 1260 in female rats.  Thyroid follicular cell adenomas were also increased in the male rats as discussed

in the animal cancer section (3.2.8.3.2).

The effects of gestational exposures to Aroclor 1254 on the thyroid gland and thyroid hormone status of

neonates have been examined in numerous studies.  Lesions in the thyroid were observed in pups born to

dams that were exposed to 50 or 500 ppm Aroclor 1254 (2.5 or 25 mg/kg/day) from gestation

day 1 through postnatal day 21 (Collins and Capen 1980c).  The pups also had depressed serum levels of

TT4 and TT3.  Aroclor 1254 (3.1, 6.2, or 12.5 mg/kg/day, oral) administered to rats during gestation and

lactation depressed serum TT4, but not TT3, in the neonatal rats (Juarez de Ku et al. 1994).  Aroclor 1254

administered to rats on days 10–16 of gestation (5 or 25 mg/kg/day, oral) depressed plasma TT3 in the

dams and both plasma TT4 and FT4 in fetuses and 5-day neonates (Morse et al. 1996c).  Fetal brain levels

of T4, but not T3, were also depressed.  No changes were detected in fetal or neonatal plasma TSH

concentration.  Other effects observed that are relevant to the thyroid hormone system included an

increase in Type II thyroxine 5'-deiodinase activity in fetal brain and depression of activity in 21-day-old

pups, and an increase in T4-UDP-GT activity in fetal and pup liver.  Provost et al. (1999) observed a

depression in both serum total T4 and T3 concentrations in rats that had been exposed to 1.25 or 12.5 ppm

Aroclor 1254 (approximately 0.1 or 1 mg/kg/day) during gestation and through postnatal day 30.  Zoeller

et al. (2000) fed pregnant rats 0, 1, 4, or 8 mg/kg/day Aroclor 1254 beginning on day 6 of gestation

through weaning of pups.  Dosages $1 mg/kg/day depressed serum TT4 levels in the pups.  Serum

concentrations of TT4 and FT4 were depressed in dams and fetuses after gavage doses of 25 mg/kg/day

Aroclor 1254 on gestation days 10–20 (Schuur et al. 1998a).  Although serum concentrations of the

sulfate ester of T4 were not affected by Aroclor 1254 treatment, the activity of 3,3'-T2-sulfotransferase in

liver cytosol preparations was lower in the treatment group relative to the control group.  Activities of

iodothyronine deiodinase in liver was also decreased in the dams and fetuses in the treatment group. 

Type II deiodinase activity was significantly increased in fetal, but not maternal brain in the treatment
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group.  T4-UDP-GT activity in maternal liver was significantly increased in the treatment group.  These

observations suggest that Aroclor 1254 can potentially affect thyroid hormone status by modifying

several different metabolic pathways for T4, including glucuronide and sulfate conjugation, and

deiodination of iodothyronines.

Aroclor 1254 (1, 4, or 10 mg/kg/day, oral) administered on gestation day 6 through postnatal

day 21 depressed postnatal (day 7–21) serum TT4 concentration ($1 mg/kg/day) and T3 concentration

($4 mg/kg/day), without a change in serum TSH concentration (Goldey et al. 1995).  Thyroid hormone

levels recovered from depressed levels with time and were nearly at control levels by postnatal day 45. 

Neurobehavioral deficits were observed in the pups, including decreased motor activity and changes in

acoustic startle response (see Section 3.2.4.3.3); these changes were significantly attenuated in pups that

received subcutaneous injections of T4 that increased serum T4 and T3 concentrations (Goldey and

Crofton 1998).  Rates of elimination of both hormones from serum were accelerated in the pups that had

been exposed to Aroclor 1254, relative to controls.  These observations suggest that the observed

neurobehavioral deficits may have been attributable to deficits in thyroid hormones.  The increased

elimination of T4 and T3 from serum is consistent with an induction of UDP-GT or other elimination

pathways for thyroid hormones (e.g., deiodination of T4 to T3).

In a longer feeding study, pregnant rats were exposed to 125 or 250 ppm Aroclor 1254 in food from

gestation day 1 through weaning of pups (Corey et al. 1996).  The weaned pups either continued the

exposure until postnatal day 60 or were fed the control diet.  Reported dosages during gestation were 8 or

18 mg/kg/day, and during lactation were 37 or 62 mg/kg/day.  Serum TT4 concentrations, but not TT3,

were depressed (>90% decrease) at postnatal day 60 in all of the exposure groups.  In pups that were

removed from the PCB exposure after weaning, serum TT4 concentrations partially recovered, but, unlike

the Collins and Capen (1980a) study previously discussed, remained significantly lower than control

levels.

Seo and Meserve (1995) reported the effects of maternal ingestion of Aroclor 1254 in pregnant and

lactating rats on the development of thermoregulation in neonates.  Female pregnant Sprague-Dawley rats

(n=6–8) were fed ad libitum 125 or 250 ppm (6.3 or 12.5 mg/kg/day) Aroclor 1254 and continued on the

diet from conception to completion of the experiment when pups were 15 days old.  Serum TT4 levels

were depressed in female rats treated with 6.3 and 12.5 mg/kg/day during pregnancy and lactation. 

Relative thyroid weight increased (19 mg/100 g ±1.3) significantly in animals given 6.5 mg/kg/day

compared to controls, but not at the 12.5 mg/kg/day dose.
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In contrast to the depression of circulating levels of thyroid hormone levels that has been observed in rats

exposed to Aroclor 1254, rats exposed to Aroclor 1242 (32 µg/kg/day in food or 900 ng/m3 vapor, whole

body exposure) for 30 days had higher serum concentrations of TT3 and TT4 than rats in a control group

(Casey et al. 1999).  Histological changes in the thyroid observed in the rats exposed to the aerosol

included increased vacuolization of thyroid follicle cells with reduced follicular colloid, changes that are

typical of TSH stimulation of the gland.  The elevation in thyroid hormone levels observed in this study

supports earlier observations of increased serum T4 levels following low doses of PCB 153 (Li et al.

1994), PCB 110 (Li et al. 1998), a mixture of PCBs collected in the air over a landfill (Li and Hansen

1996b), and Aroclor 1242, but not Aroclor 1254, in chick embryos (Gould et al. 1997).  The rats exposed

to the Aroclor 1242 vapor may have received a substantial ingestion dose, because of deposition of PCBs

on the fur and because the animals were exposed and housed two animals per cage.

Cooke et al. (1996) demonstrated a possible thyroid hormone-mediated response of the testes to

Aroclor 1254.  This study found increased testes weight and sperm production in 135-day-old rats that

were administered subcutaneous doses of Aroclor 1254 (.40 mg/kg/day) or Aroclor 1242

(.80 mg/kg/day) on postnatal days 1–25.  Serum TT4 concentrations were also depressed in these rats,

and the effects on the testes were attenuated by injections of T4 on postnatal days 1–25.  In contrast to the

results of this study, Gray et al. (1993) found no effect of oral exposure to Aroclor 1254 (up to

25 mg/kg/day) on testes weights or sperm numbers in rats that had substantially depressed levels of serum

TT4 and TT3; however, the study initiated the dosing of the rats on postnatal day 31, after the

development of Sertoli cells is complete in the rat, and, thus, may have missed a vulnerable period in the

postnatal development of the testes.

Defined Experimental Mixtures.  PCBs were extracted from an NPL site and doses ranging from 3 to

96 mg/kg were administered to 20-day-old female rats for 2 days (Hansen et al. 1995).  The animals were

sacrificed 24 hours after the last dose.  Serum total T4 declined significantly at doses of $36 mg/kg/day;

however, at doses >12 mg/kg/day, thyroid follicular cells increased in size, while the colloid area

decreased to <60% of control values, indicative of thyroid gland stimulation.  Depression of serum T4 was

also observed in 21-day-old rats that received the same soil mixture and a charcoal filtered mixture, which

had considerably lower TCDD equivalents (Li and Hansen 1996a).  When compared to extracts of

superficial dust and debris and airborne PCBs, the soil extract was somewhat less potent than the air

extract (Li and Hansen 1996b).
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Single Congeners.  Histopathologic lesions of the thyroid gland developed in rats that were exposed to

single PCB congeners in food for 13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b; Lecavalier et al.

1997).  The lesions consisted of a reduction in size and collapse of the thyroid follicles, reduced follicle

colloid density, and cellular changes, including cytoplasmic vacuolization and nuclear vesiculation of

follicle cells.  These changes were evident to varying degrees of severity at the following dosages:

PCB 28 at $36 mg/kg/day; PCB 77 at $0.070 mg/kg/day; PCB 105 at $0.039 mg/kg/day; PCB 118 at

$0.17 mg/kg/day; PCB 126 at $0.00074 mg/kg/day; PCB 128 at $0.43 mg/kg/day; and PCB 153 at

$0.35 mg/kg/day.  

Depressed concentrations of T4 have been observed in rats exposed to single PCB congeners in food for

13 weeks (Desaulniers et al. 1997; Van Birgelen et al. 1992, 1994a, 1994b, 1995).  Effective dosages

were as follows: 75 µg/kg/day PCB 77 decreased serum TT4, but not serum TSH (Desaulniers et al.

1997); 50 µg/kg/day PCB 126 decreased FT4and TT4 plasma concentrations; 1.2 mg/kg/day; PCB 156

decreased plasma FT4 concentration; and 6 mg/kg/day of PCB 156 depressed both free and TT4

concentrations (Van Birgelen et al. 1995).  These same dosages increased activity of UDP-GT in liver

homogenate, including activity when either T4, p-nitrophenol, or 1-naphthol were the substrates

(Desaulniers et al. 1997; Van Birgelen et al. 1995).  This is consistent with the induction of UDP-GT1A1,

which utilizes T4 and simple phenols as a substrate, and with the induction of cytochrome P-450 1A1 at

these same dosages of PCB congeners (Chu et al. 1995; Van Birgelen et al. 1995).  These observations

suggest a possible involvement of the Ah receptor in modifying the metabolism and, thereby circulating

levels of T4. 

Rice (1999a) administered oral doses (0.25 or 1.0 µg/kg/day) of 3,3',4,4',5-pentaCB (PCB 126) to female

rats, 5 days/week beginning 5 weeks prior to and through pregnancy, gestation, and lactation.  Serum T4

levels were depressed in 21-day-old pups, but not in 60-day-old pups or in the dams.  Darnerud et al.

(1996a) found no changes in plasma FT4 or TT4 concentrations in maternal mice given a single oral dose

of up to 10 mg/kg PCB 77 in corn oil on day 13 of gestation; however, FT4 and TT4 concentrations in

plasma of the 13-day-old fetus were depressed (36 and 45%, respectively).  This study also found

substantial binding of 4-hydroxylated metabolites of PCB 77 in fetal serum to serum transthyretin and

that binding of T4 to transthyretin was substantially decreased in serum of the exposed pups, relative to

the control group.  This observation suggests that hydroxylated metabolites of certain PCBs may compete

for binding of T4 to transthyretin, and is consistent with the results of in vitro binding studies that have

estimated transthryretin binding affinities of 4-OH metabolites of PCB congeners to be similar to that of

T4 (Cheek et al. 1999; Lars et al. 1994).  
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An intraperitoneal dose of 8 mg/kg/day of 2,3,3',4',6-pentaCB (PCB 110), administered to female rat pups

on postnatal days 21 and 22, increased serum TT4 levels, while higher doses resulted in a dose-dependent

decrease in serum TT4 levels ( Li et al. 1998).  A PCB 110 preparation contaminated with 0.4%

3,3',4,4',5-pentaCD (PCB 126) produced a dose-dependent decrease in serum T4 levels (4 mg/kg/day or

higher) without an increase in serum T4 levels.

Effects on the Adrenal Gland and other Endocrine Systems    

Commercial PCB Mixtures.  PCB-related effects on the adrenal gland have been reported after repeated

oral exposure to PCBs; however, a single dose of 4,000 mg Aroclor 1242/kg did not induce histological

alterations in the adrenals or pancreas in rats (Bruckner et al. 1973).  Significantly increased serum

corticosterone levels were reported in mice following $8.1 mg/kg/day Aroclor 1254 for 2 weeks (Sanders

et al. 1974); adrenal weight was increased at 130 mg/kg, but histology was not evaluated.  Intermediate-

duration studies with rats found that serum corticosterone levels were increased by dietary exposure to

15 mg/kg/day Aroclor 1248 for 20 days (Kato et al. 1982a), 35 mg/kg/day Aroclor 1221 for 10 weeks

(Wassermann et al. 1973), and 0.1 mg/kg/day Aroclor 1254 for 15 weeks (Miller et al. 1993b).  Bergman

and Olsson (1984) have attributed much of the pathology in PCB-contaminated Baltic seals to adrenal

cortical hyperplasia.  Rats fed 0.05–2.5 mg/kg/day Aroclor 1242 or 1221 for 5 months had decreased

serum levels of the adrenal cortex hormones, dehydroepiandrosterone (DHEA) and dehydroepiandro-

sterone sulfate (DHS).  The decreases in DHEA, DHS, and corticosterone occurred at $0.25 mg/kg/day

Aroclor 1254, but not at 0.05 mg/kg/day; no corticosterone data were reported for Aroclor 1242 or

1221 (Byrne et al. 1988).  The degree of hormone inhibition was dose related and generally increased

with increasing degree of mixture chlorination.  These reductions in circulating hormones were

accompanied by decreased adrenal weight with Aroclor 1254 (not evaluated with Aroclor 1242 or 1221). 

There were no changes in plasma corticosteroids in rats fed #1.5 mg/kg/day Aroclor 1242 for 2–6 months

or in adrenal weight in rats fed 100 mg/kg/day Aroclor 1242 for 3 weeks (Bruckner et al. 1973, 1974).  In

another study (Miller et al. 1993b), no histopathological changes were observed in the adrenals from

Fischer 344 rats treated with up to 25 mg/kg/day Aroclor 1254 by gavage for 15 weeks.  Rao and Banerji

(1993), however, reported degenerative changes in the adrenals of Wistar rats treated with

$7.1 mg/kg/day Aroclor 1260 in the diet for 120 days.  The differing results from these two studies may

reflect differences in the congeneric composition of the Aroclors, in strains of animals, and/or in the

methods of administration.
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Adrenal weight was unchanged in rabbits fed #6.5 mg/kg/day Aroclor 1254 for 8 weeks (Street and

Sharma 1975), and adrenal cortex histology was normal in monkeys fed 0.2 mg/kg/day Aroclor 1254 for

12 months (Tryphonas et al. 1986a), but hormone evaluations were not performed.  Pigs treated with

9.2 mg/kg/day Aroclor 1242 for 91 days exhibited increased relative weight of the adrenals (Hansen et al.

1976).  No histological alterations were observed in adrenals from guinea pigs treated with

#4.0 mg/kg/day Aroclor 1260 in the diet for 8 weeks (Vos and de Roij 1972).  Monkeys treated with

dietary doses of #0.08 mg/kg/day Aroclor 1254 for up to 22 months showed no treatment-related changes

in serum hydrocortisone levels (Loo et al. 1989).  Histological examinations and higher doses were not

tested, and levels of other adrenal cortex hormones were not evaluated.  However, Arnold et al. (1997)

reported that Rhesus monkeys that received daily doses of 0.005, 0.020, 0.040, or 0.080 mg/kg/day

Aroclor 1254 for 72 months showed no effect on adrenal tissue.

No histopathologic changes were observed in the adrenal, pancreas, pituitary, or parathyroid glands of

male or female rats that were fed Aroclor 1016, 1242, 1254, or 1260 for 24 months at dose levels of

8.0–11.2, 4.0–5.7, 4.3–6.1, or 4.1–5.8 mg/kg/day, respectively (Mayes et al. 1998).  Serum parathyroid

hormone levels were not affected in rats treated with up to 25 mg/kg/day Aroclor 1254 for up to 15 weeks

(Andrews 1989).

Single Congeners.  Histopathologic evaluations of the adrenal glands, ovary, parathyroid, pancreas, and

pituitary revealed no treatment-related changes in rats that were exposed to single PCB congeners in food

for 13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b; Lecavalier et al. 1997).  The highest dosages

in the studies were as follows: PCB 28, 3.8 (males) and 4.0 (females) mg/kg/day; PCB 77, 0.77 (males)

and 0.89 (females) mg/kg/day; PCB 105, 4.0 (females) and 4.3 (males) mg/kg/day; PCB 118,

0.17 (females) and 0.68 (males) mg/kg/day; PCB 126, 7.4 (males) and 8.7 (females) µg/kg/day; PCB 128,

4.2 (males) and 4.4 (females) mg/kg/day; and PCB 153, 3.5 (males) and 4.1 (females) mg/kg/day.  

Serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone

concentrations were measured in rats exposed for 13 weeks to PCB 28 or PCB 77 in food (Desaulniers et

al. 1997).  No changes, relative to the control group, were observed at doses of 500 µg/kg/day PCB 28 or

75 µg/kg/day PCB 77.  Acute intraperitoneal administration of PCB 126 in adult rats caused decreased

serum concentrations of T4 at $6.25 µg/kg/day, T3 at $25 µg/kg/day, LH at $100 µg/kg/day, and FSH at

400 µg/kg/day (Desaulniers et al. 1999).  Similar administration of PCB 153 caused an increase in serum

T4 and decrease in serum LH at a dose level of 25 mg/kg/day.
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Evaluation of Animal Studies.  Studies in animals, including rodents and nonhuman primates, provide

strong evidence of thyroid hormone involvement in PCB toxicity.  Although the studies differ in design

and, the emerging picture is that, depending of dose and duration, PCBs can disrupt the production and

levels of thyroid hormones, both in the thyroid and in peripheral tissues, can interfere with their transport

to peripheral tissues, and can accelerate the metabolic clearance of thyroid hormones.  Exposure to PCBs

in utero and/or during early development (e.g., through breast milk) can deplete levels of circulating

thyroid hormones in the fetus or neonate, which may give rise to effectively a hypothyroid state during

development.  The most convincing evidence that PCBs can exert toxicity by disrupting thyroid hormone

system derives from two studies in rats.  In one study, neurobehavioral deficits in pups that experienced

exposures to Aroclor 1254 in utero and during nursing were significantly attenuated by subcutaneous

injections of T4 that increased serum T4 and T3 concentrations that were otherwise depressed in the PCB-

exposed animals (Goldey and Crofton 1998).  While this study examined relatively high doses of

Aroclor 1254 ($1 mg/kg/day), it nevertheless demonstrated neurodevelopmental effects that are directly

relevant to observations made in epidemiological studies and to neurological sequelae of fetal

hypothyroidism, including disturbances of motor function and hearing.  In the second study, increased

testes weight and sperm production in rats that were administered Aroclor 1254 on postnatal days 1–25

were attenuated by injections of T4 on postnatal days 1–25, which also prevented the depression in serum

T4 concentrations (Cooke et al. 1996).  Here again, although produced by relatively large doses of

Aroclor 1254 (.40 mg/kg/day, subcutaneous), similar effects can be produced by other hypothyroid-

inducing agents, including 6-propyl-2-thiouracil (PTU).  Furthermore, the effects observed may reflect a

disruption of the normal sexual maturation process, which is known to be associated with neonatal

hypothyroidism in humans (Longcope 2000).

Certain PCBs or certain exposures to PCBs may increase serum T4 levels at low doses and decrease serum

T4 in a dose-dependent manner at higher doses (Gould et al. 1997; Li and Hansen, 1996b; Li et al. 1994,

1998).  This effect may reflect stimulation of the thyroid gland as suggested by concurrent morphological

changes in the thyroid follicles. 

Other effects of PCBs on endocrine function that have been observed in experimental animals include

effects on the adrenal glands and serum adrenal steroid levels (Byrne et al. 1988; Kato et al. 1982a; Miller

et al. 1993b; Rao ad Banerji 1993; Sanders et al. 1974; Wasserman et al. 1973).  Studies that have shown

depressed levels of adrenal cortical steroids in PCB-exposed animals are also relevant because depressed

levels of adrenal steroids have been associated with hypothyroidism in humans (Dluhy 2000).  In
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hypothyroidism, this effect is thought to result from decreases in both secretion and metabolism of

adrenal steroids.

3.2.2.9 Dermal Effects

3.2.2.9.1  Summary

Chloracne and other dermal alterations are well known markers of exposure to PCBs and structurally-

related halogenated aromatic hydrocarbons.  Chloracne and other dermal alterations have been reported in

subjects occupationally exposed to PCBs and in individuals exposed by accidental ingestion of rice oil

contaminated with high concentrations of PCBs, CDFs, and related chemicals (Yusho and Yu-Cheng).  In

general, chloracne appears in individuals with serum PCB levels 10–20 times higher than those of the

general population, but there is great variability among individuals.  Therefore, chloracne is not a

sensitive marker of PCB exposure.  Long-term oral administration of relatively low doses of PCBs to

monkeys resulted in dermal alterations similar to those observed in humans exposed to high

concentrations of PCBs.  The dermal effects were observed in the monkeys at serum PCB levels not much

higher than serum PCB levels in humans with no known point source exposure to PCBs.  Offspring from

monkeys exposed during gestation and nursed by exposed mothers also developed dermal alterations after

a few weeks of suckling.   There are reports of rodents also developing skin alterations, but only after

high exposures to PCB.

3.2.2.9.2  Human Studies

3.2.2.9.2.1  Occupational Exposure  

Chloracne is the most easily recognized effect of exposure to PCBs and structurally-related chlorinated

organic chemicals (Rice and Cohen 1996).  Chloracne is a high-dose response in animals and humans;

and its presence in humans indicates exposure to PCBs and/or other chlorinated organic compounds, but

its absence does not preclude such exposure.  Furthermore, the variability of the response in more highly

exposed individuals suggests that susceptibility varies greatly among individuals.  Chloracne can first

occur on the face, particularly under the eyes and behind the ears.  With increasing exposure, the rest of

the face and neck, upper arms, chest, back, abdomen, outer thighs, and genitalia may be affected.  When

severe, chloracne can cover the entire body.  Clinically, changes vary from an eruption of comedones to
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the occurrence of papules and pustules.  Histologically, the lesions consist of keratinous cysts caused by

squamous metaplasia of sebaceous glands.  The acute stage is followed by vermiculite skin atrophy.  

Mild to moderate chloracne was observed in 7 of 14 workers exposed to 0.1 mg/m3 Aroclors (formulation

not specified) for an average duration of 14.3 months (Meigs et al. 1954).  Because PCBs were used as a

heat exchange material, it is possible that the workers were exposed to such pyrolysis products as CDFs.

In these workers, the chloracne was found primarily on the face, especially the cheeks, forehead, and ears. 

Three cases of chloracne occurred among an unspecified number of autoclave operators exposed to

5.2–6.8 mg/m3 Aroclor 1254 for 4–7 months in 1954 (Bertazzi et al. 1987), but pyrolytic formation of

CDFs is a confounding factor.  In 1977, four more cases of chloracne were diagnosed among 67 workers

from the same plant who were engaged in impregnating capacitors with Pyralene 3010

(0.048–0.275 mg/m3) and had skin contact confirmed as a major exposure route.  An increased incidence

of nonadolescent acneform eruptions was reported in workers exposed to 0.007–11 mg/m3 mean

concentrations of various Aroclors for >5 years; 40% of the workers were exposed for >20 years

(Fischbein et al. 1979, 1982).  Maroni et al. (1981a, 1981b) reported 10 cases of acne and/or folliculitis

and 5 cases of dermatitis among 80 capacitor manufacturing workers examined in Italy.  All of the

workers with chloracne were employed in high exposure jobs.  Their blood PCB concentrations ranged

from 300 to 500 ppb.  

Other dermal effects reported in workers include skin rashes, pigmentation disturbances of skin and nails,

erythema and thickening of the skin, and burning sensations (Fischbein et al. 1979, 1982; Ouw et al.

1976, 1982; Smith et al. 1982).  In these studies, the workers were exposed to various Aroclors at levels

as low as 0.003 mg/m3 for >5 years.  Statistically significant associations between dermatologic effects

and plasma levels of higher chlorinated PCB congeners have been reported (Fischbein et al. 1979, 1982;

Smith et al. 1982).  No relationships between the incidence of skin rash or dermatitis and plasma levels of

lower chlorinated PCBs were found (Smith et al. 1982).

3.2.2.9.2.2  Accidental Exposure

Effects in the skin were widely reported among victims of the Yusho and Yu-Cheng poisoning episodes

exposure (Guo et al. 1999; Kuratsune 1989; Lu and Wu 1985; Rogan 1989).  It is important to mention,

however, that the findings from the studies of these groups cannot be attributed solely to exposure to

PCBs since the victims also were exposed to CDFs and other chlorinated chemicals (ATSDR 1994). 

Characteristic skin changes included marked enlargement, elevation and keratotic plugging of follicular
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orifices, comedo formation, acneform eruptions, hyperpigmentation, hyperkeratosis, and deformed nails. 

The acne most commonly developed on the face and other parts of the head, axillae, trunk, and external

genitalia, with follicular plugging occurring in the axillae, groin, glenoid regions such as elbow and knee

flexures, trunk, thigh, and outer aspect of the forearm.  Dark-colored pigmentation frequently occurred in

the gingival and buccal mucosa, lips, and nails, and improved only gradually in most patients (Fu 1984;

Kuratsune 1989; Lu and Wu 1985; Rogan 1989).   Improvement of the dermal changes was gradual. 

Evaluation of Yu-Cheng subjects 14 years after the poisoning incident showed that men and women

exposed to PCBs/PCDFs had a higher lifetime prevalence of chloracne, abnormal nails, hyperkeratosis,

and gum pigmentation (Guo et al. 1999).  Skin lesions were commonly observed in children born to

mothers with Yusho or Yu-Cheng exposure.  The dermal changes are consistent with those observed in

exposed adults and included hyperpigmentation of the skin, nails and gingivae, deformed nails, and acne

(Funatsu et al. 1971; Gladen et al. 1990; Hsu et al. 1985; Rogan et al. 1988; Taki et al. 1969; Yamaguchi

et al. 1971; Yoshimura 1974).  These effects generally diminished as the babies grew older. 

3.2.2.9.2.3  Evaluation of Human Studies

There is conclusive evidence that exposure to high concentrations of PCBs (and other chlorinated

hydrocarbons) induce adverse dermal effects in humans.  A typical dermal sign of exposure is chloracne

and is generally present in individuals with blood PCB levels several times higher than background levels

as observed among capacitor workers in the past and in Yusho and Yu-Cheng victims (Fischbein et al.

1979, 1982; Guo et al. 1999; Hsu et al. 1994; Maroni et al. 1981a, 1981b; Masuda 1994).  It is generally

accepted that chloracne is induced by exposure to dioxin-like substances (ATSDR 1998); therefore, the

contribution of PCBs to this effect in Yusho and Yu-Cheng was probably minor compared to that of

CDFs, which were the main contributors to the total dioxin TEQs of the rice oil.  High incidence of

chloracne was seen among Yu-Cheng victims 14 years after exposure, at a time when the body burden of

PCBs and CDFs was still considerably higher than local controls (Guo et al. 1997).  No adverse dermal

effects have been reported in subjects with high consumption of Great Lakes fish contaminated with

PCBs and other environmentally persistent chemicals or in other cohorts from the general population,

although it is unknown if this outcome was systematically studied in these cohorts.
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3.2.2.9.3  Animal Studies

The highest NOAEL values and all reliable LOAEL values for dermal effects for each study are recorded

in Tables 3-2 and 3-3, and plotted in Figure 3-2.

Oral Exposure    

Commercial Mixtures.  Very limited information is available regarding dermal effects of commercial

PCB mixtures following acute-duration oral exposure.  Skin histology was normal in rats that were

treated with a single gavage dose of 4,000 mg Aroclor 1242/kg and evaluated after 24 hours, no follow-

up observations were conducted (Bruckner et al. 1973).  Treatment of rats with 100 mg

Aroclor 1242/kg/day by gavage every other day for 3 weeks did not result in histological alterations in the

skin (Bruckner et al. 1973).  Rats exposed in the diet to 2.5 mg/kg/day Aroclor 1254 for 104 weeks or to

5 mg/kg/day for 72 weeks developed alopecia and facial edema (NCI 1978); these effects did not occur

after 104 weeks at 1.25 mg/kg/day.  No histopathologic changes were observed in the skin of rats that

were fed Aroclor 1016, 1242, 1254, or 1260 for 24 months at dose levels of 8.0–11.2, 4.0–5.7, 4.3–6.1, or

4.1–5.8 mg/kg/day, respectively (Mayes et al. 1998).  Guinea pigs fed a diet that provided up to

approximately 4 mg Aroclor 1260/kg/day for 8 weeks showed no treatment-related gross or microscopical

alterations of the skin (Vos and de Roij 1972).  Mice treated with 26 mg Aroclor 1254/kg/day in the diet

for 23 weeks developed erythema, altered sebaceous gland differentiation, and thickening with occasional

hyperkeratosis and cysts in the pinna; other skin areas were not examined (Bell 1983).

Dermal effects were reported in Rhesus monkeys fed diets containing Aroclors for intermediate durations

(Allen and Norback 1973, 1976; Allen et al. 1973, 1974a; Barsotti et al. 1976; Becker et al. 1979; Ohnishi

and Kohno 1979; Thomas and Hinsdill 1978).  These include facial edema (particularly in the periorbital

area), acne, folliculitis, and alopecia.  The effects appear to be reversible and have been produced by

estimated doses as low as 0.1 mg/kg/day Aroclor 1248 for 2 months (Barsotti et al. 1976) and

0.12 mg/kg/day Aroclor 1242 for 2 months (Becker et al. 1979).  NOAELs for these effects in monkeys

cannot be identified from the available studies.  Chronic dietary treatment with 0.1 mg

Aroclor 1248/kg/day for 12 months (Allen and Norback 1976) or 0.2 mg/kg/day Aroclor 1254 for

12–28 months (Arnold et al. 1990; Tryphonas et al. 1986a, 1986b) produced progressive dermal effects in

monkeys, including alopecia, periorbital edema, acne, fingernail loss, and gingival hyperplasia and

necrosis of varying severity (Tryphonas et al. 1986b).  The same group of investigators also reported

fingernail and toenail changes in monkeys during treatment with as little as 0.005 mg/kg/day



3.  HEALTH EFFECTS - Systemic

PCBs 140

Aroclor 1254 over a 37-month period or 0.04 mg/kg/day over a 72-month period (Arnold et al. 1993a,

1997).  Offspring from Rhesus monkeys treated before mating and during gestation with 0.03 mg

Aroclor 1016/kg/day showed hyperpigmentation (Barsotti and Van Miller 1984).  Doses even smaller of

Aroclor 1254 (0.005 mg/kg/day) produced clear signs of PCB intoxication manifested as inflammation

and/or enlargement of the tarsal glands, and nail and gum lesions (but not acne or hyperpigmentation) in

monkeys exposed during gestation and via breast milk for 22 weeks (Arnold et al. 1995, 1997).  Most of

these alterations were seen after the infants had been weaned.  The concentration of PCBs in breast milk

from dams treated with 0.005 mg/kg/day ranged from 5.6 to 15.6 ppm.  The geometric mean

concentration of PCBs in the blood of these infants after 22 weeks of nursing was 47 ppb (Arnold et al.

1995).

Single Congeners.  Treatment of female and male weanling Sprague-Dawley rats for 90 days with several

PCB congeners in the diet, both dioxin-like and nondioxin-like (PCBs 28, 77, 105, 118, 126, 128, 153),

did not result in any treatment-related histological alterations in the skin (Chu et al. 1994, 1995, 1996a,

1996b, 1998a, 1998b; Lecavalier et al. 1997).  Doses ranged from 0.009 mg/kg/day for the dioxin-like

PCB 126 to approximately 4 mg/kg/day for some mono- and di-ortho-substituted congeners.

Dermal Exposure    

Commercial Mixtures.  Skin appearance and histology was normal in three hairless mice dermally treated

with Aroclor 1254 in estimated doses of up to 136 mg/kg/day on 4 days/week for 6 weeks (Puhvel et al.

1982).  Aroclor 1254 was applied in either pure acetone or in acetone-mineral oil emulsion; few

experimental details were provided in this study.  Dermal effects were produced by application of

Aroclor 1260 in an isopropanol vehicle to the shaved back skin of female New Zealand rabbits

5 days/week for 28 or 38 days at estimated doses of 42–44 mg/kg/day (Vos and Beems 1971; Vos and

Notenboom-Ram 1972).  Effects included thickening of the skin and acneform lesions resulting from

hyperplasia and hyperkeratosis of the epidermal and follicular epithelium. 

3.2.2.9.4  Evaluation of Animal Studies

PCB-related cutaneous effects are well characterized in monkeys after long-term oral exposure to

commercial PCB mixtures and are generally similar to those observed in humans.  Infant monkeys

exposed in utero and via breast milk also developed similar dermal lesions.  Chronic-duration oral

exposure studies in monkeys showed that adverse dermal effects can occur at dose levels lower than had
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been previously observed (Arnold et al. 1993a, 1993b, 1995, 1997).  It should be pointed out that dermal

effects in monkeys appeared with doses that resulted in tissue (5 ppm) and blood levels (10 ppb) of PCBs

near background concentrations found in the general human population.  In general, adverse cutaneous

effects in rodents followed exposure to relatively high oral doses of PCBs.  The series of studies with

single congeners by Chu and coworkers found no significant dermal effects at the dose levels tested, and

no conclusions regarding a potential ranking for dermatotoxicity of congeners can be drawn based on

these studies (Chu et al. 1994, 1995, 1996a, 1996b, 1998a, 1998b; Lecavalier et al. 1997). 

3.2.2.10  Ocular Effects

3.2.2.10.1  Summary

Along with dermal alterations, adverse ocular effects are markers of exposure to PCBs and structurally-

related halogenated aromatic hydrocarbons.  Ocular effects consisting primarily of hypersecretion of the

Meibomian glands and abnormal pigmentation of the conjunctiva have been reported in subjects

occupationally exposed to PCBs and in individuals exposed by accidental ingestion of rice oil

contaminated with high concentrations of PCBs, CDFs, and related chemicals (Yusho and Yu-Cheng).  In

general, these effects appear in individuals with serum PCB levels 10–20 times higher than those of the

general population, but there is great variability among individuals.  Long-term oral administration of

relatively low doses of PCBs to monkeys resulted in ocular alterations similar to those observed in

humans exposed to high concentrations of PCBs.  The ocular effects were observed in the monkeys at

serum PCB levels not much higher than serum PCB levels in humans with no known high exposure to

PCBs.  Offspring from monkeys exposed during gestation and nursed by exposed mothers developed

similar ocular alterations after a few weeks of suckling.  

3.2.2.10.2  Human Studies

3.2.2.10.2.1  Occupational Exposure  

The primary ocular effects reported by workers exposed to airborne PCBs were eye irritation, tearing, and

burning (Emmett et al. 1988a; Ouw et al. 1976; Smith et al. 1982).  The workers had been exposed to a

variety of Aroclors at concentrations between 0 and 2.2 mg/m3 for >3 years.  A significant relationship

between the incidence of irritated, burning eyes and plasma levels of higher and lower chlorinated PCB

congeners has been found (Smith et al. 1982).  Emmett et al. (1988a) suggested that because PCBs have
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low volatility and are relatively nonirritating, 1,1,1-trichloroethane used to clean up spills or

trichlorobenzene in Askarel may have been responsible for the complaints.

An ocular examination of 181 workers at a capacitor manufacturing plant revealed a 13% prevalence of

edema of the upper eyelid, congestion or hyperemia of conjunctiva, eye discharge, and enlargement of

Meibomian glands following exposure to 0.007–11 mg/m3 mean concentrations of various Aroclors for

>5 years (Fischbein et al. 1985).  The median blood value of lower homologues of PCBs was

approximately 60 ppb and of the higher homologues, 18 ppb.  There was no significant association

between ocular abnormalities and blood concentrations of PCBs (Fischbein et al. 1985).  

3.2.2.10.2.2  Accidental Exposure

In addition to dermal effects, ocular effects were the most obvious manifestations of Yusho and Yu-Cheng

exposure  (Fu 1984; Kuratsune 1989; Lu and Wu 1985; Rogan 1989).  As previously mentioned, victims

of these poisoning episodes also were exposed to CDFs and other chlorinated chemicals (ATSDR 1994). 

Hypersecretion of the Meibomian glands and abnormal pigmentation of the conjunctiva were commonly

observed (Masuda 1994).  Typical cases showed swollen Meibomian glands filled with yellow infarct-

like contents.  Abnormal changes in the Meibomian glands as well as eye discharge were still seen

10 years after the poisoning incident (Kono and Yamana 1979).  The incidence of ocular signs was

closely related to PCB concentrations and patterns in blood.  Babies born to Yusho mothers also had

increased eye discharge.  Similar findings were seen in children born to Yu-Cheng mothers who also

showed high incidence of conjunctivitis, swelling of the eyelid, and eye discharge (Rogan et al. 1988).

3.2.2.10.2.3  Evaluation of Human Studies

There is sufficient evidence that exposure to high concentrations of PCBs (and other chlorinated

hydrocarbons) induce adverse ocular effects in humans.  Typical responses include hypersecretion of the

Meibomian glands and abnormal pigmentation of the conjunctiva.  This has been observed among

capacitor workers (Fischbein et al. 1985) and in Yusho and Yu-Cheng victims (Hsu et al. 1994; Kono and

Yamana 1979; Kuratsune 1989; Masuda 1994; Rogan et al. 1988).  The contribution of PCBs to this

effect in Yusho and Yu-Cheng is unknown since the victims also were exposed to CDFs and other

structurally-related chemicals.  In the occupationally-exposed subjects described by Fischbein et al.

(1985), PCBs seemed to have been responsible for the high incidence of ocular effects since there was no

apparent exposure to CDFs or similar chemicals, although such possibility could not be completely ruled
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out.  No adverse ocular effects have been reported in subjects with high consumption of Great Lakes fish

contaminated with PCBs and other environmentally persistent chemicals or in other cohorts from the

general population, although it is unknown if this outcome was systematically studied in these cohorts.

3.2.2.10.3  Animal Studies

The highest NOAEL values and all reliable LOAEL values for ocular effects for each study are recorded

in Table 3-2 and plotted in Figure 3-2.

Oral Exposure    

Commercial Mixtures.  Ocular effects were commonly observed in Rhesus monkeys fed diets containing

Aroclors for intermediate durations (Allen and Norback 1973, 1976; Allen et al. 1973, 1974a; Barsotti

et al. 1976; Becker et al. 1979; Ohnishi and Kohno 1979; Thomas and Hinsdill 1978).  The effects

consisted of swelling and reddening of the eyelid and eyelid discharge.  Females appear to be more

sensitive than males.  The effects appear to be reversible and have been produced by estimated doses as

low as 0.1 mg/kg/day Aroclor 1248 for 2 months (Barsotti et al. 1976) and 0.12 mg/kg/day Aroclor 1242

for 2 months (Becker et al. 1979).  NOAELs for these effects in monkeys were not identified in the

available studies.  Monkeys exposed to 0.005–0.08 mg/kg/day Aroclor 1254 for 37 months showed

characteristic dose-related ocular and dermal effects, including eye exudate, inflammation and/or

prominence of the tarsal (Meibomian) glands, and various finger and toe nail changes (Arnold et al.

1993a).  Eye inflammation is a result of metaplastic changes in the Meibomian glands, which cause the

glands to be come keratinaceous.  Conjunctivitis was observed in Rhesus monkeys treated in the diet with

0.2 mg/kg/day Aroclor 1254 for 12 months (Tryphonas et al. 1986a).  Exophthalmia was observed in rats

treated in the diet with 2.5 mg/kg/day Aroclor 1254 for 104–105 weeks (NCI 1978); a dietary level of

1.25 mg/kg/day Aroclor 1254 was a NOAEL.  No histopathologic changes were observed in the eye of

male or female rats that were fed Aroclor 1016, 1242, 1254, or 1260 for 24 months at dose levels of

8.0–11.2, 4.0–5.7, 4.3–6.1, or 4.1–5.8 mg/kg/day, respectively (Mayes et al. 1998).  

Single Congeners.  Treatment of female and male weanling Sprague-Dawley rats for 90 days with several

PCB congeners in the diet, both dioxin-like and nondioxin-like (PCBs 28, 77, 105, 118, 126, 128, 153),

did not result in any treatment-related histological alterations in the eye or optic nerve (Chu et al. 1994,

1995, 1996a, 1996b, 1998b; Lecavalier et al. 1997).  Doses ranged from 0.009 mg/kg/day for the dioxin-

like PCB 126 to approximately 4 mg/kg/day for some mono- and di-ortho-substituted congeners.
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3.2.2.10.4  Evaluation of Animal Studies

PCB-induced ocular effects are well characterized in monkeys after long-term oral exposure to

commercial PCB mixtures and are generally similar to those observed in humans.  Infant monkeys

exposed in utero and via breast milk also developed similar ocular lesions (Arnold et al. 1995).  Chronic-

duration oral exposure studies in monkeys showed that adverse ocular and dermal effects occurred at

doses of 0.005 mg/kg/day (Arnold et al. 1993a, 1993b, 1995, 1997).  Because these effects occurred at the

lowest tested dose of any PCB mixture in any species, they are used as part of the basis for the chronic-

duration MRL for oral exposure as discussed in Chapter 2 and Appendix A.  It is worth mentioning that

ocular effects appeared in monkeys given PCB doses that resulted in tissue (5 ppm) and blood levels

(10 ppb) of PCBs near background concentrations found in the general human population.  The series of

studies with single congeners by Chu and coworkers found no significant effects in the eye and optic

nerve at the dose levels tested and no conclusions regarding a potential ranking for oculotoxicity of

congeners can be drawn based on these studies (Chu et al. 1994, 1995, 1996a, 1996b, 1998; Lecavalier et

al. 1997). 

3.2.2.11  Body Weight Effects

3.2.2.11.1  Human Studies

No studies were located regarding body weight effects in humans after exposure to PCBs.

3.2.2.11.2  Animal Studies

A number of animal studies have shown that inhalation, oral, or dermal exposure to PCBs results in

decreases in body weight gain.  Body weight gain was decreased in guinea pigs and mice that were

intermittently exposed to 5.4 mg/m3 Aroclor 1254 over 121 days or in guinea pigs exposed to 1.5 mg/m3

Aroclor 1254 over 213 days (Treon et al. 1956).  Exposure-related changes in body weight were not

observed in rats or rabbits that were similarly exposed to 1.5 or 5.4 mg/m3 Aroclor 1254 or to 8.6 mg/m3

Aroclor 1242 over 24 days.  The concentrations of PCBs are uncertain due to an invalid analytical

technique and differential evaporation of the most volatile PCB congeners.  A decrease in body weight

gain was also observed in rats exposed to 0.009 mg/m3 Aroclor 1242 for 30 days (Casey et al. 1999); the

rate of body weight gain was 33% as compared to 39% in controls.
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Reduced body weight (or reduced weight gain) is a characteristic effect of oral exposure to PCBs in

animals.  Acute-duration studies have shown moderate to severe weight decreases in rats following a

single gavage dose of $4,000 mg/kg Aroclor 1242 or dietary administration of 50 mg/kg/day

Aroclor 1254 for 14 days (Bruckner et al. 1973; Kling et al. 1978).  No significant effect on weight gain

was reported in rats administered up to 25 mg/kg/day Aroclor 1254 in several acute-duration studies

(Brown and Lamartiniere 1995; Carter 1984, 1985; Carter and Koo 1984) or in rats administered four

daily doses of 25 mg/kg of Aroclor 1221 (Brown and Lamartiniere 1995).  The weight loss following

single high doses appears to be due to dehydration (Bruckner et al. 1973).  Effects on animal body weight

are often pronounced following intermediate- and chronic-duration dietary administration, constituting a

wasting syndrome.  Decreases in body weight or body weight gain relative of different toxic doses have

been observed with various species and Aroclor mixtures, including rats and minks fed Aroclor 1254

(Andrews 1989; Bleavins et al. 1980; Gray et al. 1993; Hornshaw et al. 1986; Kimbrough et al. 1972;

Kling et al. 1978; Mayes et al. 1998; NCI 1978; Phillips et al. 1972), rats fed Aroclor 1260 (Kimbrough et

al. 1972), pigs fed Aroclor 1254 or 1242 (Hansen et al. 1976), and monkeys fed Aroclor 1242 or

1248 (Allen 1975; Allen and Norback 1976; Allen et al. 1973; Becker et al. 1979), but not Aroclor 1254

(Arnold et al. 1993a, 1993b, 1997; Tryphonas et al. 1986b).  The body weight from guinea pigs treated

with 4 mg/kg/day Aroclor 1260 for 187 days was not altered by treatment (Vos and de Roij 1972).  In

general, Aroclors administered to rats in doses of #5 mg/kg/day for intermediate durations did not

significantly affect body weight (Bruckner et al. 1974, 1977; Byrne et al. 1987; Goldstein et al. 1974;

Huang et al. 1998a, 1998b).  Rats that were fed Aroclor 1254 for 24 months at dose levels of

1.4–6.1 mg/kg/day had final body weights that were 12–28% lower than unexposed animals (Mayes et al.

1998).  Decreased body weight was also observed following similar exposure to Aroclor 1242 (10%

reduction at 5.7 mg/kg/day), but not to Aroclor 1016 (2.0–11.2 mg/kg/day) or Aroclor 1260

(1.0–5.8 mg/kg/day).  The existing data indicate that monkeys and minks may be particularly susceptible

species, as effect levels were higher in rats and adverse effects on body weight were not observed in

rabbits and mice fed Aroclor 1254 (Kimbrough and Linder 1974; Street and Sharma 1975).  Food and

water consumption were not measured in most of these studies, but in general decreases in food and water

intake were not sufficient to account for the decreases in body weight.  In swine and sheep fed

Aroclors 1242 and 1254 at 20 ppm in the diet, feed efficiency (unit gain/unit feed) were decreased about

the same degree as by diet variations (Hansen et al. 1976).

Body weight gain was not adversely affected in rats fed diets containing #4.1 mg/kg/day of

PCB 153 (Chu et al. 1996a), #4.2 mg/kg/day of PCB 128 (Lecavalier et al. 1997), #4.0 mg/kg/day of

PCB 105 (Chu et al. 1998b), #3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), #0.77 mg/kg/day of
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PCB 77 (Chu et al. 1995), or #0.17 mg/kg/day of PCB 118 (Chu et al. 1995).  A significant decrease in

body weight gain was observed in rats fed diets containing 7.4 mg/kg/day of PCB 126 (Chu et al. 1994)

for 13 weeks.

A significant reduction in body weight gain was observed in rabbits that received estimated doses of

42–44 mg/kg of Aroclor 1260 in isopropanol 5 days/week for 28 or 38 days applied to the shaved back

skin (Vos and Beems 1971; Vos and Notenboom-Ram 1972).  These studies tested small numbers of

rabbits (four) and used Aroclor 1260 that had undetectable levels (<1 ppm) of CDFs.

The highest NOAEL values and all reliable LOAEL values for body weight effects for each study are

recorded in Tables 3-1, 3-2, and 3-3, and plotted in Figures 3-1 and 3-2.

3.2.2.12  Other Systemic Effects

Inhalation and oral exposure to Aroclor 1242 resulted in epithelial hyperplasia in the urinary bladders of

rats near continuously (23 hours/day) exposed to 0.009 mg/m3 or 0.033 mg/kg/day in the diet for 30 days

(Casey et al. 1999).  In contrast, no effects on the urinary bladder were reported in a study by Mayes et al.

(1998) involving chronic oral exposure to approximately #6 mg/kg/day Aroclor 1242, 1254, and 1260 or

#11 mg/kg/day Aroclor 1016.  Additionally, no urinary bladder effects were noted in a series of dietary

exposure studies on single PCB congeners in which rats were exposed to #4.1 mg/kg/day of

PCB 153 (Chu et al. 1996a), #4.2 mg/kg/day of PCB 128 (Lecavalier et al. 1997), #4.0 mg/kg/day of

PCB 105 (Chu et al. 1998b), #3.7 mg/kg/day of PCB 28 (Chu et al. 1996b), #0.77 mg/kg/day of

PCB 77 (Chu et al. 1995), #0.17 mg/kg/day of PCB 118 (Chu et al. 1995) or #7.4 mg/kg/day of

PCB 126 (Chu et al. 1994) for 13 weeks.

3.2.3 Immunological and Lymphoreticular Effects

3.2.3.1 Summary

Immunologic changes have been observed in human populations exposed to mixtures of PCBs and other

persistent toxic substances.  Alterations have been associated with consumption of contaminated fish and

other marine foods, consumption of contaminated rice oil in the Yusho and Yu-Cheng poisoning incidents,

and general environmental exposures.  Findings include increased susceptibility to respiratory tract

infections in adults and their children, increased prevalence of ear infections in infants, decreased total
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serum IgA and IgM antibody levels, and/or changes in T lymphocyte subsets.  Overall, there is a

consistency of effects among the human studies suggesting sensitivity of the immune system to PCBs,

particularly in infants exposed in utero and/or via breast feeding.  However, due to the mixed chemical

nature of the exposures and generally insufficient information on exposure-response relationships, the

human studies provide only limited evidence of PCB immunotoxicity.  In contrast to the human data,

immunotoxicity of PCBs has been documented in animals that were exposed via commercial mixtures,

mixtures of congeners analogous to human breast milk, Great Lakes fish, or single congeners.  Effects of

commercial PCBs in rats, mice, guinea pigs, and rabbits included morphological and functional changes,

such as thymic and splenic atrophy, reduced antibody production against foreign antigens, such as tetanus

toxoid and sheep red blood cells (SRBC), and increased susceptibility to microbial infection.  Oral studies

of commercial mixtures in monkeys confirm the observations in other species and further indicate that the

immune system of nonhuman primates is particularly sensitive to PCBs.  Suppressed antibody responses

to SRBCs is the parameter most consistently affected by PCBs in monkeys and have been observed in

adult animals, infants exposed during gestation and lactation, and infants exposed postnatally to a PCB

congener mixture simulating the congener content of human milk.  Immunological assessments of rodents

that were fed Great Lakes fish containing PCBs and other chemicals were generally limited although

some alterations were observed that are similar to those in animals exposed to commercial PCB mixtures.  

3.2.3.2  Human Studies

Occupational Exposures.  A limited amount of information is available on immunological end points in

PCB-exposed workers because assessments in most occupational studies were limited to routine clinical

measurements of white blood cell (WBC) counts and serum proteins and did not include assessment of

immunocompetence.  Total and differential WBC counts were determined in 194 capacitor plant workers

(152 males, 42 females) who were exposed to Aroclors 1254, 1242, and/or 1016 for an average duration

of 17 years (Lawton et al. 1985a).  Mean area air concentrations of PCBs were 0.69 mg/m3 in 1975 and

0.16 mg/m3 in 1983, and average personal time-weighted average (TWA) levels in 1977 were

0.17 mg/m3; all PCB use was discontinued in 1977.  Clinical examinations in 1976 showed some

elevations in total WBCs associated with decreased PMN cells and increased lymphocytes, monocytes,

and eosinophils.  In 1979, the WBC and lymphocyte counts were near normal and the increases in

monocytes and eosinophils were marginal, although there was a strong association between serum PCB

levels and monocyte counts.
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Other studies of PCB-exposed workers did not report any effects on total and differential WBC counts or

changes in serum albumin, globulin, and/or total proteins (Chase et al. 1982; Maroni et al. 1981b; Smith

et al. 1982).  These included studies of 86 men exposed to unreported levels of unspecified PCBs via

transformer fluids for an average of 17 years (Chase et al. 1982), 40 men and 40 women exposed mainly

to Pyralene 3010 or Apirolio (Italian PCB formulations containing 42% chlorine) at concentrations

ranging from 0.048 to 0.275 mg/m3 for an average duration of 12 years (Maroni et al. 1981b),

228 electrical equipment manufacturing workers exposed to Aroclor 1242 and 1016 (sex and exposure

duration not reported) at a median personal TWA air concentration of 0.081 mg/m3 (Smith et al. 1982),

and 14 and 25 electrical utility workers exposed to Askarel (Aroclor 1254 or 1260 either alone or in

combination with tri- or tetrachlorobenzenes) at personal TWA levels of 0.037–0.215 mg/m3 and

0.0031–0.0823 mg/m3, respectively (Smith et al. 1982).  Exposure durations and worker gender were not

reported in the Smith et al. (1982) study.

Delayed-type hypersensitivity was not affected in 55 transformer repairmen compared to 56 unexposed

workers who were matched for age, race, and marital status (Emmett et al. 1988a, 1988b).  The mean

length of employment of the exposed workers was 3.75 years, most (38) of the workers were currently

exposed to PCBs, and the predominant exposure was from Aroclor 1260.  Measurements of air PCB

levels at four work areas showed 8-hour TWA concentrations of 0.0167–0.024, 0.0032–0.007,

0.00001–0.0004, and 0.0007–0.0124 mg/m3.  The percentages of exposed and control workers with

positive skin responses to mumps antigen (92 vs. 89%) and trichophyton antigen (17 vs. 8%) were not

significantly different, and the mean diameters of the skin reactions were identical in the two groups. 

Other immunologic end points were not evaluated in the study, and none of the workers had clinical

manifestations typical of PCB poisoning.

Contaminated Fish Consumption.  Immunological parameters were compared in a group of 23 Swedish

men with high consumption of fatty fish species from the Baltic Sea and 20 men with virtually no fish

consumption (Svensson et al. 1994).  Evaluation of white cell counts, numbers of total lymphocytes and

their subsets, and serum immunoglobulin levels showed indications of reduced natural killer (NK) cell

activity.  The proportions and numbers of NK cells were marginally lower in the fisheaters than in the

nonconsumers, although the differences were not statistically significant (p>0.05), and the weekly intake

of fatty fish was negatively correlated with NK cell activity (r= -0.32, p<0.04).  Concurrent measurements

of blood PCBs were not performed.  Data from some of the subjects obtained 3 years prior to the study

showed weak negative correlations between numbers of NK cells and blood levels of PCB 126 and



3.  HEALTH EFFECTS - Immunological

PCBs 149

PCB 118, but a similar correlation was also found for p,pN-DDT.  Information on the presence and

incidence of infections was not reported.

Lymphocyte subsets were also evaluated in 68 Latvian fisherman who consumed fatty fish from the

Baltic Sea (Hagmar et al. 1995).  The study group was divided into groups of 19, 24, and 25 subjects with

low, intermediate, or high fish consumption (average 0.3, 3.3, and 12 meals/month, respectively).  PCBs

were not measured in the subjects or fish.  High fish consumption was correlated positively with B cell

numbers (r=0.41, p=0.0008) and CD4+/CD8+ ratios (r=0.40, p=0.001), but negatively with levels of

cytotoxic (CD8+) T cells (r= -0.38, p=0.002).

Information has been reported on infectious illnesses in breast-fed infants whose mothers consumed

contaminated Great Lakes fish (Smith 1984).  Seventy-three mother/infant pairs from Sheboygan,

Wisconsin were divided into three groups:  women who breast-fed and ate Lake Michigan or Sheboygan

River fish at least twice a month for $3 years (Group 1, 23 pairs); women who breast-fed and ate Lake

Michigan or Sheboygan River fish not more than twice a year for #3 years (Group 2, 39 pairs); and

women who bottle-fed and ate Lake Michigan or Sheboygan River fish at least twice a month for

$3 years (Group 3, 11 pairs).  Mean PCB concentrations in maternal serum (5.48–5.76 ppb) and breast

milk fat (1.13–1.14 ppm) were similar among the three exposure groups and at two postnatal sampling

times (during the second month and at 4 months of age); PCB levels in maternal serum during pregnancy

or in umbilical cord blood were not determined.  There were no significant group differences in the mean

number of infectious illnesses (colds, earaches, and flu symptoms) during the first 4 months of life.  The

number of infectious illnesses in the infants (r=0.33, p=0.03) was positively and significantly associated

with maternal serum PCB level, although infant illnesses had a weak but significantly negative

association with breast milk PCBs.  Possible associations between infectious illnesses and other chemicals

in the fish were not investigated.

Susceptibility to infections and immune status was studied in 98 breast-fed and 73 bottle-fed Inuit

(Eskimo) infants from Arctic Quebec, Canada (Dewailly et al. 2000).  The Inuits have high body burdens

of various organochlorine compounds (2–10 times higher than those of southern Quebec populations) due

to high consumption of marine foods, particularly sea mammal fat.  Concentrations of PCBs and other

chlorinated pesticides or metabolites were measured in early breast milk fat and used as an index of

prenatal exposure to these substances;  p,p’-DDE showed the highest mean concentration (962 ppb),

followed by PCBs (621 ppb; sum of congeners 138, 153, and 180), hexachlorobenzene (107 ppb),

dieldrin (30 ppb), and mirex (14 ppb) (Dewailly et al. 1993).  Prenatal organochlorine exposure was not
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determined in the bottle-fed infants.  The number of infectious disease episodes and status of

immunologic parameters  (WBCs, total lymphocytes and lymphocyte subsets, serum immunoglobulins)

were evaluated during the first year of life.  Acute otitis media was the most frequent health problem

during the first year of life, with 80.0% of ever breast-fed and 81.3% of bottle-fed infants experiencing at

least one episode.  Relative risk (RR) analysis by follow-up period and number of episodes showed

associations between increasing prenatal exposure to organochlorine compounds and otitis media that

were more consistent for hexachlorobenzene and p,p’-DDE than PCBs.  For example, although RRs of

experiencing at least one episode of otitis media during the first year of life were similar for

hexachlorobenzene (RR, 1.49; 95% CI, 1.10–2.03), p,p’-DDE (RR, 1.52; CI, 1.05–2.22), and PCBs (RR

1.28; CI, 0.92–1.77) for the highest tertile of prenatal exposure compared to the lowest tertile, the RR of

recurrent otitis media ($3 episodes) was 1.49 (95% CI, 1.10–12.56), 3.48 (CI, 0.86–14.11), and 1.65 (CI,

0.49–5.57), respectively.  However, because these and other detected organochlorine compounds

originated from the same few food items and have concentrations in breast milk that are correlated with

each other due to similar properties such as lipid solubility and persistence, the results precluded

identification of which compounds could be responsible for the increased susceptibility to otitis media. 

Immunologic parameters that were significantly lower in the breast-fed babies compared to the bottle-fed

group included numbers of WBCs and lymphocytes (CD4 subtype) at 3 months of age, and serum IgA

concentrations at 7 and 12 months of age; CD4/CD8 lymphocyte ratios (helper T-cells/cytotoxic T-cells)

were also reduced in the breast-fed infants at 7 and 12 months of age, although the change did not reach

statistical significance.  None of the immune parameters were associated with prenatal organochlorine

exposure.

Yusho and Yu-Cheng Exposures.  Clinical observations strongly suggest that Yusho and Yu-Cheng

patients experienced frequent or more severe skin and respiratory infections and lowered resistance to

illness (Kuratsune 1989; Nakanishi et al. 1985; Rogan 1989; Shigematsu et al. 1971).  Children born to

mothers who had Yu-Cheng disease had higher prevalence of bronchitis or pneumonia at 6 months of age,

respiratory tract infections at 6 years of age, and middle ear infections at 6–14 years of age (Chao et al.

1997; Yu et al. 1998).  Total serum levels of IgA and IgM, but not IgG, were reduced in Yusho and

Yu-Cheng patients (Chang et al. 1981; Shigematsu et al. 1971).  Other assessments of Yu-Cheng patients

found various other immunologic changes, including lower percentages of monocytes and PMN

leukocytes with immunoglobulin and complement receptors, reduced T lymphocytes apparently due to

reduced T-helper/inducer cells, and suppressed dermal delayed-type hypersensitivity responses to

streptokinase/streptodornase antigen mixtures tested 1 year after exposure and tuberculin antigen tested

4 years after exposure (Chang et al. 1981, 1982a, 1982b; Lu and Wu 1985).  Lymphoproliferative
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responses of peripheral lymphocytes to T-cell mitogens (PHA, pokeweed mitogen [PWM], and

tuberculin) were significantly enhanced in Yu-Cheng patients (Lu and Wu 1985).  

General Population Exposures.  Immunologic effects of pre- and postnatal environmental exposure to

PCBs and dioxins were assessed in a subgroup of 55 infants (Weisglas-Kuperus et al. 1995) from the

Dutch Mother-Child study summarized in Section 3.2.4.2.1.2 (Neurological Effects).  Prenatal

PCB/dioxin exposure was estimated by the sum of PCB congeners 118, 138, 153, and 180 in maternal

blood during the last month of pregnancy and the total TEQ level in maternal milk (17 dioxin and

8 dioxin-like PCB congeners), and postnatal exposure was calculated as a product of the total TEQ level

in human milk multiplied by the weeks of breast-feeding.  No correlation was found between pre- or

postnatal exposure and the number of episodes of rhinitis, bronchitis, tonsillitis, and otitis during the first

18 months of life, or with humoral immunity as evaluated by antibody levels to mumps, measles, and

rubella at 18 months of age (infants were immunized at 14 months of age).  Determination of monocyte,

granulocyte, and lymphocyte counts in cord and venous blood at 3 and 18 months of age showed that a

higher prenatal as well as postnatal PCB/dioxin exposure was associated with lower monocyte and

granulocyte counts at 3 months of age, and that a higher prenatal exposure was associated with increased

total numbers of T-lymphocytes and several T-cell subpopulations (CD8+, TcRαβ+, and TcRγδ+) at

18 months of age.  There were no significant associations between postnatal PCB/dioxin exposure and

T cell markers at 18 months of age.  Although there were differences in the leukocyte subpopulation

between high and low PCB/dioxin-exposed infants, all values were within the normal range (Weisglas-

Kuperus et al. 1995).  Follow-up evaluations at 42 months of age, reported as a study abstract, found that

prenatal PCB exposure was associated with increased T cell numbers and lower antibody levels to

mumps, measles, and rubella (Weisglas-Kuperus 2000).  Additionally, a higher prevalence of recurrent

middle ear infections and chicken pox and a lower prevalence of allergic reactions was reported to be

associated with PCB body burden at 42 months of age.  

Evaluation of Human Studies.  Limited information on immunological effects of PCBs in humans is

available from studies of people exposed in the workplace, by consumption of contaminated fish and

other marine foods, by consumption of contaminated rice oil in the Yusho and Yu-Cheng poisoning

incidents, and via general environmental exposures.  A comparison of PCB levels in blood and breast

milk in some of these studies is included in Appendix A.

One study of PCB-exposed workers found no effects on delayed-type hypersensitivity skin reactions to

the mumps and trichophyton antigens (Emmett et al. 1988a, 1988b).  Other occupational studies reported
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no changes in serum albumin, globulin, and/or total proteins, although a transient effect on total and

differential WBC counts has been observed (Chase et al. 1982; Lawton et al. 1985a; Maroni et al. 1981b;

Smith et al. 1982).  Functional and other immunologic end points were not evaluated in any of the worker

studies, precluding an assessment of the potential for adverse immune effects following occupational

exposure.

The number of infant infectious illnesses (colds, earaches, and/or flu symptoms) during the first 4 months

of life were positively correlated with maternal serum PCB levels in a study of women who consumed

contaminated Great Lakes fish (Smith 1984), although other immunological end points and possible

associations with other chemicals in the fish were not investigated.  Susceptibility to infections was also

studied in infants of Inuit women who had elevated body burdens of PCBs and other organochlorine

chemicals due to high consumption of sea mammal fat (Dewailly et al. 2000).  Associations between risk

of acute otitis media and increasing organochlorine exposure (levels in breast milk) during the first year

of life were found, although the data are insufficient for identifying whether the effect may be due to

PCBs, hexachlorobenzene, p,p’-DDE, or other chemicals.  No statistically significant changes in

immunological indices were observed, although there were indications of reduced total serum IgA levels

and altered T-lymphocyte subpopulations in breast-fed Inuit infants at 7 and 12 months of age.

Immunotoxic effects have been documented in the Yusho and Yu-Cheng populations and include changes

consistent with those reported in the Inuit and Great Lakes populations, particularly increased middle ear

and respiratory tract infections in children of exposed mothers and changes in T lymphocytes and their

subsets (Chang et al. 1981, 1982a, 1982b; Chao et al. 1997; Kuratsune 1989; Lu and Wu 1985; Nakanishi

et al. 1985; Rogan 1989; Shigematsu et al. 1971; Yu et al. 1998).  The Dutch environmental exposure

study (Weisglas-Kuperus et al. 1995) also found some changes in lymphocyte T cell subpopulations in

infants (although all values were within the normal range), but the clinical significance of these alterations

is unclear because there was no significant correlation between the incidence of infection (otitis, rhinitis,

bronchitis, or tonsillitis) or antibody levels to common childhood vaccines (mumps, measles, or rubella)

during the first 18 months of life and pre- or postnatal exposure to PCBs and dioxins.  The human

populations that have been studied differ greatly with respect to sources of PCB exposure and

consequently are likely to vary with respect to both organochlorine contaminants and nutrient contents

which may affect susceptibility to infections.  Although the studies are insufficient for determining which

specific chemical(s) may be responsible for the observed alterations, the available data support a possible

association between PCBs and immune effects in humans that may be manifested as compromised ability

to overcome infections, particularly in infants exposed in utero and/or by breast-feeding.
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3.2.3.3  Animal Studies

The highest NOAEL values and all reliable LOAEL values for immunological and lymphoreticular

effects for each study are recorded in Tables 3-2 and 3-3, and plotted in Figure 3-2.

3.2.3.3.1  Inhalation Exposure

No studies were located regarding immunological or lymphoreticular effects in animals following

inhalation exposure to PCBs.

3.2.3.3.2  Oral Exposure

Commercial PCB Mixtures.  Information on the immunotoxicity of commercial PCBs in orally-exposed

animals is available from intermediate- and chronic-duration studies in various species.  Findings in

nonhuman primates are emphasized in the following summary because monkeys appear to be more

sensitive than other species and provide a better animal model due to phylogenetic and biologic

similarities to humans (Tryphonas 1994, 1995).

Aroclor 1260 and Similar Mixtures.  Immunological effects of 60% chlorinated PCB mixtures were

investigated in several guinea pig studies.  Dietary exposure to Aroclor 1260 for 8 weeks caused

decreases in gamma globulin-containing cells in popliteal lymph nodes following foot pad stimulation

with tetanus toxoid at estimated doses of 0.8 and 4 mg/kg/day (lower doses not tested), although the

magnitude of response was not dose-related.  Increased mesenteric lymph node weights were also

observed at $0.8 mg/kg/day, but there were no consistent changes in cervical lymph node weights or

serum levels of albumin or globulins.  Leukocyte counts and histology of the lymph nodes, thymus, and

spleen were unaffected (Vos and de Roij 1972).   Effects in guinea pigs that were fed 4 mg/kg/day

Clopen A-60 or Aroclor 1260 for 6 weeks included decreases in antibody titers (IgM and IgG) to tetanus

toxoid, skin (footpad) reactivity to tuberculin, leukocyte, and lymphocyte counts, and relative thymus

weight, with no effects occurring at 0.8 mg/kg/day of Clopen A-60 (low dose of Aroclor 1260 not tested)

(Vos and Van Driel-Grootenhuis 1972).

No changes in total or differential WBC counts or histology of the thymus, spleen, or lymph nodes were

found in male and female rats that were exposed to Aroclor 1260 at dietary doses as high as 4.1 and

5.8 mg/kg/day, respectively, for 24 months (Mayes et al. 1998).    
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Aroclor 1254 and Similar Mixtures.  Information on immunotoxicity of Aroclor 1254 is available from

oral studies in rats, mice, rabbits, and monkeys.  A number of significant effects on humoral and cell-

mediated parameters were found in rats.  Dietary exposure to Aroclor 1254 at estimated doses of 4.3 or

43 mg/kg/day for 10 weeks caused decreased serum total immunoglobulin G (IgG) antibody response to

keyhole limpet hemocyanin (KLH) antigen, decreased NK cell activity, and increased interleukin 2 (IL-2)

production by concanavalin A (ConA)-stimulated splenocytes in Sprague-Dawley male rats (Exon et al.

1985; Talcott et al. 1985).  Male F344 rats treated with Aroclor 1254 by gavage for 5–15 weeks had

reduced thymus weight and NK cell activity at 10 and 25 mg/kg/day, and increased PHA mitogen-

induced lymphocyte proliferation at 25 mg/kg/day; no significant effects were seen at #1 mg/kg/day.

(Smialowicz et al. 1989).  Enhanced responses to ConA, PWM, or Salmonella typhimurium mitogen

(STM) were not observed.  Decreased thymus weight and enhanced lymphoproliferative activity in

response to stimulation by PHA, but not PWM, were also observed in male Sprague-Dawley rats that

were fed Aroclor 1254 at an estimated dose of 21.5 mg/kg/day for 7 days (Bonnyns and Bastomsky

1976).  Thymus weight, WBC, and neutrophil counts were reduced in Sprague-Dawley rats fed an

estimated dose of 50 mg/kg/day Aroclor 1254 for 6 weeks (Allen and Abrahamson 1973); immune

function was not evaluated.  No changes in total or differential WBC counts or histology of the lymph

nodes, spleen, or thymus were found in male and female rats that were exposed to Aroclor 1254 at dietary

doses as high as 4.3 and 6.0 mg/kg/day, respectively, for 24 months (Mayes et al. 1998). 

Susceptibility to Moloney leukemia virus (MLV) was increased in male BALB/c mice that ingested

$4.9 mg/kg/day estimated dietary doses of Aroclor 1254 for 6 months; no effect was found at

0.5 mg/kg/day (lowest tested dose) (Koller 1977).  Similarly, susceptibility to mortality from herpes

simplex virus was increased in male ICR mice that ingested Kanechlor 500 in the diet for 21 days at

$33 mg/kg/day, but not at the lowest tested dose of 18 mg/kg/day (Imanishi et al. 1980).  Swiss-Webster

mice were fed Aroclor 1254 at doses of 1.2, 11.7, or 29.2 mg/kg/day for 12 weeks prior to mating with

exposure continuing throughout gestation and lactation  (Talcott and Koller 1983).  Immunologic

evaluation of the offspring at 8 weeks of age showed no significant effects on antibody titers to bovine

serum albumin (BSA), phagocytosis of SRBC (measured by ingestion by peritoneal macrophages in

vitro), or delayed-type hypersensitivity to oxazolone, although relative spleen weights were reduced at

29.2 mg/kg/day.  

Male New Zealand rabbits that were exposed to 0.18–6.44 mg/kg/day dietary doses of Aroclor 1254 for

8 weeks had no effects on several immunological end points, including hemolysin and hemagglutination
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titers against SRBC, gamma-globulin/transferrin ratio, and skin sensitivity to tuberculin, although

significant atrophy of the thymus occurred at all doses (Street and Sharma 1975).

Immunological effects of Aroclor 1254 in monkeys were first indicated in pilot studies of general toxicity

(Truelove et al. 1982; Tryphonas et al. 1986a).  Dietary ingestion of Aroclor 1254 in apple

juice-gelatin-corn oil emulsion at doses of 0.1 mg/kg/day (2 Cynomolgus monkeys) or 0.4 mg/kg/day

(1 monkey) for 238–267 days, beginning at approximately day 60 of gestation, caused a decreased

antibody response to SRBC in all treated animals compared to one control monkey (Truelove et al. 1982). 

No effect on antibody titers to tetanus toxoid was observed.  Both monkeys exposed to 0.1 mg/kg/day

delivered stillborn infants, and the 0.4 mg/kg/day monkey delivered a live infant which was nursed, but

failed to respond to SRBC and died at 139 days postpartum with acute confluent bronchopneumonia.

Groups of four Cynomolgus and four Rhesus monkeys ingested 0 or 280 µg/kg/day Aroclor 1254 in apple

juice-gelatin-corn oil emulsion on 5 days/week for 12–13 months and 27–28 months, respectively

(Tryphonas et al. 1986a).  Immunologic parameters that were evaluated included serum protein levels,

total serum IgG, IgA, and IgM, and antibody titers to SRBC.  Total serum IgM levels and anti-SRBC

(IgM) titers were reduced in both species. 

A subsequent series of tests on Aroclor 1254 was conducted in Rhesus monkeys because they appeared to

be more sensitive than Cynomolgus monkeys based on relatively greater severity of clinical signs and

higher blood and adipose PCB levels (Tryphonas et al. 1986a).  Groups of 16 female Rhesus monkeys

were orally administered Aroclor 1254 in capsules at doses of 0, 5, 20, 40, or 80 µg/kg/day, with

immunological assessments performed after 23 months (Tryphonas et al. 1989) when blood PCB steady-

state was established, and at 55 months (Tryphonas et al. 1991a, 1991b).  Average concentrations of

PCBs in the 0, 5, 20, 40, and 80 µg/kg/day dose groups around the time of immunologic testing were 0.1,

10.2, 34.0, 74.9, and 112 ppb, respectively, in blood and 0.4, 2.7, 9.0, 15.7, and 31.2 ppm, respectively, in

adipose tissue (Tryphonas et al. 1989).  Significant dose-related decreases in IgM (all doses except

0.02 mg/kg/day) and IgG (all doses) antibody titers to SRBC were found after 23 months.  Secondary

challenge with SRBC after 55 months showed decreasing dose-related trends in the IgM and IgG

anamnestic responses, although only IgM was significantly lower than controls at all dose levels.  Other

effects included alterations in lymphocyte T-cell subsets characterized by a significant decrease in the

ratio of T-helper/inducer (CD4) cells to T-suppressor/cytotoxic (CD8) cells, due to reduced CD4 and

increased CD8 cells, after 23 months at 80 µg/kg/day (not tested at lower doses).  No effects on total

lymphocytes or B-cells were found, indicating that T-cells were preferentially affected by the PCBs,
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although there were no exposure-related changes in T-cell subsets after 55 months suggesting that

adaptation had occurred.  Statistically significant dose-related trends, but no significant differences

between exposed and control groups, were observed after 55 months for decreasing lymphocyte

proliferation in response to mitogens (PHA and ConA, but not PWM), increasing NK cell activity,

increasing levels of serum thymosin alpha-1, decreasing phagocytic activity of peripheral blood

monocytes following activation with phorbol myristate acetate (PMA), and increasing total serum

complement activity.  End points that were not affected by PCB exposure included IgG antibody response

to pneumococcal antigens, total serum immunoglobulins (IgG, IgM, and IgA) levels, and other serum

proteins as well as serum hydrocortisone levels.

Offspring from the Rhesus monkeys studied by Tryphonas et al. (1989, 1991a, 1991b) were also

evaluated for immunological changes (Arnold et al. 1995).  Females were mated after 37 months of

exposure to 0, 5, 20, 40, or 80 µg/kg/day of Aroclor 1254.  The maternal dosing was continued

throughout pregnancy and into lactation until nursing infants were approximately 7 weeks old, and

treatment was restarted in the infants at weaning (22 weeks).  Immunological testing was initiated at

20 weeks of age although statistical evaluation was limited by small numbers of animals due to fetal and

postpartum deaths (see Section 3.2.5.3).  IgM and IgG antibody levels were determined 1–3 weeks

following immunization with SRBC at 20 and 60 weeks of age.  Significant reductions in IgM titers were

found at 5 and 40 µg/kg/day at weeks 22 and 23, and 5 µg/kg/day at weeks 61–63; IgM levels were

insignificantly reduced in the 40 µg/kg/day group at weeks 61–63.  IgG titers were significantly reduced

only in the 40 µg/kg/day group at week 22.  Other immunological tests were performed at 20, 28, and

60 weeks of age and included assays for lymphocyte proliferation (in response to stimulation by PHA,

ConA, or PWM mitogens or leucocyte stimulator cells) and NK cell activity; the only significant finding

was a decreased lymphocyte proliferation response at 40 µg/kg/day at weeks 28 and 60.

Aroclor 1248.  Immune responses to Aroclor 1248 were investigated in oral studies with mice, rabbits,

and monkeys.  Female mice (Albino outbred) that were fed Aroclor 1248 for 5 weeks had increased

endotoxin sensitivity at estimated doses of 13 and 130 mg/kg/day and decreased resistance to challenge

by S. typhimurium at 130 mg/kg/day (not tested at lower dose), but no effects on spleen and thymus

weight or histology at #130 mg/kg/day (Thomas and Hindill 1978).  In a study with New Zealand rabbits,

females were exposed to 3.6, 28, or 91 mg/kg/day dietary doses of Aroclor 1248 from 4 weeks before

mating until offspring were weaned at 4 weeks of age (Thomas and Hinsdill 1980).  Testing at 7 weeks of

age showed that skin contact sensitivity response to dinitrofluorobenzene was reduced in the offspring of

the 91 mg/kg/day rabbits.  This effect was accompanied by reduced body weight, making it unclear
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whether the effect was directly due to PCBs or secondary to some other form of toxicity.  No exposure-

related changes in spleen and thymus weights, plaque forming cell (PFC) response and antibody titers to

SRBC, or mitogenic response of peripheral blood lymphocytes to PHA or ConA were observed in the

rabbits at any dose level.  Thymus weight and WBC and neutrophil counts were reduced in Sprague-

Dawley rats fed Aroclor 1248 at an estimated dose of 50 mg/kg/day for 6 weeks (Allen and Abrahamson

1973); these effects were similar in severity to those induced by Aroclor 1254.

Increased susceptibility to bacterial infections was reported in two monkeys after dietary exposure to

approximately 0.1–0.2 mg/kg/day Aroclor 1248 (Barsotti et al. 1976).  The monkeys, which died after

173 and 310 days of treatment, had clinical signs of PCB toxicity and developed, terminally, a severe

enteritis from which Shigella flexneri type IV was isolated.

Immunologic changes were investigated in groups of eight Rhesus monkeys that were immunized with

SRBC and tetanus toxoid following dietary exposure to 0.1 or 0.2 mg/kg/day Aroclor 1248 for 11 months

(Thomas and Hinsdill 1978).  Comparison with a control group of five monkeys showed effects at

0.2 mg/kg/day that included reduced anti-SRBC antibody titers at weeks 1 and 12 after primary

immunization (i.e., at 2 of 6 postimmunization times), and decreased percent gamma-globulin after

20 weeks.  Antibody responses to SRBC were not significantly affected at 0.1 mg/kg/day.  The response

to tetanus toxoid was not significantly modified at either dose level.

Pathological changes in lymphoid tissues occurred in offspring of Rhesus monkeys that were fed 0.1 or

0.2 mg/kg/day estimated dietary doses of Aroclor 1248 for a 15-month period that included breeding,

gestation, and lactation (Allen and Barsotti 1976).  The offspring were exposed for approximately

46 weeks from beginning of gestation until they were weaned.  The doses were both fetotoxic (early

abortions occurred in 5 of 8 low-dose and 4 of 6 high-dose animals) and postnatally lethal (3 of 6 infants

died of PCB intoxication between days 44 and 329).  Gross and microscopic changes in the deceased

infants included reduced cortical and medullary areas in the thymus, reduced lymph nodes and absence of

germinal centers in the spleen, and hypocellularity of the bone marrow.  The females from the Allen and

Barsotti (1976) study were bred again after 1 year on the control diet (Allen et al. 1980).  Early infant

mortality was observed (2 of 4 in the former 0.1 mg/kg/day group and 2 of 7 in the former 0.2 mg/kg/day

group), and histological examinations showed thymus, spleen, and bone marrow effects similar to those

described above, as well as findings of hypocellular lymph nodes devoid of germinal centers.  Regression

of the cortical areas of the thymus and hypoplastic bone marrow were similarly observed in 5 infant
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(1-month-old) Rhesus monkeys that were intubated with 35 mg/kg/day Aroclor 1248 for 30 days

(Abrahamson and Allen 1973).

Aroclors 1242, 1221, and 1016.  Effects of Aroclors 1242, 1221, and 1016 on immune function have

been studied in male BALB/c mice.  Mice that were exposed to an estimated dietary dose of

22 mg/kg/day Aroclor 1242 for 3 or 6 weeks caused decreased  primary and secondary PFC responses to

SRBC antigens with concurrent reductions in total serum IgG1, IgM, and IgA levels (Loose et al. 1977,

1978a, 1978b, 1979).  There were no effects on thymus and spleen weights or histological alterations in

the thymus, spleen, or mesenteric lymph nodes, and morphometric analysis of the spleens did not show

changes in the number, size, or cellular composition of the germinal follicles.  Mice that were exposed to

22 mg/kg/day Aroclor 1242 for 3 or 6 weeks also had increased susceptibility to challenge by Salmonella

typhosa endotoxin or the malarial parasite Plasmodium berghei which resulted in increased mortality

(Loose et al. 1978a, 1979), although exposure to the same dose for up to 18 weeks did not affect

macrophage function (in vitro phagocytic capacity and activity or microbiocidal activity) or resistance to

challenge by EL-4 lymphoma or kidney ascites tumor cells (Loose et al. 1981).  Susceptibility to

Moloney leukemia virus was increased in male BALB/c mice that ingested dietary Aroclor 1242 for

6 months at estimated doses of $4.9 mg/kg/day, but not in mice that were similarly exposed to

Aroclor 1221 at doses as high as 48.8 mg/kg/day (Koller 1977).

Male C57BL/6 mice that were exposed to Aroclor 1016 in the diet at an estimated dose of 22 mg/kg/day

for up to 40 weeks had no consistent effects on thymus and spleen weights, lymphocyte counts, or

lymphocyte function as evaluated by the splenic graft-versus-host (GVH) response, mixed lymphocyte

response, mitogenic response to stimulation by PHA or LPS, or cytotoxic activity of sensitized

lymphocytes to target tumor cells (Silkworth and Loose 1978).

No changes in total or differential WBC counts or histology of the lymph nodes, spleen, or thymus were

found in male and female rats following 24 months of dietary exposure to Aroclor 1242 at doses as high

as 4.0 and 5.7 mg/kg/day, respectively, or Aroclor 1016 at doses as high as 8.0 and 11.2 mg/kg/day,

respectively (Mayes et al. 1998).

Defined Experimental Mixtures.   The toxicity of a mixture of PCB congeners analogous to that in

human breast milk (Canadian women) was studied in monkeys (Arnold et al. 1999).  Groups of infant

Cynomolgus monkeys (6 control males, 10 treated males) and Rhesus monkeys (2 control and 3 treated

males, 1 control and 3 treated females) were administered the congener mixture in a total daily dose of
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0 or 7.5 µg PCBs/kg/day from birth until 20 weeks old (i.e., without in utero exposure), and were

observed until they were at least 66 weeks old.  The dose was divided into thirds and administered prior

to the first three daily feedings via syringe to the back of the mouth.  The dose represented the

approximate daily intake of a nursing human infant whose mother’s milk contained 50 ppb PCBs (the

Health Canada guideline for maximum concentration in breast milk).  Immunological assessment of the

infants was started at 22 weeks of age and included IgM and IgG antibody production following

immunization with SRBC, lymphoproliferative activity of peripheral leucocytes in response to mitogens

(PHA, ConA, and PWM), numbers of peripheral leucocytes and their subsets, and NK cell activity.  Few

statistically significant changes were observed.  Anti-SRBC titers were reduced in the treated Rhesus and

Cynomolgus monkeys, but were not significantly different from controls, although antibodies were

significantly reduced over postimmunization time (p#0.025 for IgM and IgG in Cynomolgus monkeys,

p=0.002 for IgM in Rhesus monkeys).  Other changes included reduced absolute mean numbers of

B lymphocytes in the treated Cynomolgus monkeys (no change in mean percent); the effect was not

observed when re-evaluated in the monkeys at 1 year of age.  The investigators concluded that, overall,

the effects on the infant immune system were mild and of unclear biological significance due to large

inter-animal variability and the small numbers of animals.   

Single Congeners.  A series of toxicity studies was performed in which groups of 10 male and 10 female

Sprague-Dawley rats were exposed to diets containing four dose levels of various single congeners for

13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998; Lecavalier et al. 1997).  End points relevant to the

immune system included total and differential WBC counts, spleen weight, and histology of the spleen,

thymus, mesenteric lymph nodes, and bone marrow.  Data on these end points were reported for seven

congeners: PCB 28, 77, 105, 118, 126, 128, and 153.  Effects were essentially limited to thymic changes,

generally reductions in cortical and medullary volume and atrophy, which were observed following

exposure to PCB 126 ($0.74 µg/kg/day), PCB 153 ($3,534 µg/kg/day), PCB 28 ($3,783 µg/kg/day), and

PCB 105 ($3,960 µg/kg/day).  No changes in the immunologic end points were induced by PCB 77

(#892 µg/kg/day), PCB 118 (#170 µg/kg/day), or PCB 128 (#4,125 µg/kg/day).

Contaminated Fish Consumption.  Effects on the immune system were investigated as part of a two-

generation reproduction study of Sprague-Dawley rats that were fed diets containing 0, 5, or 20% (w/w)

of lyophilized protein from chinook salmon from Lake Huron or Lake Ontario (Arnold et al. 1998; Feely

and Jordan 1998; Feeley et al. 1998; Tryphonas et al. 1998a, 1998b).  Daily intakes of total PCBs in the

female F1 rats fed diet containing 0, 5, or 20% lyophilized Lake Ontario salmon flesh were calculated to

be 0.22, 23.20, and 82.37 µg/kg/day, respectively (Feely and Jordan 1998).  PCB intakes were
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qualitatively similar, but generally were somewhat smaller, for males compared with females and for F0

rats compared with F1 rats, although intakes from the Lake Huron diet were about 35–40% lower than

from the Lake Ontario diet.  The DDT complex (p,p’-DDT,  p,p’-DDE, and  p,p’-DDD) accounted for

75 and 60% of organochlorine pesticide residues in the Lake Huron and Lake Ontario fish, respectively,

and other major contaminants included CDDs and CDFs, mirex, chlordane, cadmium, lead, mercury, and

arsenic.  No consistent exposure-related effects were found across generations on various immunological

end points, including numbers of splenic leukocytes and T-lymphocyte subsets, PFC response to SRBC

antigen, NK cell activity, lymphocyte transformation in response to mitogens (ConA, PHA, and LPS),

phagocytic activity of peritoneal exudate cells, and resistance to infection by Listeria monocytogenes

(Tryphonas et al. 1998b).  The most notable finding was an increase in absolute leukocyte and

lymphocyte levels in the spleen of the F2 male rats fed the Lake Huron fish compared to controls and to

F2 males fed Lake Ontario fish, with higher cell numbers in the 20% group compared to the 5% group in

each fish source.  Additional data suggested that the increases in splenic leukocyte and lymphocyte levels

were due to changes in T-lymphocyte subsets, particularly the T-helper/inducer cells.  The changes in

spleen cellularity paralleled changes in peripheral WBC and lymphocyte levels (Tryphonas et al. 1998a).  

Another study assessed immunological effects in juvenile C57Bl/6 mice that were fed diets containing no

fish or 33% coho salmon from Lake Ontario or the Pacific Ocean for 2–4 months (Cleland et al. 1989). 

Intakes of persistent toxic substances were not reported although the halogenated aromatic hydrocarbons

with the highest concentrations in the control chow, Pacific salmon diet, and Lake Ontario salmon diet

were total PCBs (0.4, 20, and 2,900 ppb, respectively) and p,p-DDE (0.1, 10, and 670 ppb, respectively). 

Levels of PCDDs and PCDFs, mercury, tin compounds, and other metals were not examined. 

Evaluations included IgM, IgG, and IgA PFC responses to SRBC and numbers of spleen total

lymphocytes, total T-lymphocytes, and T-lymphocyte subsets following 2 months of exposure.  Cellular

immunity was assessed after 4 months of exposure by the cytotoxic T-lymphocyte response to allogeneic

tumor target cells.  The only significant finding was a reduced PFC response to SRBC for all three

immunoglobulin classes in the mice that consumed the Lake Ontario diet compared to responses in the

mice fed the Pacific Ocean salmon or control diets.
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3.2.3.3.3  Dermal Exposure

Limited data are available on immunological effects in animals after dermal exposure to PCBs.  Dermal

application of an estimated 44 mg/kg/day Aroclor 1260, 5 days/week for 4 weeks resulted in moderate

atrophy of the thymus in rabbits (Vos and Notenboom-Ram 1972).  No treatment-related histological

effects were observed in the spleen and lymph nodes.  Application of an estimated 42 mg/kg/day of the

same Aroclor for 38 days to rabbits produced histological atrophy of the thymus cortex and a reduction in

the number of germinal centers in the spleen and lymph nodes (Vos and Beems 1971).  No treatment-

related effects were observed in control rabbits in either study.  These studies tested small numbers of

animals and used Aroclor 1260 that had undetectable levels (<1 ppm) of CDFs.

3.2.3.3.4  Other Routes of Exposure

The relative potencies of five Aroclor mixtures and an experimental congener mixture resembling an

extract from human milk were evaluated using the splenic plaque-forming cell response to SRBC in

C57BL/6 mice treated by single intraperitoneal injection (Davis and Safe 1989).  Comparison of ED50

values showed that the higher chlorinated Aroclors 1260, 1254, and 1248 (ED50 of 104, 118, and

190 mg/kg, respectively) were more potent than the lower chlorinated Aroclors 1242, 1016, and

1232 (ED50 of 391, 408, and 464 mg/kg, respectively).  The experimental milk mixture contained an

average chlorine percentage resembling Aroclor 1254, but did not significantly decrease the number of

plaque-forming cells to SRBC, although the tested doses (5–50 mg/kg) were less than the ED50 values for

Aroclor 1254 and the other mixtures.

A large number of acute intraperitoneal and in vitro studies have investigated congeneric structure-

activity relationships for the purpose of elucidating mechanisms of immunotoxicity and relative potencies

of individual congeners and their potential interactive effects.  As summarized in Section 3.4.2

(Mechanisms of Toxicity), there is evidence from various test systems that noncoplanar as well as

coplanar and mono-ortho-coplanar congeners are immunologically active, indicating that both Ah

receptor-dependent and receptor-independent mechanisms are involved in the immunotoxicity of PCB

mixtures (e.g., Brown and Ganey 1995; Brown et al. 1998; Davis and Safe 1989, 1990; Ganey et al. 1993;

Harper et al. 1993a, 1993b, 1995; Schulze-Stack et al. 1999; Tithof et al. 1995).
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3.2.3.3.5  Evaluation of Animal Studies

The immunotoxicity of PCBs has been evaluated in various species of animals that were exposed to

commercial mixtures, mixtures of congeners analogous to human breast milk, Great Lakes fish, or single

congeners.  Studies in rats, mice, guinea pigs, and rabbits have conclusively shown that intermediate-

duration oral exposure to $4 mg/kg/day doses of commercial PCB mixtures can induce both

morphological and functional alterations in the immune system.  Effects in lymphoid tissues were

commonly observed, although no generalizations can be made across species.  Decreases in thymus

weight occurred in rats exposed to Aroclors 1254 or 1248 and rabbits exposed to Aroclor 1254 (Allen and

Abrahamson 1973; Smialowicz et al. 1989; Street and Sharma 1975), but not in guinea pigs exposed to

Aroclor 1260, mice exposed to Aroclors 1248, 1242, or 1016, or rabbits exposed to Aroclor 1248 (Loose

et al. 1978b; Silkworth and Loose 1978; Thomas and Hinsdill 1978; Vos and de Roij 1972).  Spleen

weight was reduced in mice exposed to Aroclor 1254, but not in mice exposed to Aroclors 1248, 1242, or

1016, rabbits exposed to Aroclor 1248, or guinea pigs exposed to Aroclor 1260 (Allen and Abrahamson

1973; Loose et al. 1978b; Silkworth and Loose 1978; Talcott and Koller 1983; Thomas and Hinsdill

1980; Vos and de Roij 1972).  Histological examinations showed no PCB-related changes in the thymus,

spleen, and lymph nodes of guinea pigs exposed to Aroclor 1260 or mice exposed to Aroclors 1242, but

histopathology data are not available for other orally-exposed species and mixtures (Loose et al. 1978b;

Vos and de Roij 1972).  Repeated dermal applications of Aroclor 1260 (42–44 mg/kg/day for 4–5 weeks),

however, caused histopathologic changes in the thymus (cortical atrophy) and spleen and lymph nodes

(reduced germinal centers) in rabbits (Vos and Beems 1971; Vos and Notenboom-Ram 1972).   

Effects on immune function, as indicated by altered responses in humoral and cell-mediated immunity

assays and host resistance tests, were also induced by intermediate-duration oral exposure to commercial

mixtures.  Studies in nonprimate species showed reduced antibody responses to tetanus toxoid in guinea

pigs exposed to Clopen A-60 (4 mg/kg/day for 3–5 weeks), keyhole limpet hemocyanin in rats exposed to

Aroclor 1254 (4.3 mg/kg/day for 10 weeks), and SRBC in mice exposed to Aroclor 1242 (22 mg/kg/day

for 3–6 weeks) (Exon et al. 1985; Loose et al. 1977, 1978a, 1978b, 1979; Vos and Van Driel-Grootenhuis

1972).  Commercial PCBs also increased susceptibility to infection by foreign antigens, including

Moloney leukemia virus in mice exposed to Aroclor 1254 or Aroclor 1242 ($4.9 mg/kg/day for

6 months), herpes simplex virus in mice exposed to Kanechlor 500 ($33 mg/kg/day for 21 days), and

S. typhosa endotoxin and the malarial parasite Plasmodium berghei in mice exposed to Aroclor 1242

(22 mg/kg/day for 3–6 weeks) (Imanishi et al. 1980; Koller 1977; Loose et al. 1979).  Proliferative

responses of splenic mononuclear leukocytes to PHA, but not to other mitogens (ConA, STM, or PWM),
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was enhanced in rats exposed to Aroclor 1254, although no effects on mitogen-induced proliferation of

lymphocytes were observed in rabbits exposed to Aroclor 1248 or mice exposed to Aroclor 1016

(Bonnyns and Bastomsky 1976; Silkworth and Loose 1978; Smialowicz et al. 1989; Thomas and Hinsdill

1980).  Skin reactivity to tuberculin was reduced in guinea pigs exposed to Clopen A-60, but not in

rabbits exposed to Aroclor 1254, and there was no effect on delayed-type hypersensitivity to the skin

sensitizer oxazolone in mice exposed to Aroclor 1254 (Street and Sharma 1975; Talcott and Koller 1983;

Vos and Van Driel-Grootenhuis 1972).  NK cell activity was reduced in rats following intermediate oral

exposure to Aroclor 1254 (Smialowicz et al. 1989; Talcott et al. 1985).

Immunological assessments of rodents fed Great Lakes fish that contained PCBs and other chemicals

produced some changes that are similar to those observed in the studies of commercial PCB mixtures. 

Although no consistent exposure-related effects were found on several immunological variables (thymus

weights, PFC response to SRBC, mitogen-induced lymphocyte proliferation, NK cell activity, and

susceptibility to challenge with Listeria monocytogenes) in a multigenerational study of rats fed Lake

Huron or Lake Ontario salmon, increases in splenic leukocyte and lymphocyte levels were increased in

F2 male rats due to changes in T-lymphocyte subsets (Tryphonas et al. 1998a, 1998b).  In addition,

juvenile mice that consumed salmon from Lake Ontario for 2–4 months had reduced antibody responses

to SRBC compared to mice fed Pacific Ocean salmon or control diets, but no changes in T-lymphocytes

or their subsets were observed (Cleland et al. 1989). 

Intermediate-duration oral studies of Aroclors in monkeys confirm the observations of PCB

immunotoxicity in rats, mice, guinea pigs, and rabbits and further indicate that nonhuman primates are

more sensitive than the other species.  Early studies found decreased antibody responses to SRBC,

increased susceptibility to bacterial infections, and/or histopathological changes in the thymus, spleen,

and lymph nodes in adult monkeys and their offspring at 0.1–0.2 mg/kg/day doses of Aroclor 1254 and

1248, although these findings are limited by small numbers of animals and dose levels (Abrahamson and

Allen 1973; Allen and Barsotti 1976; Allen et al. 1980; Barsotti et al. 1976; Thomas and Hinsdill 1978;

Truelove et al. 1982; Tryphonas et al. 1986a).  The most extensive characterization of immunological

effects in nonhuman primates involved assessments on groups of 16 monkeys performed after 23 and

55 months of oral exposure to 5 dose levels of Aroclor 1254 ranging from 5 to 80 µg/kg/day (Tryphonas

et al. 1989, 1991a, 1991b).  The immune parameters that were most consistently affected in the monkeys

were IgM and IgG antibody responses to SRBC, which showed significant dose-related decreases at

levels as low as 5 µg/kg/day (lowest tested dose).  Other effects were either transient (e.g., alterations in

T-cell subsets occurring after 23 but not 55 months of exposure) or showed dose-related trends after
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55 months without significant differences between exposed and control groups (e.g., decreasing

lymphoproliferative responses to mitogens, increasing NK cell activity, increasing levels of serum

thymosin alpha-1, decreasing phagocytic activity of peripheral blood monocytes following activation with

PMA, and increasing total serum complement activity).

Results of studies in infant Rhesus monkeys are consistent with the data in adults showing

immunosuppressive effects of PCBs at doses as low as 5 µg/kg/day.  Evaluation of in utero and

lactationally-exposed offspring from the monkeys in the Tryphonas et al. (1989, 1991a, 1991b) studies

indicated exposure-related reductions in antibody levels to SRBC and mitogen-induced lymphocyte

transformation that paralleled the findings in the maternal animals (Arnold et al. 1995).  Although

assessment of the data is limited by small numbers of infants in the exposed groups, statistical

significance was achieved for some end points and evaluation times, including reduced IgM titers at

22–23 and 61–63 weeks of age (following gestational/lactational and/or postweaning dietary exposure) in

the infants exposed to 5 µg/kg/day.  Infant Rhesus and Cynomolgus monkeys that were orally

administered a PCB congener mixture simulating the congener content of human milk at a dose level of

7.5 µg/kg/day for the first 20 weeks of life (i.e., from parturition without in utero exposure) had minimal

immunological changes (Arnold et al. 1999).  More specifically, anti-SRBC titers (IgM and IgG) were

uniformly reduced in the treated compared to control monkeys, although group differences were not

statistically significant due to small numbers of animals.  In addition, B lymphocyte numbers in the

exposed Cynomolgus monkeys were decreased compared to controls, although the levels were similar

when evaluated again at 1 year of age.  These results provide further evidence that monkeys are sensitive

to low doses of PCBs administered either as commercial mixtures or as a mixture of congeners

representative of those commonly found in breast milk.

As summarized above, oral immunotoxicity studies have shown that suppressed antibody response to

SRBC is the parameter most consistently affected by PCBs in adult and infant monkeys and that effects

on antibody responses have also been demonstrated in other species.  Reductions in antibody responses to

SRBC were also observed in juvenile mice that ingested diet containing fish from Lake Ontario.  The

immunologic response to SRBC antigens, as measured using the PFC assay, is a validated sensitive

indicator for detecting potentially immunotoxic chemicals (Luster et al. 1992).  Because antibody

responses to SRBC antigens were suppressed in monkeys at dose levels of Aroclor 1254 as low as

0.005 mg/kg/day, the lowest tested dose of any PCB mixture in any species, this effect is used as the main

basis for deriving the chronic MRL for oral exposure as indicated in the footnote to Table 3-2 and

discussed in Chapter 2 and Appendix A.
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3.2.4 Neurological Effects

3.2.4.1 Summary

The neurological effects of PCBs have been extensively investigated in humans and in animals.  The main

focus in humans studies has been on the effects in neonates and young children, although studies of adults

have also been conducted.  A great deal of concern exists that even low levels of PCBs transferred to the

fetus across the placenta may induce long-lasting neurological damage.  Because PCBs are lipophilic

substances, there is also concern that significant amounts might be transferred to nursing infants via breast

milk.  Studies in humans who consumed high amounts of Great Lakes fish contaminated with

environmentally persistent chemicals, including PCBs, have provided evidence that PCBs are important

contributors to subtle neurobehavioral alterations observed in newborn children and that some of these

alterations persist during childhood.  Some consistent observations at birth have been motor immaturity

and  hyporeflexia and lower psychomotor scores between 6 months and 2 years old.  There is preliminary

evidence that highly chlorinated PCB congeners, which accumulate in certain fish, are associated with

neurobehavioral alterations seen in some newborn children.  Subtle neurobehavioral alterations have also

been observed in children born to mothers in the general population with the highest PCB body burdens. 

Due to the limitations of epidemiological studies, these effects cannot be attributed entirely to PCB

exposure.  In one general population study, there was strong evidence that dioxins as well as PCBs were

contributors to the neurobehavioral effects seen in exposed children.  Children born to women who

accidentally consumed rice oil contaminated with relatively high amounts of PCBs and CDFs during

pregnancy also had neurodevelopmental changes.  Studies in animals support the human data. 

Neurobehavioral alterations have been also observed in rats and monkeys following pre- and/or  postnatal

exposure to commercial Aroclor mixtures, defined experimental congener mixtures, single PCB

congeners, and Great Lakes contaminated fish.  In addition, monkeys exposed postnatally to PCB

mixtures of congeneric composition and concentration similar to that found in human breast milk showed

learning deficits long after exposure had ceased.  A few other generalizations can be made from the data

in animals.  It appears that ortho-substituted PCB congeners are more active than coplanar PCBs in

modifying cognitive processes.  In addition, one effect observed in both rats and monkeys—deficits on

delayed spatial alternation—has been known to be induced by exposure to ortho-substituted PCBs,

defined experimental mixtures, and commercial Aroclors.  Both dioxin-like and non-dioxin-like PCB

congeners have been shown to induce neurobehavioral alterations in animals.  Changes in levels of

neurotransmitters in various brain areas have also been observed in monkeys, rats, and mice.  Of all the

observed changes, the most consistent has been a decrease in dopamine content in basal ganglia and
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prefrontal cortex, but further research is needed before specific neurobehavioral deficits can be correlated

with PCB-induced changes in specific neurotransmitters in specific brain areas.

3.2.4.2 Human Studies

3.2.4.2.1  Neurobehavioral Effects

3.2.4.2.1.1  Contaminated Fish Consumption

The Michigan Cohort.  Indices of neurological development were evaluated in 313 newborn infants (Fein

et al. 1984a, 1984b).  Of these infants, 242 were born to mothers who had consumed moderate to large

quantities of Lake Michigan fish sometime during their lives, and 71 were born to mothers who did not

consume Lake Michigan fish.  In the exposed group, mean fish consumption, estimated by recall and

duration of consumption, was 6.7 kg/year and 15.9 years, respectively; this rate is equivalent to 2 or

3 salmon or lake trout/month (Fein et al. 1984a, 1984b).  Consumption during pregnancy was 4.1 kg/year. 

The mean PCB level in maternal serum among those eating Lake Michigan fish was 6.1 ppb (SD=3.7),

while the mean among those reporting no fish consumption was 4.1 ppb (SD=2.7).  The mean PCB

residues also were significantly higher in breast milk samples from the fisheaters as compared to the

nonfisheaters, 865.6 ppb (fat basis) versus 622.2 ppb (Fein et al. 1984a).  No relationship was found

between cord serum PCB levels and maternal fish consumption possibly because of detection problems in

cord serum analysis.  A list of 68 potential confounders was collected from the maternal interview and

medical record.  The list contained data pertaining to demographic background, reproductive health

history including pregnancy and delivery, anesthesia during delivery, and exposure to other substances

such as caffeine, nicotine, and alcohol (Fein et al. 1984a, 1984b).  Because many of these mothers had

been exposed to polybrominated biphenyls (PBBs), cord serum PBB level also was used as a control

variable.  Potential confounders were included only if the frequency in each category exceeded 15%. 

Consequently, data on approximately 37 potential confounders were available for inclusion in the study

analyses (Fein et al. 1984a, 1984b).

Gestational age was evaluated by both the Ballard Examination for Fetal Maturity and the mother's report

of her last menstrual period.  The Ballard Examination was administered at 30 to 42 hours after birth to

209 of 313 (67%) infants with maternal permission granted during the limited time frame available for

assessment.  The Ballard estimate is based on an assessment of the newborn's neuromuscular and physical

maturity.  The Neonatal Behavioral Assessment Scale (NBAS) was administered to 284 of 313 (91%)
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newborns on day 3 after birth.  Three other infants also were tested sometime after their third day of life. 

In order to enhance the reliability of measures, the 44 NBAS items were reduced to seven summary

clusters; response decrement, orientation, tonicity, range of state, regulation of state, autonomic maturity,

and reflexes.  These reduced clusters were derived by synthesizing the results of factor analyses from

studies of six independent samples  (Fein et al. 1984a; Jacobson et al. 1984a). 

The results of the tests conducted on the newborns showed that decreased neuromuscular maturity, as

measured on the Ballard Scale was significantly associated with consumption of contaminated fish (Fein

et al. 1984b).  However, when the non-fisheater and fisheater populations were divided according to cord

serum level (<3 and $3 ppb, respectively), there was no significant difference in neuromuscular maturity

outcome.  The relationship between seven clusters from the NBAS and contaminated fish consumption

was evaluated using linear regression with control for caffeine and alcohol consumption both before and

during pregnancy.  The potential confounders were chosen based on their statistical significance in prior

correlation analyses.  Infants of mothers eating contaminated fish were more likely to exhibit hypoactive

reflexes, more motor immaturity, poorer lability of states, and a greater amount of startle (Jacobson et al.

1984a).

A follow-up of 39% (92 fisheating mothers, 31 controls) of the children in the Michigan Mother-Child

study occurred at 7 months of age (Jacobson et al. 1985).  Infants were administered Fagan's test of visual

recognition to assess the effect of pre- or postnatal PCB exposure on fixation to familiar and novel

stimuli.  Cord serum PCB level was a better, but only moderate, predictor of poorer mean visual

recognition memory than overall contaminated fish consumption.  Recognition memory performance was

not related to postnatal exposure from breast-feeding.  According to the investigators (Jacobson et al.

1985), there was an inverse relationship between preference for novelty and PCB levels in cord serum

(Fein et al. 1984a, 1984b).  The investigators further indicated that visual recognition was unrelated to

neonatal variables such as birth size, gestational age, and neurobehavioral performance.

Approximately 75% of the children were re-examined at age 4 (Jacobson et al. 1990a, 1990b). 

Neurobehavioral testing showed that prenatal exposure (maternal exposure before and during pregnancy),

assessed by cord serum PCB levels was associated with poorer performance on both the Verbal and the

Memory scales of the McCarthy Scales of Children’s Abilities.  There was no indication of perceptual

motor deficits or alterations of long-term memory.  Activity level was inversely related to 4-year serum

PCB level in a dose-dependent manner and also to maternal milk PCB level.  Multivariate analysis of

variance indicated that the effect of maternal milk was strongest in children of women with higher-than-
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average milk PCB levels ($780 ppb) who breast-fed for at least 12 months.  Correlations with fish

consumption were not examined.  Cognitive performance was unrelated to exposure from breast-feeding,

which, according to the investigators (Jacobson et al. 1990a), suggested that the neurobehavioral deficits

were due to fetal exposure.  Jacobson et al. (1990a) indicated that the deficits found in these studies were

not attributable to exposure to PBBs, lead, or seven other organochloride pesticides since these variables

were controlled for. 

A second evaluation of 226/313 children, 3 months after the McCarthy Scales assessment, was

undertaken using adaptions of the Sternberg visual search and recognition memory test, the Kagan's

Matching Familiar Figures Test, and the Streissguth vigilance paradigm  (Jacobson et al. 1992). 

Regression analyses were performed with control for statistically selected potential confounders.  The

exposure variables employed were cord serum and maternal milk PCB levels as well as the duration of

breast feeding.  Less efficient visual discrimination processing and increased errors in short term memory

scanning were associated with prenatal exposure to PCBs, but sustained attention was not.  Cognitive

performance was unrelated to postnatal exposure via breast milk (Jacobson et al. 1992).

A reanalysis of the assessment at 4 years of age was undertaken using the average of the standardized

scores for cord serum, maternal serum, and milk PCB values.  All values below the detection level (66.9%

of cord and 22.5% maternal serum values) were discarded (Jacobson and Jacobson 1997).  Results using

this composite score as the exposure and the McCarthy Scales, height, and weight as outcomes were

similar to those reported by Jacobson et al. (1990a, 1990b,1992).  Potential confounders in these analyses

were not delineated.  Additional findings were reported using the composite score which indicated that

the McCarthy Memory Scale and the General Cognitive Index declines were associated with prenatal

PCB exposure only in the most highly exposed children.

 

An 11-year follow-up was undertaken to assess the relationship between prenatal exposure to PCBs and

intellectual impairment.  The outcomes studied were the Wechsler Intelligence Scales, the Wide Range

Achievement tests, and the Woodcock Reading Mastery tests (Jacobson and Jacobson 1996a).  The

exposure variable consisted of a standardized average of the cord serum, maternal serum, and breast milk

PCB values.  These values were available for approximately 178/313 (57%) of the original group of

children in the study.  Linear regression modeling with confounder control, indicated that prenatal

exposure to PCBs was significantly associated with lower full-scale and verbal IQ scores.  On the

academic achievement tests, prenatal exposure to PCBs was associated with poorer word comprehension

and overall reading comprehension.  Covariates included in all the models were SES, maternal education
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and vocabulary, and the Home Observation for Measurement of the Environment (HOME) inventory. 

Additional confounders selected on the basis of their statistical relationship to the particular outcome were

also included in several models.  Mercury was included in two of the Woodcock Reading Mastery test

models, while lead was not included in any of the multivariate analyses assessing PCBs and intellectual

performance (Jacobson and Jacobson 1996a).

The associations of intellectual performance to lead and mercury were evaluated in separate multivariate

linear regression models lacking terms for PCB exposure.  Lower verbal IQ scores, lower verbal-

comprehension scores, and poorer word, passage, and reading comprehension were significantly

associated with higher lead levels at 4 years of age.  Poorer spelling was significantly associated with a

higher mercury concentration at 11 years of age (Jacobson and  Jacobson 1996a).

The Oswego Cohort.  A study similar to the one conducted in Michigan was initiated in Oswego County

(New York) based on babies born between 1991 and 1994 (Lonky et al. 1996).  Pregnant women were

recruited from the office of one obstetric practice and, following interviews, were divided into three

groups based on their estimated fish consumption.  The high fish consumption group was composed of

women who reported having eaten $40 PCB-equivalent pounds of Lake Ontario fish in their lifetime

(n=152) (the same as Michigan’s high fish consumption group).  The low consumption group reported

eating <40 PCB-equivalent pounds (n=243), while the no fish consumption group had never eaten Lake

Ontario fish (n=164).  The mean PCB-equivalent pounds consumed in the high fish consumption group

was 388.47 (SD=859.0), while the mean among those in the low fish group was 10.14 (SD=17.8).  The

exposure in the high fish consumption group corresponds to a mean of 2.3 salmon or trout meals per

month (belly fat trimmed and skin fat removed).  The three groups did not differ with regard to

demographic, health and nutritional data, maternal substance use, and infant birth characteristics.  The

high fish consuming group had a significantly heavier pre-pregnancy weight than the nonfisheating

group.

The end points evaluated in the study were based on the NBAS.  The NBAS behavioral and reflex items

were reduced to seven clusters nearly identical to the clusters used in the Michigan Mother-Child pairs

study (Jacobson et al. 1984a).  The NBAS was administered twice to each infant, once at 12–24 hours and

again at 25–48 hours after birth.  A total of 58 potential confounding variables were submitted to

principal components analysis.  Three sets of analyses were performed;  the first set contained

demographic, nutrition, and stress variables while the second was composed of substances consumed

during pregnancy, chronic medical conditions, and other toxic exposures including the type of plumbing
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in the woman's home (lead).  The third group of variables included labor and delivery complications as

well as birth characteristics.  A total of 24 components were derived from these three sets of variables.

Statistical analyses were performed using the change scores from the NBAS evaluation (Time 2–Time 1). 

Multivariate analysis of covariance (MANCOVA) was performed for each of the NBAS clusters with

group membership (high, low, and no fish consumption) as the independent variable and the

24 components representing potential confounders as covariates.  Approximately 75% of each fish

consumption group was included in the analysis (n=416).  The loss of subjects occurred because only

subjects with data for all variables were included.  Multiple regression was also performed for each of the

NBAS clusters with inclusion of component covariates for confounder control. 

The results of the MANCOVA analyses indicated that newborns exposed to high concentrations of fish

demonstrated a greater number of abnormal reflexes and less mature autonomic responses than newborns

in the other two exposure groups.  Change scores for the Habituation cluster were analyzed in a separate

analysis of covariance due to the large number of subjects with missing data (n=285 in the analysis).  For

that cluster, infants in the high fish group showed a worsening performance from Time 1 to Time 2.  The

regression analyses showed that infants in the high fish group had a significantly smaller decrease in the

number of abnormal reflex scores from Time 1 to Time 2 than the low and no fish groups.  In the

Autonomic cluster, the high fish group demonstrated a significant worsening in performance between the

first and second testing.  Performance for the remaining clusters was not significantly associated with fish

consumption in the regression analyses.  In this study, birth weight, head circumference, and gestational

age were unrelated to fish consumption.  The differences in the birth weight and head circumference

findings of the Michigan and Oswego studies could be due to the differences in PCB exposure levels.

In a later publication, the Oswego group of investigators examined the validity of using fish consumption

as a surrogate for PCB exposure (Stewart et al. 1999).  The study included 279 women with complete fish

consumption histories, PCB cord blood levels, and demographic and covariate information.  The sample

included 145 women who reported never having consumed Lake Ontario fish (controls) and 134 who

reported consuming at least 40 PCB-equivalent pounds over their lifetime (high fish consumption as

defined earlier).

Total PCB levels were divided into three PCB homologue clusters representing the lower, middle, and

upper tail of the distribution of all PCB homologues.  The lower tail corresponded to lightly chlorinated

PCB homologues with one to three chlorines per biphenyl (C1 1–3); the middle, to moderately
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chlorinated PCBs with four to six chlorines per biphenyl (C1 4–6); and the upper tail, to heavily

chlorinated PCB homologues with seven to nine chlorines per biphenyl (C1 7–9).  In a previously

conducted study in rats fed Lake Ontario salmon, the highly chlorinated PCB homologues accounted for a

greater proportion of the PCBs detected (mole percent) when the fish was fed longer or the absolute

concentration of PCBs was higher (Stewart et al. 2000a).  The authors predicted the same type of results

from the validity study using human cord blood.  The average concentration of total PCBs in human cord

blood was extremely low, 0.8 ppb among high fisheaters and 1.03 ppb among nonfisheaters (controls)

(p=0.36).  The relative percent (mole percent) of low- and medium-chlorinated congener PCB clusters

from cord blood were similar for fisheaters and controls across each level of total PCB.  The mole percent

of highly chlorinated congeners was significantly greater in the cord blood of women who ate Lake

Ontario fish as compared to the controls who reported no fish consumption (p=0.006).  The difference

between fisheaters and controls increased significantly (p=0.02) as the total PCB concentration increased.  

Eighty-three women in the study also provided breast milk samples within 6 months of the birth of their

child.  The C17–C19 homologues in breast milk and cord blood were moderately correlated (Pearson’s

r=0.29; p<0.05), while no correlation was found for the light- and moderately-chlorinated homologues. 

Actual values of PCBs in milk were not provided.

Based on their findings, the authors concluded that maternal consumption of Great Lakes fish increases

the risk of prenatal exposure to the most heavily chlorinated PCB homologues.

A subset of women from the Lonky et al. (1996) study also had cord blood samples collected for total

PCB and congener distribution pattern analysis (Stewart et al. 1999).  The study group was comprised of

mothers who had consumed Lake Ontario fish (n=141) and those who had not (n=152).  Each cord blood

sample was analyzed for the presence of 69 PCB congeners and several coeluters (e.g., hexachloro-

benzene [HCB], mirex, DDE).  Exposure was divided into four groups based upon the distribution of

heavily chlorinated PCBs (Cl 7–9) in each sample.  The exposure variable was an ordinal level measure

with the following categories: nondetectable (n=173); bottom 33rd percentile of detectable (n=39);

middle 33rd percentile (n=40); and upper 33rd percentile (n=40). The actual lipid-adjusted PCB levels

represented by these tertiles among those with detectable PCB levels were: >0–23.2 ng/g fat;

23.3–132.7 ng/g fat; and $132.7 ng/g fat.  The heavily chlorinated PCB congeners were used as the

measure of PCB exposure since the validity study results support the position that these congeners are the

most valid index of fish-borne PCB exposure from Lake Ontario (Stewart et al. 1999, 2000a).
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The end points evaluated were based on the seven clusters of the modified NBAS as evaluated by Lonky

et al. (1996).  The modified NBAS was also used in the Michigan Mother-Child Study (Fein et al. 1984b;

Jacobson et al. 1984a).  Potential confounders included in the models were selected if preliminary

analyses using one-way analysis of variance or linear regression of each covariate in relation to exposure

resulted in a p value of <0.20.  Those meeting the p<0.20 criterion included: education, SES score,

HOME score, maternal prepregnancy weight and weight gain, child gender, birth weight and head

circumference, cigarettes/day, and caffeine consumption.  Unlike the analyses employing fish

consumption as the exposure, the outcomes (i.e., NBAS performance clusters at Time 1 [12–24 hours]

and Time 2 [25–48 hours after birth]) were analyzed separately rather than as a change score

(Time 2–Time 1) (Stewart et al. 2000b).  No associations were noted between PCB cord levels and the

NBAS clusters at Time 1.  These findings are similar to those described using fish consumption as the

exposure variable (Lonky et al. 1996).  In looking at Time 2 NBAS cluster indices, significant linear

trends were observed between poorer Habituation and poorer Autonomic scores and exposure to heavily

chlorinated PCBs.  The suggestion of a trend for abnormal reflexes with PCB exposure was observed, but

the p value was 0.10 (Stewart et al. 2000b).  Linear trend analysis also revealed a significant association

between the proportion of poor NBAS clusters and heavily chlorinated PCBs.  None of the NBAS

performance scores were associated with non-PCB contaminants (i.e., HCB, DDE, lead, mercury, mirex)

in linear regression modeling (Stewart et al. 2000b).

Lake Michigan Aging Population Study.  This study was designed to assess the neuropsychological

functioning of a group of 50–90-year-old fisheaters exposed to PCBs through Great Lakes fish

consumption compared to a group of age- and sex-matched nonfisheaters (Schantz et al. 1996a, 1999). 

Fisheaters were defined as those who regularly consumed one or more meals of Lake Michigan

sportsfish/week (>24 pounds/year); nonfisheaters consumed <6 pounds/year.  Four classes of control

variables were evaluated: a comprehensive list of demographic, life-style, psychological, and health-

related variables.  Fisheaters and nonfisheaters had very similar demographic characteristics, reported

similar patterns of smoking and alcohol consumption, and had comparable scores on measures of

intellectual functioning and affect (Schantz et al. 1996a).  

The final analysis was conducted on 101 fisheaters and 78 nonfisheaters.  Blood samples of the

participants were analyzed for PCBs and 10 other contaminants included PBBs, DDE, HCB,

oxychlordane, dieldrin, mirex, mercury, and lead.  Serum levels of PCBs and DDE were significantly

elevated in the fisheaters (PCBs=16.0 ppb) relative to the age- and sex-matched nonfisheaters

(PCBs=6.2 ppb), and also relative to the population at large.  Lead and mercury were low in both groups,
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but were slightly higher in the fisheaters.  Because of the high correlation between serum PCBs and DDE,

the effects of PCBs and DDE were assessed jointly using a single derived exposure variable categorized

as low, intermediate, or high (Schantz et al. 1999).  A great majority of the high exposure group were

fisheaters and a large majority of the low exposure group were nonfisheaters.  However, 15% of

nonfisheaters had elevated PCB/DDE exposure and 15% of fisheaters had low PCB/DDE exposure. 

Based on this, Schantz et al. (1999) stressed the importance of quantitating contaminant levels rather than

relying on fisheating status as a surrogate measure for exposure. 

Each subject was tested on two fine-motor tasks, the Grooved Pegboard Test (GPT), which assesses

visual-motor coordination, and the Static Motor Steadiness Test (SMST), which assesses hand steadiness. 

Each subject performed the task first with the dominant hand and then with the nondominant hand.  The

final multivariate model for GPT included age, gender, income, diabetes and use of angiotensin-

converting enzyme (ACE) inhibitors, sympatholytic agents, and cardiac glycosides.  PCB/DDE exposure

was not a significant factor affecting the GPT score; age and gender were the strongest predictors of

performance followed by sympatholytics and income.  Performance on the SMST was not related to

PCB/DDE exposure in initial unadjusted analyses and in the final model, scores on the SMST improved

slightly as PCB/DDE exposure increased.

3.2.4.2.1.2  General Population Exposure

The North Carolina Breast Milk and Formula Project.  The North Carolina Breast Milk and Formula

Project (NCBMFP) is a cohort study designed to assess the relationship between exposure to prenatal and

postnatal PCBs and growth and development in infants and children.  The NCBMFP was initiated in 1978

and included a cohort of 931 children born between 1978 and 1982.  Mothers planning to deliver at one

of three participating institutions were recruited from hospital familiarization tours, Lamaze classes, and

from both private and public prenatal clinics.  No attempt was made to assemble a random sample of

women (Rogan et al. 1986a, 1986b, 1987).  The participants were administered a questionnaire while in

the hospital following delivery.  Maternal serum, cord blood, and placenta samples were collected as well

as colostrum, breast milk, or formula.  The first follow-up visit occurred at 6 weeks with subsequent

evaluations at 3 and 6 months postpartum.  Breast milk or formula was collected at each of these visits.  A

second maternal serum specimen also was collected at the 6-week assessment.  Subsequent follow-up

evaluations occurred at 12, 18, and 24 months, with yearly visits until the age of 5.  The children were

examined and a health history was taken at each exam.  The mothers also were queried about weaning. 

Breast milk was collected until the mother ceased lactation (Rogan et al. 1987).  All biological samples
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and a 10% sample of formula specimens were analyzed for PCBs.  Because most of the PCB levels from

the cord blood and placenta were below the quantitation limits, these two samples were not used as

measures of exposure.  The median PCB maternal serum level at birth was 9.06 ppb.  PCB levels in milk

at birth averaged around 1.8 ppm (fat basis).  In lactating women, the levels of PCBs in breast milk

declined about 20% over six months and about 40% over 18 months (Rogan et al. 1986a).

The participating mothers were not a representative sample of the North Carolina population.  Ninety

percent of the participants were white, with an age range of 16–41 (median=27).  The women were well

educated with 53% having a college education.  Occupations among the participants were listed as

housewife for 16%, while 41% were professionals.  Eighteen percent smoked and 40% drank alcohol at

least once a week.  Twenty-one percent reported eating sportfish at least once during pregnancy.  Forty-

three percent of the women were primiparous and most (88%) breast-fed their study child to some extent

(Rogan et al. 1986a).

The assessment at birth comprised 912 children with at least partial neonatal information.  The outcomes

evaluated in the neonatal period included birth weight, head circumference, and the presence of jaundice

as recorded in the medical record.  The NBAS was also administered to the newborns by a trained staff

member in the presence of the parents.  Fifty-nine percent of the NBAS exams were conducted during the

first week of life, 20% in the second, and 16% in the third.  The seven cluster scores used in the Michigan

Mother-Child Study (Jacobson et al. 1984a) were also employed in this project (Rogan et al. 1986b).  The

relationships of birth weight, head circumference, and the NBAS clusters to PCB levels were assessed by

multiple regression.  The covariates (potential confounders) included in the analyses of birth weight and

head circumference were infant race, sex, mother's age, education, occupation, smoking, alcohol

consumption, prior pregnancies, maternal weight, and center enrolling the participant.  The analysis of

head circumference also included the birth weight variable (Rogan et al. 1986b).  The covariates included

in the analyses of the NBAS clusters included mother's age, education, occupation, smoking, alcohol

consumption, sportfish consumption, general anesthesia during delivery, infant race and sex, birth weight,

presence of jaundice, number of hours since eating, one term for the center, and one for the examiner

(Rogan et al. 1986b).  

The multiple regression analyses found no associations between birth weight or head circumference and

PCB level.  For the NBAS assessment, only the cluster scores for tonicity and reflexes were significantly

associated with PCB levels.  The authors looked at the four scales that make up the tonicity cluster score

and found that exposure to PCBs affected the general tone and activity scales; less muscle tone and
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activity were associated with higher PCB levels, but only at the highest levels of PCBs.  The reflex cluster

score was also significantly affected by PCB exposure.  When the abnormal reflex scores were separated

into high and low, it became apparent that only hypo-reflexia, (not hyper-reflexia), was associated with

PCB levels.  Since the NBAS were carried out over the first 3 weeks of life rather than during the first

3 days of life (considered to be the best time for this exam according to several investigators), the authors

also repeated the same analysis with the population restricted to those whose exams were conducted on

day 3 or earlier.  The effect of PCB levels on hyporeflexia remained significant while the effect on

tonicity was unchanged in size but no longer statistically significant.  The authors interpreted the lack of

significance to the decrease in sample size rather than confounding due to the age the exam was

administered (data were not shown, Rogan et al. 1986b).

The follow-up evaluations at both 6 and 12 months included the administration of the Bayley Scales of

Infant Development (Gladen et al. 1988).  This exam yields a mental development index (MDI) score and

a psychomotor development index (PDI) score, both of which are scaled like a standard IQ test.  There

were 858 infants (92%) from the original cohort who participated in the study past the neonatal period. 

Of these, 788 had Bayley scores available at 6 months while 720 had 12-month scores (706 children had

scores at each time period).  The exposure variable representing prenatal exposure used in the analyses at

6 and 12 months was the estimated PCB levels in milk at birth.  The exposure variable representing

postnatal exposure used in these follow-up assessments was a combination of the concentration of PCB in

breast milk fat and the duration of breast feeding.  In addition, milk was assumed to average 2.5% fat over

the entire lactation.  The authors also assumed that children consumed 700 grams of milk daily, if mostly

breast fed, and half of that amount until breast-feeding stopped (Rogan et al. 1987).  Children who were

not breast fed were counted as having no postnatal exposure (Gladen et al. 1988).  Potential confounders

included maternal age, race, education, occupation, smoking, alcohol consumption and the infant's sex,

gestational age, birth weight, head circumference, jaundice, duration of breast feeding, number of older

siblings, number of abnormal reflexes from the NBAS exam, age Bayley administered, and center or

examiner.  

Linear regression analyses indicated that the psychomotor index scores declined with increasing prenatal

PCB exposure at both 6 and 12 months.  At 6 months, the PDI was estimated to decrease 0.96 points for

every increase of 1 ppm in PCBs.  This would mean a drop of 2.6 points if a child moved from the 5th to

the 95th percentile of PCB exposure.  At 12 months, the drop was estimated at 1.34 points/ppm.  Neither

the 6-month nor the 12-month mental index scores were related to transplacental PCB exposure (Gladen
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et al. 1988).  Similar analyses were run to examine postnatal exposure in breast-fed children.  Postnatal

exposure to PCBs was not associated with the PDI or MDI scores at either time period.

The children also were evaluated by the Bayley Scales of Infant Development at 18 and 24 months. 

Scores were available for 676 (73%) children at 18 months and for 670 (72%) children at 24 months

(Rogan and Gladen 1991).  Linear regression modeling was used to assess the relationship between

prenatal the Bayley scores and exposure to PCBs.  Covariate adjustment included sex, race, age of exam,

number of older siblings, maternal age, education, and occupational grouping.  Maternal smoking, alcohol

consumption, and a term for the examiner were also included.  The effects of prenatal PCB exposure on

the PDI score at 18 and 24 months were similar to those seen at 6 and 12 months; however, neither were

significant.  Scores at the age of 18 months, declined 0.38 for every increase of 1 ppm in PCBs.  The

decline at 24 months of age was 1.16 points for every 1 ppm increase in transplacental PCB exposure.  As

the score pattern was not linear, the authors also conducted an analysis of variance in which the

transplacental exposures were broken into categories.  Each category of PCB exposure was then

compared to the lowest with adjustment for covariates.  At 18 and 24 months, adjusted scores on the

psychomotor scales were 4–9 points lower among children in the two highest exposure groups (top 5th

percentile of prenatal PCB exposure), significantly so at 24 months (p <0.05).  There was no evidence of

an effect through postnatal PCB exposure in breast milk.  An additional report in this series found that the

deficits observed in children through 2 years of age were no longer apparent at ages 3, 4, and 5 years as

determined by evaluation with the McCarthy Scales of Children’s Abilities (Gladen and Rogan 1991). 

Finally, evaluation of third and higher grade children showed no significant relationship between the

child’s work habit or conduct grades and PCB exposure either prenatally or through breast milk, or

between hyperactivity reported by parents and exposure (Rogan and Gladen 1992).

The Dutch Mother-Child Study.   The Dutch Mother-Child Study was designed as a prospective study to

assess the possible adverse health effects of prenatal and postnatal PCB and dioxin exposure.  The initial

study group consisted of 489 healthy mother-infant pairs recruited between June 1990 and June 1992

during the last month of pregnancy by their obstetrician or midwife (Koopman-Esseboom et al. 1994b). 

The entry criteria included first or second-born term infants (37–42 weeks gestation) without serious

illnesses or complications during pregnancy and delivery.  All participants were caucasian (Huisman et al.

1995a).  Among the volunteers, 50% of the mothers were planning to breast feed for at least 6 weeks (for

postnatal exposure assessment), while the other 50% were planning to use formula from a well

characterized batch.  This was part of the study design in order to compare breast-fed infants with bottle-

fed infants.  Seventy-one mother-infant pairs were lost because of the inability to breast feed for 6 weeks
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leaving 418 pairs in the study population.  Two hundred seven pairs (105 breast-fed and 102 formula-fed)

were from Rotterdam, a highly industrialized area, while 211 pairs (104 breast-fed and 107 formula-fed)

were from Groningen, a semi-urban area in northern Holland (Koopman-Esseboom et al. 1994b).  

  

The exposure variables used in this study were maternal serum and milk samples as well as cord blood

specimens.  Maternal serum was collected during the last month (weeks 36–40) of pregnancy while milk

samples were collected at 2 and 6 weeks post delivery.  Data on the duration of breast feeding in weeks

were also collected (Koopman-Esseboom et al. 1996).  PCB levels in maternal serum and cord blood were

assumed to be a direct measure of prenatal PCB exposure while the breast milk values in the second week

after delivery were assumed to reflect the extent of intrauterine and neonatal exposure during the first

2 weeks after birth (Huisman et al. 1995a).

  

The focus of the authors was to investigate if one of the more easily measurable PCB congener levels

could predict the PCB and dioxin exposure of the developing fetus and breast-fed infant. In order to

express the potency of the mixture of dioxins and dioxin-like PCBs in breast milk, the authors used the

toxic equivalency factor (TEF) approach (Huisman et al. 1995a; Koopman-Esseboom et al. 1994b;

Patandin et al. 1999).  As discussed in Section 3.5.2, the TEF approach compares the relative potency of

individual congeners with that of 2,3,7,8-TCDD, such that the TEF for 2,3,7,8-TCDD is 1.  TEQs were

calculated by multiplying the concentration of each congener by it’s TEF.  These values were then

multiplied by the number of weeks of breast feeding reported by the mother to obtain a measure of

postnatal PCB exposure (Patandin et al. 1998).  In breast milk, of the total TEQ value, dioxins contributed

46%, coplanar PCBs 24%, mono ortho-substituted PCBs 23%, and di-ortho-substituted PCBs 7%.

Because dioxin measurements are time-consuming, expensive, and require large volumes of blood, the

authors chose four nonplanar PCB congeners (PCB 118, 138, 153, and 180) as indicators of PCB and

dioxin exposure of the developing fetus and breast–fed infant (Koopman-Esseboom et al. 1994b). 

Although the correlation coefficients between these congeners and congener levels in maternal plasma

and PCB levels in cord plasma or PCB and dioxin levels in human milk were highly significant, the 95%

predictive interval was too wide to accurately predict the PCB and dioxin levels to which an individual

infant is exposed in utero or postnatally by breast feeding, from the PCB levels in maternal plasma

(Koopman-Esseboom et al. 1994b).  The sum of these four congeners in maternal plasma and cord plasma

amounted to 2.21 and 0.45 ppb, respectively.  A total of 26 PCB congeners, including the four mentioned

above, were measured in breast milk and the total PCB concentration in milk was approximately 620 ppb

(fat basis).  The sum of PCB 118, 138, 153, and 180 in milk totalled 430 ppb.
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Data from the obstetrical optimality list were collected in this study as potential confounders and

covariates of interest.  The list included 72 items that measure SES (demographic, educational, and

occupational variables) and pre-, intra-, and immediate postpartum conditions (Huisman et al. 1995a). 

Other potential confounders were maternal smoking and alcohol consumption (Koopman-Esseboom et al.

1996).  The obstetrical optimality score was calculated by counting the number of items that fulfilled

preset criteria for optimality.  Data on the 5th, 50th, and 95th percentiles of the PCB distributions have

been presented in these reports for the biological samples.  The PCB levels were logarithmically

transformed (natural logarithm).  Comparisons of participant levels from Groningen to Rotterdam were

made using the chi-square and Wilcoxen rank sum test.  Both univariate and logistic regression analyses

were conducted to evaluate the relationship between exposure variables and outcomes while controlling

for covariates. 

Several outcomes were evaluated in the newborn period.  The neonatal neurological examination was

administered to evaluate age appropriate neurological behavior.  Sixty-three percent of the newborns were

examined in the second week of life, 31% in the third week, and 6% in the fourth week of life.  The

examination used in this study included performance on a 10 item reflex cluster and an 11 item postural

tone cluster.  The scores for each item (0=low, 1=intermediate, and 2=high) were summed for each

cluster.  A score of #9 was considered to reflect low muscle tone on the postural cluster and a score of

#10 was classified as low responsiveness on the reflex score.  A neurological optimality score (NOS) was

also calculated using a 60 item scale.  The NOS score was dichotomized at the median of the pooled

population scores (<57=not optimal, $57=optimal) (Huisman et al. 1995a). 

Logistic regression analyses with NOS as the dependent variable and maternal serum or cord blood as the

measure of prenatal exposure, were conducted with adjustment for maternal age, study center, alcohol,

and the interaction of age and alcohol.  Models for each of the four nonplanar PCB congeners (118, 138,

153, 180) alone and the sum of the four resulted in odds ratios (ORs) around 1.0 (no association).  An OR

of greater than 1.0 indicates an increased risk in the exposed group (see Chapter 10, Glossary).  The

prenatal exposure variables (PCB levels in maternal and cord plasma) were not associated with either the

reflex or postural cluster scores.  Another logistic regression analysis, with the postural tone cluster as the

dependent variable, and adjusting for study center, showed a significantly higher percentage of hypotonia

with an increase in planar PCB TEQ in milk.  No effect on the reflex cluster was found.  

At 18 months of age, the neurological condition of the infants was assessed using an age-specific

neurological examination which focuses on the observation of motor functions (grasping, sitting,
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crawling, standing, and walking) in a standardized free field situation (Huisman et al. 1995b).  Based on

this examination, each infant was classified as normal, mildly abnormal, or abnormal.  The neurological

findings were also evaluated in terms of optimality.  Huisman et al. (1995b) also state that special

attention was given to the quality of movements in terms of fluency since fluency of motility has been

shown to be an indicator for the integrity of brain function in fetuses and prematures.  The effect of PCB

and dioxin exposure was investigated by a multiple linear regression analysis in which the dependent

variables were the neurological optimality score and the fluency cluster score at 18 months.  After

adjusting for covariates, the results showed that prenatal PCB exposure had a small negative effect on the

neurological condition of 18-month-old infants whose fathers did not smoke; no such effect was observed

in children of fathers who smoked.  Neurological condition was unrelated to exposure to PCBs and

dioxins via breast milk. 

To assess the mental and psychomotor development of infants exposed to PCBs both pre- and postnatally,

the Dutch standardized version of the Bayley Scales of Infant Development were administered at 3, 7, and

18 months of age.  Both the MDI and the PDI were included in the assessments.  The tests were

performed at the infant's home in the presence of the parent(s) (Koopman-Esseboom et al. 1996).  The

evaluations of the infants using the Bayley Scales of Infant Development were undertaken only for the

207 children from Rotterdam.  Rotterdam is an urban area thought to have higher exposures to PCBs than

Groningen, a semi-urban area in northern Holland.

Multiple regression analysis assessing the effects of prenatal PCB exposure on the psychomotor scale

revealed that prenatal exposure to PCBs was significantly associated with a decrease in the PDI score at

3 months of age.  A doubling of the PCB-plasma-sum resulted in a decrease in the psychomotor score of

three points.  The covariates included in the model were gestational age, parity, the HOME inventory

score, education of the mother, and duration of breast feeding.  At both 7 and 18 months of age, there was

no significant effect of prenatal PCB exposure on the PDI scores (Koopman-Esseboom et al. 1996). 

Decreased PDI scores at 7 months among infants who were breast fed for longer periods and had higher

TEQ scores were associated with postnatal total TEQ (PCB plus dioxin) exposure.  The PDI score at

18 months was not associated with postnatal PCB-dioxin exposure.  The MDI scores were not

significantly associated with either prenatal or postnatal PCB exposure.  Higher MDI scores at 7 months

of age was positively associated with breast feeding per se.  Finally, neither the psychomotor nor the

mental development scales (at any age) were associated with an exposure variable created with the PCB-

milk-sum multiplied by the duration of breast feeding.
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At the age of 42 months, follow-up evaluations included both neurological and cognitive outcomes

(Lanting et al. 1998c; Patandin et al. 1999).  The neurological evaluation was comprised of an age-

appropriate clinical exam, which focused on the observation of motor functions (i.e., prehension, sitting,

crawling, standing, and walking) as well as the calculation of age appropriate NOS.  A movement fluency

score also was tabulated (not described).

A preliminary analysis summarizing the plasma PCB levels among children in the Rotterdam group at

42 months (n=173), found that median plasma levels were 3.6 times higher in breast-fed children

(0.75 µg/L) than in their formula-fed peers (0.21 µg/L).  Breast feeding period and breast milk PCB levels

were important predictors of plasma levels in breast-fed children at 42 months, while plasma levels in

formula-fed children were significantly related to maternal serum levels during the last month of

pregnancy (Patandin et al. 1997).  These results were obtained using multivariate linear modeling.  The

neurological assessment included 394 mother-infant pairs (94% of total participants) from both Rotterdam

and Groningen.  The clinical exam yielded a diagnosis of “neurologically normal” in 97% of the children.

 

Linear regression analyses using the NOS as the dependent variable and either maternal PCB-cord sum,

maternal PCB-serum sum, or the child’s PCB level at 42 months as the exposure found no associations

between this outcome and any of these exposure variables.  (Each exposure variable was modeled

separately).  Potential confounders in each model included the study center, the type of feeding during

early life, the duration of breast feeding, and several items from the obstetrical optimality score (i.e., SES,

obstetrical and perinatal conditions) (Lanting et al. 1998c).  A similar model with PCB breast milk levels

(TEQ method) as a measure of postnatal PCB exposure with NOS as the outcome, also found no

association between the dependent and independent variables.  In the last set of four models, fluency

score, the dependent variable, was not found to be significantly associated with any of the four exposure

variables.

Cognitive abilities also were evaluated at 42 months using the Kaufman Assessment Battery for Children

(KABC), an 11 sub-test exam standardized for a large sample of preschool children in the 2.5–4.5 year

old range (Patandin et al. 1999).  The KABC is constructed to assess two types of mental functioning,

sequential problem solving, and simultaneous problem solving.  Both the Rotterdam and the Groningen

children were administered this test battery.  The Rotterdam children also were evaluated for verbal

comprehension using  the Dutch version of the Reynell Developmental Language Scales (RDLS). 

Logistical difficulties was stated as the reason for the omission of the Groningen children from this 
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evaluation.  The exposure variables included the two measures of prenatal exposure (maternal serum and

cord blood congener sums), postnatal exposure via breast milk (TEQ method), and current PCB body

burden based on the serum sample levels in the children at 42 months of age. 

The effects of prenatal, postnatal, and current body burden of PCBs on the cognitive outcomes were

studied using multivariate linear regression.  Potential confounders were chosen based on previous

research, clinical expertise relative to the developmental outcomes, and beta coefficient changes observed

when adding new variables to the linear regression model.  Covariates included in the final regression

models were: maternal age at the child’s birth; parity; gender; feeding type; duration of breast feeding;

HOME score; paternal and maternal educational levels; parental verbal IQ scores; smoking and alcohol

use during pregnancy; and study center.  Analyses were conducted for the entire group, for breast-fed

children, and for formula-fed children.

In the group as a whole, a significant decline (p<0.05) in scores on the KABC for the overall scale, the

sequential processing scale and the simultaneous processing scale were observed in adjusted regression

models with maternal serum PCB levels as the independent variable.  When the groups were divided into

breast-fed and formula-fed, only formula-fed children showed a significant association between declines

in the scores for the same three KABC scales, as well as the RDLS verbal comprehension scale, and

maternal serum PCB levels.

Adjusted regression analyses conducted with a categorized version of maternal plasma PCB levels found

the mean overall score on the KABC to be four points lower in the group with the highest PCB exposure

($3 ppb) as compared to children in the lowest (#1.5 ppb).  Four point deficits in both the simultaneous

and sequential scales also were calculated for the highest exposure group as compared to the lowest.  Six

to eight point deficits were observed for the formula-fed group on the KABC scales while a

nonsignificant decline of two points was observed in the breast-fed group.  Cognitive performance at

42 months was not related to either lactational exposure or current exposure to PCBs and dioxins.

European Background PCB Study - German Sample.  This multicenter European study was designed as

a prospective study to assess developmental outcomes associated with prenatal exposure to PCBs in

Germany, the Netherlands, and Denmark (Winneke et al. 1998b).  This study is very similar in design to

the Dutch Mother-Child Study.  The German cohort included 171 mother-infant pairs consecutively

recruited from the obstetrical wards of three hospitals in Dusseldorf.  All infants were term, from German

speaking families, with an Apgar score of $7, first or second children, with no serious illnesses or
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complications during pregnancy and delivery.  Exposure to PCBs was based on the sum of PCB

congeners 138, 153, and 180 in cord blood (0.55 ppb).  A second measure of PCB exposure in milk was

obtained from samples collected at 2 and 4 weeks of age and analyzed for these same three PCB

congeners (427 ppb, fat basis).  From 171 mother-infant pairs, 169 cord blood and 131 breast milk

samples were obtained.

Outcomes measured at 7 months of age included the Bayley Scales of Infant Development (BSID) and the

Fagan Test of Infant Intelligence (FTII).  The Bayley Scales are comprised of the MDI, the PDI, and the

Behavior Rating Scale; only the MDI and the PDI were used in this study.  The MDI and PDI were used

in the North Carolina Breast Milk and Formula Project (Gladen et al. 1988) and in the Dutch Mother-

Child Study (Koopman-Esseboom et al. 1996).  A test by Fagan also was used in the Lake Michigan

Mother-Child Study (Jacobson et al. 1985).  A test of the reliability of the mobile test version of the FTII

in the Dusseldorf cohort for 2 observers and 10 children was close to zero (lack of reliability). 

Confounder selection procedures included a combination of a priori selection and statistical significance

with the outcome.  Linear regression modeling was used to assess the effects of PCB exposure on

outcome with adjustment for other covariates.

After adjusting for confounders, there was a significant inverse association between MDI scores and

PCBs in milk.  There was no association between MDI, PDI, or FTII scores and blood PCBs.

3.2.4.2.1.3  Occupational Exposure

Reports of neurological effects in workers exposed to PCBs are limited.  Approximately 49% of workers

(64 males, 94 females) exposed to 0.07–11 mg/m3 mean area concentrations of various Aroclors (early

exposure to Aroclors 1242 and 1254; recent exposure to Aroclors 1016 and 1221) at a capacitor

manufacturing plant for more than 5 years complained of headache, dizziness, depression, fatigue,

memory loss, sleeplessness, somnolence, and nervousness (Fischbein et al. 1979).  The prevalence of

these symptoms was not compared to a control group.  Routine neurological examination did not reveal

any remarkable prevalence of abnormalities; extensor weakness was observed in six individuals (1.8%),

whereas only one worker presented tremor at physical examination.  No further relevant information was

provided in this study.  In a study by Smith et al. (1982) of three groups of workers occupationally

exposed to Aroclors 1242, 1016, 1254, and/or 1260 significant positive correlations of symptoms

suggestive of altered peripheral sensation were noted with increasing concentration of serum PCBs. 

However, there was no overt clinical dysfunction identifiable on physical examinations.  Geometric mean
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serum levels of up to 500 ppb of low-chlorinated PCBs (#4 chlorines/molecule) and up to 44 ppb of high-

chlorinated PCBs were reported for workers in some jobs.  Frequent headaches, sleeping difficulties, and

memory problems were reported in switchgear workers exposed to Aroclors 1260 and 1242

(0.00001–0.012 mg/m3) compared to unexposed workers (Emmett et al. 1988a).  The geometric mean

serum PCBs in the exposed group was 9.7 ppb, and was significantly higher than in the comparison

group, 4.6 ppb.  Emmett et al. (1988a) stated that the reported symptoms were probably not related to

PCBs because they were not consistent with toxic effects ascribed to PCBs in the published literature.

3.2.4.2.1.4  Accidental Exposure

Children from Chinese women accidentally exposed to PCBs and other related chemicals through

consumption of contaminated rice (Yu-Cheng incident) have been evaluated for cognitive development.

Evaluations were conducted when the children were 4–7 years old (Stanford-Binet test and Wechsler

Intelligence Scale) and were compared to controls matched for neighborhood, age, sex, mother’s age,

parent’s combined educational level, and parent’s occupation.  The results showed that at each age, and

for each scale other than the WISC-R at the age of 6 years, there was a consistent 5-point difference

between the Yu-Cheng children and the control children (Chen et al. 1992).  Results of the evaluation of

the behavior and activity level of these children were published by Chen et al. (1994).  Emotional or

behavioral disorders were evaluated with the Rutter’s Child Behavior Scale A and activity level with a

modified Werry-Weiss-Peters Activity Scale.  At each year, Yu-Cheng children scored 7–43% worse

(more disorders) than control children in the Rutter scale.  At any fixed age, Yu-Cheng children scored

11–63% worse than control children.  Furthermore, there was no consistent trend toward decreased

differences in scores of Yu-Cheng and control children as the interval between the exposure and year of

birth increased.  Similar results were observed for the activity scores, although the differences between

Yu-Cheng children and controls were less marked (Yu-Cheng children had increased activity levels).  The

authors also found that children with physical signs had a higher mean score in the Rutter’s and activity

scores at some age and a lower score at others.  There were no consistent relationships between either

Rutter or activity scores and cognitive scores of PCB detectability, maternal serum PCB levels, or breast-

feeding mode.  Yu-Cheng children also scored significantly lower than controls in MDI and PDI tests

between the ages of 6 months and 2 years (Lai et al. 1994) and in Raven’s Colored Progressive Matrices

and at ages 6, 7, or 9, and in Standardized Progressive Matrices at age 9 (Guo et al. 1995). 
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3.2.4.2.2  Neurophysiological Effects

Various neurological symptoms, including numbness, weakness and neuralgia of limbs, hypesthesia, and

headaches, are common in Yusho and Yu-Cheng victims (Chia and Chu 1984, 1985; Kuratsune 1989;

Rogan 1989).  It is important to mention, however, that the findings from the studies of these groups

cannot be attributed solely to exposure to PCBs since the victims also were exposed to CDFs and other

chlorinated chemicals (ATSDR 1994).  Conduction velocities were reduced in sensory nerves (radial

and/or sural) in 9 of 23 Yusho patients examined soon after poisoning (Kuroiwa et al. 1969).  Sensory

fibers may have been preferentially affected as conduction velocities in motor nerves (ulnar and tibial)

were reduced in only two cases and motor functions were normal.  Follow-up studies were not performed

on the Yusho patients, but disappearance of related symptoms and signs indicated that the effects on nerve

conduction did not persist.  Reduced sensory and motor nerve conduction velocities also occurred in

Yu-Cheng patients (Chen et al. 1985; Chia and Chu 1984, 1985).  Evaluation of 110 patients within 1 year

of Yu-Cheng exposure showed significantly reduced sensory nerve (median and ulnar) and motor nerve

(tibial and peroneal) conduction velocities in .44 and 22% of the patients, respectively (Chen et al. 1985). 

All of the subjects had developed eye and skin manifestations of toxicity, but there were no significant

correlations between nerve conduction values and blood levels of PCBs, CDFs, or PCQs. 

Electroencephalographic examination of Yu-Cheng patients did not show any abnormalities potentially

indicative of central nervous system damage (Chia and Chu 1984, 1985).  Additional information on the

Yusho and Yu-Cheng poisoning episodes can be found in the toxicological profile for chlorodibenzofurans

(ATSDR 1994).

3.2.4.2.3  Evaluation of Human Studies

Several studies are available that evaluated the relationship between prenatal PCB exposure (and

postnatal exposure in some instances) and neurobehavioral parameters in infants and children.  These

studies are the Michigan Mother-Child Study (Fein et al. 1984a, 1984b; Jacobson and Jacobson 1996a,

1997; Jacobson et al. 1984a, 1985, 1990a, 1990b, 1992), the Oswego Newborn and Infant Development

Project (Lonky et al. 1996, Stewart et al. 1999, 2000a), the North Carolina Breast Milk and Formula

Project (Gladen et al. 1988; Rogan and Gladen 1991, 1992; Rogan et al. 1986a, 1986b, 1987), the Dutch

Mother-Child study (Huisman et al. 1995a, 1995b; Koopman-Esseboom et al. 1994b, 1996; Lanting et al.

1998c; Patandin et al. 1999; Weisglas-Kuperus et al. 1995), and the German Study (Winneke et al.

1998b).  A comparison of PCB levels in blood and breast milk in some of these studies is included in

Appendix A.  Related information is also available from the Yu-Cheng accidental poisoning incident in
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Taiwan (Chen et al. 1992, 1994; Guo et al. 1995; Lai et al. 1994).  Data from adults exposed to PCBs are

available from studies by Schantz et al. (1996a, 1996b, 1999) and from evaluations of victims from the

Taiwan poisoning episode (Chen et al. 1985; Chia and Chu 1984, 1985).

The association between consumption of Great Lakes contaminated sportfish (i.e., PCB exposure) and

neurodevelopmental alterations in children has been examined in the Michigan series of studies and in the

Oswego series.  Despite concerns about the design and analysis of the data from the Michigan Mother-

Child Study (Expert Panel 1994; Paneth 1991; Schantz 1996; Seegal 1996a, 1996b), many of the findings

of Jacobson and colleagues in the Michigan cohort have been replicated in studies of other cohorts. 

Jacobson et al. (1984a) found that newborn children exposed to PCBs from mothers who ate PCB-

contaminated sportfish were more likely to exhibit hypoactive reflexes, more motor immaturity, poorer

lability of states, and greater amount of startle.  In the Oswego study, the high PCB exposure group was

defined as those who consumed a mean of 2.3 salmon or lake trout meals/month, as done in the Michigan

study, and children born to mothers from this group demonstrated a greater number of abnormal reflexes

and less mature autonomic responses than those born to low PCB-exposed or non-exposed mothers

(low-fisheaters or nonfisheaters) (Lonky et al. 1996).  However, Lonky et al. (1996) found no significant

association between fish consumption and birth weight, head circumference, and gestational length, as

Fein et al. (1984a) had found in the Michigan cohort.  Taking advantage of improved analytical

techniques available at the time of the study, researchers from the Oswego study observed a significant

linear trend between poorer Habituation and Autonomic scores and heavily chlorinated PCBs (Stewart et

al. 2000b).  The suggestion of a trend for abnormal reflexes with PCB exposure was observed, but the

finding was not statistically significant.  Linear trend analysis also revealed a significant association

between the proportion of poor NBAS clusters and heavily chlorinated PCBs.  No significant association

was seen for the lightly and moderately chlorinated PCBs, DDE, lead, HCB, and mercury.  It is worth

noting that in the Oswego cohort, the average concentration of total PCBs in cord blood was 0.8 ppb

among high fisheaters and 1.03 among nonfisheaters, such that no association could have been found had

total PCBs in cord blood been used as surrogate for exposure.  

Neonatal evaluations also were conducted in the North Carolina study (Rogan et al. 1986b).  This is a

study of women from the general population with no known high exposure to PCBs.  PCBs in milk at the

time of birth (approximately 1.8 ppm, but may have been overestimated by a factor of 2) was used as

indicator of prenatal exposure; the median PCBs in maternal serum at birth was 9.06 ppb.  In the

Michigan cohort, the mean concentration of PCBs in maternal milk and serum in high fisheaters were

approximately 0.9 ppm and 6.1 ppb, respectively.  The NCBMFP also found that less muscle tone and
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activity were associated with higher PCB levels.  The reflex cluster score was also significantly affected

by PCB exposure.  When the abnormal reflexes were separated into high and low, it became apparent that

hypo-reflexia, not hyper-reflexia, was associated with PCB levels.  

Evaluations of various cohorts at later ages provide the opportunity to compare results of similar tests

conducted at similar ages.  For example, the BSID has been administered to infants in the North Carolina

cohort, the Dutch children, and the German study.  This group of tests yields a MDI and a PDI score, both

of which are scales like a standard IQ test.  In the North Carolina cohort, a significant decrease in PDI

scores at the ages of 6 and 12 months was associated with prenatal exposure to PCBs (assessed by PCBs

in maternal milk at birth, 1.8 ppm) (Gladen et al. 1988), although the association lost statistical

significance at the ages of 18 and 24 months (Rogan and Gladen 1991).  No significant association was

observed between PDI scores at 6–24 months of age and postnatal exposure to PCBs (PCBs in milk

factored by duration of breast feeding).  There was no significant association between MDI scores and

either prenatal or postnatal exposure to PCBs.  The latter is consistent with a lack of significant

association between MDI scores at 7 or 18 months of age and prenatal or postnatal exposure, also

observed in the Dutch children (Koopman-Esseboom et al. 1996).  Yu-Cheng children also had lower PDI

and MDI scores when tested between the ages of 6 months and 2 years old (Lai et al. 1994). 

Both the Dutch and the German studies assessed prenatal and postnatal exposure by measuring the

concentration of a limited number of PCB congeners in cord blood and in breast milk.  In the Dutch

study, the researchers measured PCBs 118, 138, 153, and 180 in cord blood and the sum of the mean

concentration of these congeners was 0.45 ppb (Koopman-Esseboom et al. 1994b).  The German study

measured PCBs 138, 153, and 180 in cord blood and the sum amounted to 0.55 ppb (Winneke et al.

1998b).  The added concentration of these four PCB congeners in breast milk in the Dutch study was

430 ppb, whereas in the German study, the concentration of PCBs 138, 153, and 180 in breast milk was

essentially the same at 427 ppb.  Both studies evaluated MDI and PDI scores at 7 months of age.  In the

Dutch study, at this age, neither PDI nor MDI scores were significantly associated with prenatal exposure

to PCBs; however, lower PDI scores, but not MDI scores were significantly associated with postnatal

exposure.  In the German study, also no significant association was found between MDI or PDI scores

and prenatal exposure to PCBs, but in contrast with findings from the Dutch children, lower MDI scores,

but not PDI scores, was significantly associated with postnatal exposure to PCBs.  Thus, it would appear

that practically the same exposure assessments in the two studies (including the concentration of marker

PCBs) and tests conducted at the same age provided apparently opposite results.  This may indicate that

more thorough analyses are necessary especially given the importance of ‘minor’ congeners in animal
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studies.  Also, the results from the German cohort on background PCB exposure in Europeans appear

preliminary with few details described.  

Evaluations at the age of 4 years have been done on the Michigan (Jacobson and Jacobson 1997;

Jacobson et al. 1990a; 1992) and Dutch children (Lanting et al. 1998c; Patandin et al. 1999).  Jacobson et

al. (1990a) showed that poorer performance on both the Verbal and the Memory scales of the McCarthy

Scales of Children’s Abilities was associated with prenatal exposure to PCBs.  Jacobson et al. (1992) also

found that less efficient visual discrimination processing and more errors in short-term memory scanning,

but not sustained attention, were associated with prenatal exposure to PCBs.  Dutch children evaluated at

42 months of age on neurological optimality scores showed no decrement on performance as a result of

exposure to PCBs either prenatally or postnatally (Lanting et al. 1998c).  Cognitive abilities evaluated in

these children using the KABC showed a significant decreased performance associated with prenatal

exposure to PCBs (Patanding et al. 1999).  Since the tests from the Patandin et al. (1999) and Jacobson et

al. (1990a) are both designed to provide a measure of general intelligence, the data are comparable and

the effects observed in the two studies on these end points are consistent. 

Evaluation of the children from the Michigan cohort at 11 years of age showed that lower full-scale and

verbal IQ scores and poorer reading word comprehension were significantly associated with prenatal

exposure to PCBs (Jacobson and Jacobson 1996a).  The mean maternal serum PCB concentration among

fisheaters in the Michigan study was 6.1 ppb (Fein et al. 1984a).  Decreased IQ was also observed among

Yu-Cheng children (Chen et al. 1992), but exposure levels in this group were significantly higher than in

the Michigan cohort and there was also significant exposure to CDFs, dioxins, and other related

chemicals. 

Evaluation of an adult population (50–90-years old) on a visual-motor coordination test and a hand

steadiness test revealed no significant effect from exposure to PCB/DDE through long-term consumption

of Lake Michigan fish (>24 pounds/year) (Schantz et al. 1999).  Results from cognitive assessment of this

cohort have not yet become available.  Workers exposed to PCBs have reported adverse neurological

symptoms, but routine examination of these workers did not reveal any clinical dysfunction (Emmett et

al. 1988a; Fischbein et al. 1979; Smith et al. 1982).  There is no indication that cognitive function or fine

motor behavior was evaluated in any way in the workers.  Neurological examination of Yusho and

Yu-Cheng victims showed reduced both motor and sensory nerve conduction velocities (Chen et al. 1985;

Chia and Chu 1984, 1985; Kuroiwa et al. 1969), but due to the mixed chemical nature of the rice oil

exposure, the results cannot be attributed specifically to PCBs.
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In summary, there is mounting evidence that PCBs can be important contributors to subtle

neurodevelopmental alterations in neonates and infants of women who consume high-amounts of sport-

caught fish from the Great Lakes and also of women in the general population with the highest PCB body

burdens.  Most of the studies summarized above have quantitative exposure estimates, associations

between the outcome and exposure which are likely free from confounding, and minimal biases, making

their findings more convincing.  Data from Yu-Cheng can only be considered supportive due to the

known exposure to other chlorinated aromatic hydrocarbons.  Data from the Dutch Mother-Child Study

strongly suggest that exposure to dioxins in general, not solely PCBs, may be related to altered

developmental effects in neonates and children.  The Oswego validity study to assess fish consumption as

a measure of PCBs, as well as the reanalysis of the Oswego neurodevelopmental outcomes using cord

blood C17–C19 PCB homologue levels as measure of exposure makes this series of studies important in

establishing biomarkers of exposure for quantitative risk assessment.  Unlike the North Carolina study,

the outcomes of the Oswego study are limited to NBAS within the first 2 days of life, although it is

expected that these children will be the subject of follow-up evaluations for years to come.

3.2.4.3 Animal Studies

The highest NOAEL values and all reliable LOAEL values for neurological effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.4.3.1  Neurobehavioral Effects

Oral Exposure    

Neurobehavioral effects of PCBs have been examined in several species exposed for various durations. 

Experiments have been conducted with commercial mixtures, defined experimental mixtures,

contaminated fish, and single congeners.

Commercial PCB Mixtures.  Spontaneous motor activity was significantly decreased in male CD1 mice

(unspecified age) 15 minutes to 3 hours following a single gavage dose of 500 mg Aroclor 1254/kg

(Rosin and Martin 1981).  However, dosing with 30 or 100 mg/kg for 14 days had no significant effect on

this end point.  Assessment or motor coordination with two tests (screen test and rotor rod) did not reveal

any significant effect 15–120 minutes after treatment with a single dose of 500 mg Aroclor 1254/kg. 

Similar results regarding a decrease in spontaneous motor activity were reported in adult male Long-



3.  HEALTH EFFECTS - Neurological

PCBs 189

Evans rats following single gavage doses of $300 mg Aroclor 1254/kg; no significant effect was seen

with 100 mg/kg (Nishida et al. 1997).  Incomplete recovery to pretreatment levels of activity occurred

over a 9-week period.  Repeated administration of Aroclor 1254 resulted in dose-related decreases in

activity at doses $30 mg/kg/day, the NOEL was 10 mg/kg/day.  In this case, complete recovery of

activity occurred 3 weeks after exposure.  Kodavanti et al. (1998) also reported decreased motor activity

in adult male rats treated with 30 mg Aroclor 1254/kg/day for 4 weeks.  Nishida et al. (1997) also

conducted flavor aversion conditioning tests and reported that the acute and repeated NOELs for this

behavioral test were 15 and 7.5 mg/kg, respectively.  

Freeman et al. (2000; General Electric Co. 1995a, 1995b) conducted a 52-week feeding study in rats with

various Aroclor mixtures (1016, 1242, 1254, 1260) and found no significant treatment-related effects on a

comprehensive number of neurological end points.  PCB intakes ranged from 1.3 to 14.1 mg/kg/day

depending on the Aroclor mixture.  The functional observational battery assessed autonomic function,

muscle tone and equilibrium, sensorimotor function, and central nervous system function.  Motor activity

tests and histopathological examination of the central and peripheral nervous system were also performed. 

Open field activity on PND 14 was significantly suppressed in offspring from rats treated by gavage with

2 mg/kg/day Fenclor 42 (a non-Aroclor PCB, similar in composition to Aroclor 1242) on PND days 1–21,

but not in offspring from rats treated with 2–4 mg/kg/day on gestation days 6–15 (Pantaleoni et al. 1988). 

Neurobehavioral alterations including impaired swimming behavior and acquisition of one-way

avoidance response were also observed in the pups exposed in utero and also following postnatal

exposure.  

Neurobehavioral alterations were also reported in the offspring of rats treated with 2.4 mg/kg/day

Clophen A30 (technical mixture with 42% chlorine) premating and during gestation (Lilienthal et al.

1990).  Offspring, which continued on the PCB diet after weaning, were tested for open field activity on

PND 22 and 120, active avoidance learning on PND 65–75, and operant conditioning on a fixed interval

on PND 380.  Spontaneous activity was increased on PND 22, but not on PND 120.  Avoidance responses

and intertrial responses were increased, as were the responses in the operant conditioning test.  No

significant behavioral alterations were seen in rats treated with about 0.4 mg Clophen 42/kg/day.  In a

subsequent cross-fostering experiment, Lilienthal and Winneke (1991) reported that exposure in utero

resulted in alterations in active avoidance learning and retention of a visual discrimination task similar to

those seen in rats exposed in utero plus through mother’s milk, whereas postnatal-only exposure caused

no detectable behavioral changes.  Lilienthal and Winneke (1991) also observed that brain levels of
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higher chlorinated congeners peaked at weaning in groups with postnatal or postnatal plus prenatal

exposure, whereas the concentration of a low-chlorinated congeners was lower at weaning than at birth or

at later ages.  This suggests that transfer of low-chlorinated congeners may be more pronounced during

gestation, while preferential transfer of high-chlorinated PCBs occurs via the milk.  

Overmann et al. (1987) reported that pups from rats exposed in the diet to approximately 1.3 mg

Aroclor 1254/kg/day during gestation and lactation were significantly slower than controls in the negative

geotaxis test when tested on PND 7 and 8, but not on PND 5 or 6.  Also, the appearance of auditory

startle was slightly delayed on PND 12, but not PND 11, 13, or 14, in pups from dams treated with

0.13 and 1.3 mg/kg/day.  The development of air righting ability also was slightly delayed at  the

1.3 mg/kg/day dose  level on PND 18, but not PND 16, 17, or 19. 

Suggested evidence of memory impairment in a radial arm maze in rats resulting from perinatal exposure

to Aroclor 1254 was presented by Corey et al. (1996).  The pups, tested at age 42–54 days, were exposed

in utero and via mothers’ milk.  The dams received 8 or 17.8 mg Aroclor 1254/kg/day during gestation

and exposure continued until postpartum day 28.  Rats exposed to PCBs made significantly more maze

errors than control rats regardless of whether exposure of the pups ceased at weaning or had continued by

direct feeding.  In a more recent study, the same group of investigators reported that offspring from rats

fed approximately 1 mg Aroclor 1254/kg/day during gestation and lactation and tested between 25 and

29 days of age performed significantly worse than controls in a Morris water maze during trials 8, 9, and

10 (Provost et al. 1999).  No differences were seen in earlier trials, and interestingly, during the first four

trials, control rats performed much worse than treated rats.

Neurobehavioral studies also have been conducted in monkeys born to exposed mothers.  In a study by

Bowman et al. (1978), the assessment was conducted in three offspring of mothers fed a diet providing

approximately 0.1 mg/kg/day Aroclor 1248 for 16–21 months; PCB feeding terminated at the end of

3 months of nursing.  All monkeys were tested on a sequence of 11 tasks between the age of 6 and

24 months; four untreated monkeys served as controls.  Relative to controls, exposed monkeys showed

hyperlocomotor activity at 6 and 12 months of age, which correlated with peak PCB body burdens; they

also showed decreased performance in five out of nine discriminating learning tasks.  According to the

investigators (Bowman et al. 1978), the learning deficits appeared to represent residual toxicity, since

they could be observed after almost total clearance of PCBs from the body.  The same monkeys tested at

44 months of age appeared to exhibit hypoactive behavior relative to controls (Bowman and Heironimus

1981).  
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Neurobehavioral deficits reflected as impaired performance on a spatial learning and memory task were

seen in the progeny of monkeys fed 0.08 mg/kg/day Aroclor 1248 for 18 months and allowed to breed

32 months postexposure (Levin et al. 1988).  The deficit did not appear to be due to memory impairment,

but rather to impairment in associational or attentional processes.  Aroclor 1016, tested at a dose level of

0.008 mg/kg/day, did not significantly alter performance on that task (Levin et al. 1988), but impaired the

monkeys' ability to learn a simple spatial discrimination problem at 0.03 mg/kg/day (Schantz et al. 1989). 

These long-term studies in monkeys showed that doses of $0.03 mg/kg/day of some PCBs can alter

performance in neurobehavioral tests. 

Defined Experimental Mixtures.   Rice and Hayward (1997) studied the effects on learning in monkeys

of postnatal exposure to a PCB mixture representative of the PCBs typically found in human breast milk. 

Eight male monkeys were dosed from birth to 20 weeks of age with 0.0075 mg/kg/day of PCBs.  Five

monkeys served as controls.  At 20 weeks of age, the levels of PCBs in fat and blood in treated monkeys

were 1.7–3.6 ppm and 2–3 ppb, respectively; corresponding values for controls were 0.05–0.2 ppm and

0.30–0.37 ppb.  Beginning at 3 years of age, the monkeys were tested on a series of nonspatial

discrimination reversal problems followed by a spatial delayed alternation task.  Treated monkeys showed

decreased median response latencies and variable increases in mean response latencies across three tasks

of nonspatial discrimination reversal.  There was no difference in overall accuracy of the tests.  There was

no correlation between performance and tissue levels of PCBs.  Treated monkeys also displayed retarded

acquisition of a delayed alternation task and increased errors at short delay task responses. These finding

were interpreted as a learning/performance decrement rather than an effect on memory per se.  In a

separate portion of this study (Rice 1997), treated monkeys displayed shorter mean interresponse times

when compared with controls.  The increase in pause time for fixed-interval performance emerged more

slowly across the 48 sessions in treated monkeys.  For fixed-ratio performance tasks, the control monkeys

decreased their mean pause time across 10 sessions, whereas the treated monkeys did not.  Rice (1997)

interpreted these results as suggesting learning deficit, perseveration, and/or inability to inhibit

inappropriate responding as a result of postnatal PCB exposure.  Testing of these monkeys at 4.5–5 years

of age showed that treated animals performed in a less efficient manner than controls under a differential

reinforcement of low rate (DRL) schedule of reinforcement (Rice 1998).  There were no differences

between groups on the accuracy of performance on a series of spatial discrimination reversal tasks,

although some treated monkeys made more errors than others on certain parts of the experiment.  Further

tests conducted at about 5 years of age did not find treatment-related effects on a series of concurrent

RI-RI (random interval) schedules of reinforcement (Rice and Hayward 1999a).  This schedule was

designed to study behavior in transition (learning) as well as at steady state.  However, there was a
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difference between treated and control monkeys on performance on a progressive ratio (PR) schedule. 

Rice and Hayward (1999a) stated that the interpretation of this finding is not straightforward, but may be

indicative of retarded acquisition of the steady-state PR performance in treated monkeys. 

Contaminated Fish Consumption.  The neurobehavioral effects of exposure of rats to feed adulterated

with 5 or 20% lyophilized salmon fillets from Lake Huron (LH) or Lake Ontario (LO) were examined by

Pappas et al. (1998).  The study was conducted in F1- and F2-generation 88-day-old male and female rats

that had been exposed in utero, during lactation, and postnatally until they were tested.  Exposure to the

contaminated diet caused no observable effects on many behavioral parameters including activity,

exploration, sensorimotor function, and stereotypy.  Also, there was no diet-induced impairment of spatial

learning or long-term memory, and no evidence of an exaggerated response to food reward reduction. 

The only significant effect found was decreased performance of the F1 LO-20 and F2 LH-20 rats in the

reference/working memory version of the radial arm maze.  Stewart et al. (2000a) examined the effects of

feeding adult male rats a 30% diet of salmon from Lake Ontario, Pacific Ocean salmon, or a laboratory

chow on performance on a multiple FR-PR reinforcement schedule.  Rats were fed for 65 days.  Lake

Ontario diet contained 739 ppb PCBs, whereas the Pacific Ocean diet and the lab diet contained 45 and

64 ppb PCBs, respectively.  Also, the average chlorines per biphenyl for the Lake, Ocean, and lab diets

were 5.65, 4.58, and 4.54, respectively.  Analysis of PCB homologues in the brain of rats showed that rats

fed Lake fish had significantly higher concentrations of homologues with 6, 7, 8, or 9 chlorines per

biphenyl than the other groups.  These rats’ brains also contained DDE and mirex, which were not

detected in the Ocean or lab diet groups.  Behavioral test results showed that Lake rats responded

normally during FR schedules, but quit significantly sooner than control rats on a PR-5 schedule, when

response costs were demanding.  None of the response rates were significantly related to contaminants.

Single Congeners.  Administration of 32 mg 3,3',4,4'-tetraCB/kg (PCB 77) to pregnant CD-1 mice on

gestation days 10–16 resulted in motor and behavioral alterations in the offspring tested at 35 and/or

65 days of age (Tilson et al. 1979).  Some, but not all, exposed mice exhibited a neurobehavioral

syndrome consisting of intermittent stereotypic circling activity (PCB-spinners).  Relative to controls and

to PCB-nonspinners, PCB-spinners were hyperactive during the dark phase of the diurnal phase, showed

decreased muscular strength and impaired ability to traverse a wire rod, altered visual placement

responding, and impaired acquisition of one-way avoidance.  However, reflex activity and orientation to

environmental stimuli were not affected by exposure to PCB 77.  No PCB-derived radioactivity could be

detected in $28-day-old mice born to dams administered radioactive PCB 77 on gestation days 10–16. 

Microscopical examination of tissues from PCB-spinners (up to 8 months old) showed cylindrical
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peninsulas of central nervous system parenchyma in the cranial and spinal nerve roots as well as

alterations in synapses of the nucleus accumbens (Chou et al. 1979).  Increased motor activity in PCB-

spinners was still evident at 1 year of age (Agrawal et al. 1981).  Altered spontaneous motor activity was

seen in 4-month-old male NMRI mice given a single gavage dose of 0.41 mg PCB 77/kg at 10 days of

age (Eriksson et al. 1991).  When tested during three 20-minute blocks, treated mice were hypoactive

during the first block, but hyperactive during the third block relative to controls.  Similar results were

obtained with PCBs 28, 52, and 126, but no such effect was seen with PCBs 118, 156, or 105 (Eriksson

and Fredricksson 1996a, 1996b, 1998).  There was also a marginal effect of PCB 52 (4.1 mg/kg) on

learning and memory assessed by performance on a swim-maze and a radial-arm maze and of PCB 126

(0.46 mg/kg) also on the swim-maze.

Several PCB congeners have been evaluated for neurobehavioral alterations in rats.  The most widely

studied appears to be PCB 126, a dioxin-like congener, with an estimated dioxin-like toxicity potency

1/10 that of 2,3,7,8-TCDD.  Barnhoft (1994) found reduced onset of spontaneous movements and delayed

neuromuscular maturation in pups from Lewis rats administered six gavage doses of 10 or 20 µg

PCB 126/kg on gestation days 9–19; evaluations were conducted during the first 4 weeks of life. 

Spontaneous activity level was not affected by treatment.  Tests for visual discrimination learning (age

5–18 weeks) did not reveal any significant differences in performance between PCB-treated rats and

controls.  However, in a later paper, the same group of investigators reported that administration of six

doses of 2 µg PCB 126/kg on gestation days 10–20 resulted in both poorer visual discrimination and

hyperactivity in treated rats relative to controls; similar, but less marked effects were seen with

2,3',4,4',5-pentaCB (PCB 118) (Holene et al. 1995).  In two more recent studies, it was reported that male

pups from dams treated with PCB 153 from day 3 to 13 after delivery were hyperactive and had impaired

performance in a visual discrimination test (Holene et al. 1998), but female pups showed no significant

differences compared with controls (Holene et al. 1999).

Rice and coworkers conducted a series of behavioral studies in offspring from Long-Evans rats dosed

with 0, 0.25, or 1 µg PCB 126/kg/day beginning 5 weeks before and continuing through gestation and

lactation (Bushnell and Rice 1999; Rice 1999a; Rice and Hayward 1998, 1999b).  Exposure to PCB 126

did not significantly alter performance of male or female pups on a multiple fixed interval fixed-ratio

schedule of reinforcement or on a DRL schedule at about 200 days of age (Rice and Hayward 1998). 

Exposure to PCB 126 did produce developmental toxicity as evidenced by reduced birth weight, reduced

serum thyroxine, and changes in hematology and serum biochemistry parameters.  Assessment of

performance on a spatial delayed alternation task also revealed no significant differences between treated
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and control rats (Rice 1999a, 1999b); no PCB was detected in pups brain at age 60 days.  Further tests

conducted in males to assess visuospatial attention and sustained attention showed no significant

treatment-related deficits (Bushnell and Rice 1999).  Finally, male and female pups were tested under a

series of three concurrent RI-RI schedules of reinforcement at about 400 days of age followed by

assessment under a PR schedule (Rice and Hayward 1999b).  Although there was some indication of less

accurate performance in high-dose rats in the RI-RI schedule, there was no difference between treated and

control rats in the PR performance.

Schantz and colleagues assessed learning and memory in an 8-arm radial maze and in a T-maze in male

and female offspring from Sprague-Dawley rats treated with PCB congeners on gestation

days 10–16 (Schantz et al. 1995, 1996b, 1997).  Testing started at 60 days of age.  The first study tested

the ortho-substituted congeners PCBs 28, 118, and 153 (Schantz et al. 1995).  No treatment-related

effects were seen on a memory task on a radial maze test, but female offspring were less accurate than

controls on a T-maze spatial delayed alternation task; PCB 118 caused the smallest deficit of the three

congeners.  Subsequent studies examined 2,3,7,8-TCDD, the dioxin-like congeners PCB 77 and PCB 126,

and PCB 95 and found that performance on the radial arm maze task was facilitated by treatment with

each of the four compounds, but mostly by 2,3,7,8-TCDD (Schantz et al. 1996b, 1997).  No significant

group differences were seen on the T-maze test.  An additional observation was that exposure to PCB 95

did not alter spontaneous activity in rats tested as juveniles (35 days old), but induced hypoactivity in

tests conducted  in adulthood (100 days old).  In these rats exposed to PCB 95, Schantz et al. (1997) also

observed decreased density of ryanodine receptor binding proteins in the hippocampus, increased binding

in the cerebral cortex, and a biphasic response in the cerebellum.

Other Routes of Exposure.    Altmann et al. (1995) examined the effect of 3,3',4,4'-tetraCB (PCB 77)

on long-term potentiation (LTP), a measure of neuronal functional plasticity, in rats.  Pregnant Wistar rats

were treated with daily subcutaneous injections of 1 mg/kg of PCB 77 on gestation days 7–18.  At the age

of 180–220 days, offspring were sacrificed and slices were prepared from the visual cortex and

hippocampus.  Treatment with PCB 77 resulted in inhibition of LTP in visual cortex slices, but not in the

hippocampus.  A follow-up study reported the same result in slices from 11–19-day-old pups (Altmann et

al. 1998).  In the latter study, PCB 47 was also tested and was much less effective than PCB 77.  Using

the same exposure protocol, the effects of these two congeners also were assessed on locomotor activity

in the open field, spatial learning in the radial arm maze, catalepsy induced by the dopamine receptor

blocker haloperidol, and passive avoidance learning at PND 25, 95, 180, and 220, respectively (Weinand-

Harer et al. 1997).  Of all of these end points, exposure to PCB 77 altered the haloperidol-induced
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catalepsy and impaired performance in passive avoidance behavior; PCB 47 produced changes in the

same direction, but the differences relative to controls did not achieve statistical significance.

3.2.4.3.2  Neurochemical Effects

Neurochemical effects of PCBs have been examined in rats, mice, and monkeys exposed to commercial

PCB mixtures and to individual PCB congeners.  Some studies have assessed both neurochemical and

neurobehavioral effects of PCBs in an attempt to link a biochemical alteration to a particular

neurobehavioral deficit.

Oral Exposure    

Commercial PCB Mixtures.  Administration of single, high doses (500 and 1,000 mg/kg) of a mixture of

Aroclor 1254 and 1260 to adult male rats reduced serotonin levels in the frontal cortex and hippocampus,

increased serotonin in the lateral olfactory tract, and had no effect in the hypothalamus and brainstem

(Seegal et al. 1986a).  A correlation between the direction of the changes (increase or decrease) and

changes in PCB levels in the different areas could not be made.  In a similar study, there was a dose-

dependent decrease in the levels of dopamine in the caudate nucleus, but not in the lateral olfactory tract,

of adult rats treated with 500 or 1,000 mg/kg of a mixture of Aroclor 1254 and 1260 (Seegal et al. 1986b). 

In a subsequent study, a dose of 1,000 mg/kg of Aroclor 1016 increased dopamine turnover in peripheral

neurons of rats, whereas the same dose of an Aroclor 1254/1260 mixture increased dopamine turnover in

central neurons (Seegal et al. 1988), suggesting that PCBs with different degrees of chlorination can alter

dopaminergic functions in different locations of the nervous system.  Treatment of adult male rats with a

diet that provided approximately 0, 39, or 79 mg Aroclor 1254/kg/day for 30 days resulted in significant

decreases in dopamine concentrations and metabolism in the striatum and the lateral olfactory tract, but

not in other brain areas (Seegal et al. 1991a).  Analysis of PCB congeners in striatum, lateral olfactory

tract, and hippocampus showed that the hippocampus contained the highest PCB concentration and that

the major PCB congeners were penta and hexabiphenyls mono- or di-ortho-substituted.  In contrast to the

finding of decreased dopamine concentration by Seegal et al. (1991a), Kodavanti et al. (1998) found no

alterations in the concentrations of dopamine, norepinephrine, or serotonin in the striatum or cortex of

adult male rats treated with up to 30 mg Aroclor 1254/kg/day for 4 weeks; in addition, tyrosine

hydroxylase activity in striatal minces was not significantly altered by PCB treatment.  However,

treatment with Aroclor 1254 significantly reduced the Ca buffering capacity of microsomes and

mitochondria in the cerebellum and of microsomes in the frontal cortex and striatum.  Aroclor 1254 also
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decreased total protein kinase C (PKC) activity and increased membrane-bound PKC activity in the

cerebellum, but not in other brain areas.  In this study, treated rats were hypoactive compared to controls.

Doses between 0.8 and 3.2 mg/kg/day Aroclor 1016 in the diet for 20 weeks did not alter the

concentrations of noradrenaline, adrenaline, or serotonin in several areas of the brains of monkeys (Seegal

et al. 1990).  A similar exposure protocol with Aroclor 1016 or 1260 resulted in dose-dependent decreases

in dopamine contents in several areas of the brain (Seegal et al. 1991b).  Dopamine continued to be

depressed 24 weeks after the exposure period ceased (Seegal et al. 1992, 1994); at this time, the

concentration of PCBs had greatly decreased.  After the 20-week exposure, only PCBs 28, 47,

and 52 congeners were detected in the brains of the monkeys treated with Aroclor 1016, and mainly hexa-

and hepta-chlorinated di-ortho-substituted congeners were detected in the brains of monkeys treated with

Aroclor 1260.  Seegal et al. (1991b) concluded that the neurochemical changes were caused by a

mechanism different than that involved in other toxic responses to PCBs.  Because the concentration of

total PCBs was higher in the brains of monkeys treated with Aroclor 1260 than in those treated with

Aroclor 1016, Seegal et al. (1991b) concluded that lightly-chlorinated congeners were more effective in

reducing central dopamine levels than highly-chlorinated ones.  

Exposure of rats in utero to 0, 5, or 25 mg Aroclor 1254/kg (gestation days [Gd] 10–16) resulted in a

significant increase in levels of  5-hydroxyindole acetic acid (5-HIAA), and in the ratio of

5-HIAA/5-hydroxytryptamine in the lateral olfactory tract, prefrontal cortex, and hippocampus from

90-day-old offspring (Morse et al. 1996a).  Dopamine, 3,4-dihydroxyphenylacetate, norepinephrine, and

homovanillic acid were not affected.  In a study of similar design, Morse et al. (1996b) observed

significant increases in the glial cell marker GFAP in the lateral olfactory tract and the cerebellum and

significant decreases in the brain stem of offspring at 21 and 90 days old.  The neuronal marker

synaptophysin was significantly decreased in the lateral olfatory tract, prefrontal cortex, and striatum of

90-day-old offspring.  These changes were interpreted as reactive gliosis following direct damage to the

neurones or glia, or alteration in the regulation of the proliferation or protein expression of specific

subpopulations of neural cells.  

Choline acetyltransferase (ChAT) activity was significantly decreased in the basal forebrain, but not in

the hippocampus, from 15-day-old rats exposed to Aroclor 1254 (125 or 250 ppm in diet) during

gestation and via mother’s milk (Corey et al. 1996).  However, ChAT activity returned toward control

levels by 60 days of age.  These rats made significantly more maze errors than control rats regardless of

whether exposure to PCBs ceased at weaning or had continued by direct feeding.  In a follow-up paper,
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the authors reported that treatment with much smaller amounts of Aroclor 1254 (1.25 or 12.5 ppm in the

diet) resulted in a significant increase in ChAT activity relative to controls in the hippocampus and

forebrain from 15-day-old low-dose pups, but not high-dose pups (Provost et al. 1999).  In 30-day-old

pups, ChAT activity was significantly decreased in both the hippocampus and basal forebrain with the

two dietary PCB levels.  At this age, high-dose pups performed significantly worse than controls on a

Morris water maze. 

Contaminated Fish Consumption.   The neurochemical effects of exposure of rats to feed adulterated

with 5 or 20% lyophilized salmon fillets from Lake Huron (LH) or Lake Ontario (LO) were examined by

Seegal et al. (1998).  The study was conducted in 88-day-old male and female rats that had been exposed

in utero, during lactation, and postnatally until they were tested.  Dopamine, serotonin, norepinephrine,

and their metabolites, as well as ChAT activity were assayed in the frontal cortex, nucleus accumbens,

caudate nucleus, hippocampus, and substantia nigra.  Significant treatment-related effects included

(1) decreased dopamine in the frontal cortex of the high-dose rats, (2) decreased dopamine in the caudate

nucleus from all groups, (3) decreased dopamine in the substantia nigra from the high-dose LO rats,

(4) reduced epinephrine in all groups except for low-dose LO rats, and (5) no significant effect on ChAT

concentration in any experimental group.  No specific contaminants were assayed in the fish in this

report.

Single Congeners.  Mice exposed to 3,3',4,4'-tetraCB (PCB 77) in utero (maternal dose 32 mg/kg/day),

which exhibited spinning behavior and hyperactivity at 1 year of age, had decreased dopamine levels and

dopamine receptor binding sites in the corpus striatum (Agrawal et al. 1981).  However, Seegal et al.

(1997) reported that in utero and lactational exposure of rats to PCB 77 (0.1 or 1 mg/kg/day) resulted in

significant and persistent elevations in dopamine concentrations in the frontal cortex and the substantia

nigra, but not in the caudate nucleus.  In contrast, similar treatment with PCB 47 (1–20 mg/kg/day)

significantly decreased dopamine concentrations in the frontal cortex and caudate nucleus (Seegal et al.

1997).  Administration of a single dose of 0.41 or 41 mg PCB 77/kg to 10-day-old NMRI mice resulted in

a significant decrease (not dose-related) in density of muscarinic cholinergic receptors in the

hippocampus 7 days after dosing, but not 24 hours after dosing relative to controls; there was no

significant effect on receptor density in the cerebral cortex (Eriksson 1988).  In mice similarly exposed

but tested at the age of 4 months, muscarinic cholinergic receptor density was slightly but significantly

increased (high-dose only) in the hippocampus; no significant changes were detected in the cortex,

striatum, or midbrain and thalamus (Eriksson et al. 1991).  As previously mentioned, these mice had

abnormal spontaneous motor activity at that age.  Treatment with PCB 28 and PCB 52 did not alter
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muscarinic receptor density in the hippocampus, but PCB 52 increased the density of nicotinic cholinergic

receptors in the cortex (Eriksson and Fredriksson 1996a, 1996b).  Neither dopamine, serotonin, or

metabolites were significantly altered in the striatum by treatment with PCB 28 or PCB 52.  At this age

(6 months old), the mice showed altered spontaneous activity.  Neonatal exposure to 3,3',4,4',5-PentaCB

(PCB 126) resulted in increased density of nicotinic cholinergic receptors in the hippocampus at 5 month

of age and in impaired learning on a swim maze; no neurochemical or behavioral alterations were seen in

mice treated with 2,3,3',4,4'-pentaCB (PCB 105) (Eriksson and Fredriksson 1998).

Treatment of female and male weanling Sprague-Dawley rats for 90 days with PCB 28 in the diet

($0.04 mg/kg/day) resulted in a significant decrease in dopamine concentration in the substantia nigra in

females, but not in other brain areas (Chu et al. 1996a); neither norepinephrine, serotonin, or their

metabolites were altered in any brain area.  Other significant effects in similarly conducted experiments

included decreased dopamine in the caudate nucleus and substantia nigra and decreased serotonin in the

substantia nigra with PCB 118, $0.2 mg/kg/day in females, decreased dopamine in the caudate nucleus in

males and increased serotonin in the substantia nigra in females with PCB 105, $4 mg/kg/day, decreased

dopamine and serotonin in the frontal cortex with PCB 153, $0.01 mg/kg/day in males, and decreased

dopamine in the frontal cortex with $0.005 mg/kg/day PCB 128 and in the hippocampus with

4.4 mg/kg/day PCB 128 in females; no significant changes were seen with PCB 126 (up to

0.009 mg/kg/day) (Chu et al. 1994, 1995, 1996b, 1998a, 1998b; Lecavalier et al. 1997).

3.2.4.3.3  Other Neurological Effects

Oral Exposure    

Commercial PCB Mixtures.  The effects of perinatal exposure to PCBs on auditory function has been

studied in rats.  Goldey et al. (1995) tested the hypothesis that hypothyroidism induced by developmental

exposure to PCBs may cause permanent auditory dysfunction.  Long-Evans rats were given 0, 1, 4, or

8 mg Aroclor 1254 from gestation day 6 through PND 21 and pups were evaluated at various ages up to

1 year old.  Exposure to Aroclor significantly reduced circulating thyroxine concentrations up to PND 45. 

At PND 24, the high-dose pups showed reduced auditory startle amplitudes, but this was not seen when

tested as adults.  However, Aroclor induced permanent auditory deficits (20–30 dB threshold shift) at the

frequency of 1 kHz in the mid- and high-dose rats.  In a subsequent study, by monitoring brain stem

auditory evoked responses, the authors concluded that the auditory alterations are consistent with

peripheral auditory dysfunction (Herr et al. 1996).  In a more recent study, Goldey et al. (1998) reported
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that thyroxine replacement therapy significantly attenuated the effect of Aroclor 1254.  It is important to

note that high mortality occurred among the pups in the mid- and high-dose groups.  By PND 12 and 21,

25 and 50% of the pups in the 8 mg/kg/day group had died, respectively.  In the control and 4 mg/kg/day

groups, 3 and 15% of the pups had died by PND 21, respectively.

Single Congeners.  Offspring (76–90 days old) from rats that received 1 µg/kg/day of  PCB 126 for

35 days prior to breeding and throughout gestation and lactation had elevated auditory thresholds for

0.5 and 1 kHz tones (Crofton and Rice 1999).  There were no treatment-related effects in postnatal

mortality or litter size.

Other Routes of Exposure      

Single Congeners.  Subcutaneous administration of 1.5 mg/kg of PCB 77 to pregnant Long-Evans rats on

gestational days 7–18 resulted in altered electroretinogram (ERG) in female offspring recorded at about

200 days of age (Kremer et al. 1999).  Specific alterations consisted of decreases in the scotopic b-wave

as well as on the a-wave and maximum potential, the first two wavelets of the oscillatory potentials, and

the flicker response at the beginning of light adaptation.  No significant alterations were observed in male

offspring or in male or female offspring from rats injected subcutaneously 1.5 mg/kg of PCB 47.

Numerous in vitro studies have been conducted with both commercial PCB mixtures and single congeners

in efforts to elucidate the mechanisms of neurotoxicity of these compounds, to possibly discern patterns

among structurally similar types of congeners, and to establish toxic potency rankings.  These studies are

discussed in Section 3.5.2 Mechanisms of Toxicity. 

3.2.4.3.4  Evaluation of Animal Studies

Neurobehavioral Effects.  For the purpose of this appraisal, the neurobehavioral effects of PCBs in

animals are divided into (1) effects on motor activity and (2) effects on higher functions (e.g., learning

and memory).  Motor activity (spontaneous or open field) has been evaluated in mice, rats, and monkeys

exposed to commercial mixtures and single PCB congeners in a variety of experimental designs leading,

not unexpectedly, to a wide range of results from which few generalizations can be made.  Single or

repeated administration of relatively high doses of Aroclor 1254 to adult mice or rats generally decreased

spontaneous motor activity (Kodavanti et al. 1998; Nishida et al. 1997; Rosin and Martin 1981). 

Postnatal (via breast milk) exposure to Fenclor 42 decreased open field activity in pups on PND 14, but
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exposure in utero did not (Pantaleoni et al. 1988).  Exposure to similar doses of Clophen A30 (congener

composition similar to Fenclor 42) during gestation and lactation increased open field activity on PND 22

but not on PND 120 (Lilienthal et al. 1990).  Exposure of monkeys to Aroclor 1248 during pregnancy and

for 3 months after giving birth resulted in hyperlocomotor activity in the offspring at 6 and 12 months of

age (Bowman et al. 1978), but these monkeys exhibited hypoactive behavior at the age of 44 months

(Bowman and Heironimus 1981).  A somewhat similar finding was reported by Schantz et al. (1997) in

rats; in this case, offspring from Sprague-Dawley rats treated with the di-ortho-substituted PCB 95 on

gestation days 10–16 had control levels of spontaneous activity at 35 days of age (juveniles), but were

hypoactive as adults (100 days old).  A series of studies by Eriksson and coworkers (Eriksson and

Fredricksson 1996a, 1996b, 1998; Eriksson et al. 1991) observed altered spontaneous activity (increased

followed by decrease in trials separated by 20 minutes) in 4–5-month-old mice administered a single

gavage dose of a variety of PCB congeners at the age of 10 days.  These effects were observed with both

coplanar congeners (dioxin-like) PCB 77, PCB 126, and with the mono ortho-substituted congener

PCB 28 and the di-ortho-substituted PCB 52.  No effects were observed with three mono-ortho-

substituted congeners (PCB 105, 118, or 156).  No pattern is apparent from these findings.

The effects of PCBs on higher cognitive functions (i.e., learning, memory, attention) have been examined

in rats and monkeys exposed mostly perinatally, but in some cases, testing was done long after exposure

occurred.  Exposure of rats to Fenclor 42 during gestation or via mother’s milk impaired acquisition of

one-way active avoidance (Pantaleoni et al. 1988).  A different study reported decreased active avoidance

learning and retention of a visual discrimination task in rats exposed during gestation to Clophen A30, but

not in rats exposed postnatally (Lilienthal and Winnecke 1991).  Rats exposed during gestation and

lactation made more errors than controls in a radial arm maze (Corey et al. 1996) and performed worse

than controls in a Morris water maze (Provost et al. 1999).  Studies in monkeys exposed to Aroclors

during gestation and lactation, and tested after exposure ceased, showed decreased performance in

discriminating learning tasks (Bowman et al. 1978), impaired associational or attentional processes and

ability to learn a simple discrimination problem, and failure to learn the irrelevancy of a shape cue (Levin

et al. 1988; Schantz et al. 1989).  Monkeys that were treated from birth to 20 weeks of age with a defined

PCB mixture analogous to the congener composition of human breast milk (comprised mostly of mono-

and di-ortho-substituted congeners), and tested beginning at age 3 years, had impaired performance in

both nonspatial and spatial discrimination reversal tasks and exhibited inability to inhibit inappropriate

responding (Rice 1997, 1998, 1999b; Rice and Hayward 1997, 1999a).  Because these effects occurred at

a level of 0.0075 mg/kg/day, the lowest tested intermediate-duration dose of any PCB mixture in any

species, they are used as the basis for deriving the intermediate MRL for oral exposure as indicated in the



3.  HEALTH EFFECTS - Neurological

PCBs 201

footnote to Table 3-2 and discussed in Chapter 2 and Appendix A.  Perinatal exposure of rats to the

dioxin-like PCB congener PCB 126 during gestation and lactation provided little evidence that it altered

behavior (Bushnell and Rice 1999; Rice 1999a, 1999b; Rice and Hayward 1998, 1999a, 1999b).  Of five

tasks designed to assess a range of cognitive processes, only one provided any suggestive evidence of an

effect.  Other coplanar PCBs, as well as 2,3,7,8-TCDD, failed to alter the response of rats exposed in

utero on a T maze test, but facilitated the response on a radial arm maze (Schantz et al. 1995, 1996b).  In

contrast, ortho-substituted congeners had no effect on performance on the radial maze test, but impaired

performance of females on the T-maze test.  From the data summarized above, few generalizations can be

attempted.  It appears that ortho-substituted PCB congeners are more active than coplanar PCBs in

modifying cognitive processes.  In addition, an effect observed in both rats and monkeys was a deficit on

delayed spatial alternation, and was induced by exposure to ortho-substituted PCBs (Schantz et al. 1995),

defined experimental mixtures (Rice and Hayward 1997), and commercial Aroclors (Levin et al. 1988).

Neurochemical Effects.  The most consistent result from studies that examined the neurochemical effects

of PCBs is a decrease in dopamine concentrations in different areas of the brain.  This was seen in adult

rats and monkeys administered relatively high doses of Aroclor mixtures (Seegal et al. 1986b, 1991a,

1991b) and in 90-day dietary studies that used relatively low doses of single PCB congeners (Chu et al.

1994, 1995, 1996a, 1996b, 1998a, 1998b).  Less studies reported alterations in serotonin levels, and for

the most part, levels of norepinephrine were unaffected.  No single brain region appeared to be a preferred

target.  Studies with single congeners in rats reported decreases in dopamine levels in the frontal cortex,

caudate nucleus, substantia nigra, and striatum.  Studies with Aroclors in rats and monkeys observed

decreases in dopamine in the caudate, striatum, substantia nigra, putamen, hypothalamus, and olfactory

tract.  The lowest effective doses in the 90-day single congeners studies were 0.01 and 0.005 mg/kg/day

for PCB 153 and PCB 128, respectively, two di-ortho-substituted hexachlorobiphenyls.  The dioxin-like

PCB 126 was ineffective at the highest dose tested, 0.009 mg/kg/day.  In contrast with the majority of the

findings in adult animals, Seegal et al. (1997) reported an increase in dopamine concentration in the

frontal cortex and substantia nigra from rats exposed to the coplanar PCB 77 in utero and via mother’s

milk.  In the series of studies by Eriksson and colleagues (Eriksson and Fredricksson 1996a, 1996b, 1998;

Eriksson et al. 1991), no significant alterations in biogenic amine levels were seen in brains from adult

mice exposed to PCB 28 or PCB 52 at 10 days of age; these mice had altered spontaneous motor activity

and those exposed to PCB 52 had impaired learning and memory functions.  These investigators also

described increases in density of cholinergic muscarinic and nicotinic receptors in certain brain areas in

mice exposed to PCB 77, PCB 52, or PCB 126, but no such assays were conducted for PCB 118,

PCB 105, or PCB 156.  More information is necessary to speculate on patterns of effects among general
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classes of PCB congeners or to try to associate specific behavioral alterations with neurochemical

changes. 

Other Neurological Effects.  The findings of Crofton and Rice (1999) of auditory deficits in offspring

from rats administered PCB 126 during gestation and lactation without evidence of general toxicity give

credence to those of Goldey and coworkers (Goldey and Crofton 1998; Goldey et al. 1995; Herr et al.

1996).  In the latter series, high mortality was observed among the exposed pups during the first 3 weeks

of life suggesting that survivors may have been in less than optimal health conditions.  Whether the effect

seen with PCB 126 represents an Ah receptor-mediated effect remains unknown until additional both

dioxin- and nondioxin-like PCB congeners are tested.  

3.2.5 Reproductive Effects

3.2.5.1 Summary

Information is available on reproductive effects of PCBs in humans.  Studies that examined reproductive

end points found indications that exposure to PCBs is associated with menstrual disturbances in women

and effects on male fertility.  Increasing PCB levels have also been observed in women with late

miscarriages.  In addition, a reduction in the months of lifetime lactation was associated with increasing

levels of PCBs in maternal breast milk.  The reproductive toxicity of PCBs in animals has been well

established.  Effects in females have been observed in various species, including rats (prolonged estrus,

decreased sexual receptivity, and reduced implantation rate in adults and/or their offpsring exposed via

gestation and lactation), mice (decreased conception), minks (partial or total reproductive inhibition), and

monkeys (prolonged menstruation, decreased fertility).  Female minks and monkeys are particularly

sensitive to reproductive effects of PCBs.  There is limited evidence for reproductive effects in male adult

animals, although it is well documented that gestational and lactational exposure to PCBs can adversely

affect morphology and production of sperm and fertility in the male offspring of rats and mice.

3.2.5.2 Human Studies
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3.2.5.2.1 Female Reproductive Effects

Occupational Exposure.  There were no apparent effects on gravidity (number of pregnancies) in women

capacitor manufacturing workers who were exposed to Aroclors 1254, 1242, and/or 1016 for a minimum

of 3 months between 1946 and 1975 (Taylor et al. 1989).  High-exposure workers were directly exposed

to Aroclors during the manufacturing process for at least 1 year prior to birth of an infant, and workers

with low exposure were employed in areas where Aroclors were not used directly.  Area air samples

collected in 1977 showed geometric mean air concentrations of 310 and 27 µg/m3 in the high and low

exposure groups, respectively.  Evaluation of birth data on 172 high-exposure and 184 low-exposure

workers showed no significant difference in the mean number of pregnancies (3.2±1.7 and 3.5±2)..  As

discussed in the Developmental Toxicity section (Section 3.2.6.2), decreased birth weights and

gestational ages in the exposed women were associated with increased serum PCB levels.  Other

reproductive outcomes and well-designed reproductive epidemiologic studies have not been conducted in

this highly exposed female occupational cohort.

Contaminated Fish Consumption.  

The New York State Angler Cohort.  The New York State (NYS) Angler Cohort is a population-based

group of New York State anglers who were between 18 and 40 years of age and held fishing licenses for

the 1990–1991 season.  The cohort was compiled for the study of a variety of reproductive and other

health end points (Mendola et al. 1995a, 1995b).  Data from the entire cohort were collected from self-

administered questionnaires mailed to anglers living in 16 counties in close proximity to Lake Ontario. 

Responses were received from 10,782 male anglers, 934 female anglers, and 6,579 wives/partners of male

anglers for a total response rate, among the anglers, of about 40%.  This cross-sectional survey included

questions on sportfish consumption patterns (to estimate exposure to PCBs) and reproductive outcomes

and associated data focusing on children born between June 1986 and June 1991.  A telephone interview

with 100 randomly selected nonrespondents revealed that nonresponders did not differ from respondents

with respect to fishing habits, knowledge of fishing advisories, and fish consumption patterns, but had

sociodemographic differences (were less likely to be married and had lower levels of education and

income).  Findings for reproductive or developmental end points from this study have been reported in

several reports (Buck et al. 1997, 1999, 2000; Kostyniak et al. 1999; Mendola et al. 1995a, 1997).  
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Shorter menstrual cycles were associated with consumption of sportfish was associated with in women

from the NYS Angler Cohort (Mendola et al. 1997).  Menstrual cycle data were collected from

2,223 women (mean age 31.2 years) who stated in 1991 that they were considering becoming pregnant in

the following 3 years.  Lake Ontario fish consumption was measured in terms of exposure duration (total

number of years eating fish) and monthly frequency of fish meals in 1991, and an index was developed to

estimate cumulative lifetime PCB exposure through fish consumption (subjects were placed in no, low,

and combined moderate/high exposure classes).  Multiple regression analyses showed that consumption

of more than one Lake Ontario fish meal/month was associated with statistically significant reductions in

mean menstrual cycle length of >1 day in all 2,223 women (-1.11 days, 95% CI  -1.87 to -0.35), and of

about half a day for a subgroup of 2,080 women who reported having regular menstrual cycles (-0.51 day,

95% CI  -0.92 to -0.10).  Similar reductions were found in women in the highest cumulative exposure

category (moderate/high); mean cycle length was about 1 day shorter for the main group (-1.03 days, 95%

CI  -1.88 to -0.19), and about half that reduction in the regular menstrual cycle group (-0.56 day, 95% CI 

-1.01 to -0.09).  No significant differences in mean menstrual cycle length were found when the subjects

were classified into groups based on the number of years during which fish were consumed.  The

strengths of the study include the use of trained nurses to obtain menstrual cycle information.  Limitations

include the reliance on self-reported exposure data (biological samples were not collected and analyzed

for PCBs and other expected contaminants) and outcome data, and the lack of information on potential

confounders such as current smoking status, stress, and the use of contraceptives.  Mendola et al. (1997)

noted that although the small decreases in menstrual cycle length are not likely to be clinically significant

or of major public health concern, they may indicate potential endocrine effects on a population level.   

No statistically significant association was found between time-to-pregnancy (TTP), a measure of

fecundity and conception delay, and consumption of Lake Ontario sportfish in a preliminary analysis of

874 women from the NYS Angler Cohort who were pregnant between 1991 and 1993 (Buck et al. 1997). 

Exposure was estimated as the total number of years from 1955 to 1991 in which fish caught in Lake

Ontario were consumed.  The mean duration of fish consumption was 2.2 years (SD 4.5) for all women

and 5.2 years (SD 5.6 years) for women who reported any fish consumption.  No differences were

observed in fish consumption between women who did and did not become pregnant, fish consumption

between women with known and unknown TTP, or age distributions for women with and without a

pregnancy.  Multiple regression analysis was used to assess the linear relation between log-TTP and log-

years eating fish (duration of exposure).  Analyses were stratified by fish consumption (fish consumers/all

women) and parity status (nulliparous/parous), and controlled for maternal age, smoking, gynecologic

pathology (e.g., endometriosis), and history of sexually transmitted diseases.  R2 coefficients showed that
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duration of fish consumption and maternal age accounted for only a small percentage of the explained

variance in TTP (0.5%), even after the analysis was restricted to women who reported eating fish (0.6%). 

Beta coefficients, calculated to reflect the unit change in log-TTP for every unit change in log-years

eating fish, were positive but not statistically significant.  A larger beta coefficient was observed for log-

years eating fish among nulliparous women (0.1030) in comparison to parous women (0.0095),

suggesting that the effect of duration of fish consumption on TTP may have been greater among

nulliparous women.  Strengths of the study included the use of trained nurse interviews to obtain TTP

information.  As with other NYS Angler Cohort studies, limitations include the reliance on self-reported

exposure data and outcome data, and the lack of information on potential confounding factors such as

occupational exposures, alcohol and caffeine consumption, and current smoking status.  In addition,

women with unplanned pregnancies were necessarily ruled out from the analysis; Buck et al. (1997) noted

that this may be a potential bias inherent in the study.

In further analysis of the Buck et al. (1997) study summarized above and the Buck et al. (1999) study

summarized in Section 3.2.5.2.2 (Male Reproductive Effects), Buck et al. (2000) combined maternal and

paternal fish consumption into one model looking at fecundability ratios as the outcome, rather than TTP

(continuous variable used in 1997 paper) or conception delay (>12 months unprotected intercourse used

in 1999 paper).  The sample included 606 women with known and unknown TTP who discontinued birth

control in order to become pregnant during 1991–1993 and for whom the partners' fish consumption data

also were available.  The exposure measures included the duration, frequency, and lifetime PCB index

used in the previous studies.  Separate analyses were run for each exposure measure as both paternal and

maternal consumption measures were correlated.  Statistical analyses included the use of a discrete-time

analog of the Cox proportional hazards model to predict the probability of conception (i.e., fecundability-

biological capacity for reproduction) at the jth cycle given the absence of conception at an earlier cycle.

The natural logarithm of this conditional probability was modeled as a linear function of the covariates

and potential confounders (i.e., maternal smoking, gynecologic history [e.g., endometriosis; pelvic

inflammatory disease], parental ages, gravidity [number of pregnancies], and history of fertility drugs). 

The outcome measure used was the conditional fecundability ratio (CFR), the probability of conception

during a given menstrual cycle for the exposed fisheaters divided by that for unexposed nonfisheaters.

The 95% CI for the CFR was also calculated; exclusion of the value 1.0 from the CI indicates statistical

significance at the p=0.05 level.  This ratio is conditional upon becoming pregnant; a value <1 indicates

reduced fecundability.  Fish consumption was generally higher for men than women (68 and 42%,

respectively) as was the mean number of years of fish consumption (5.9 and 2.1 for the entire sample

whether they consumed fish or not).  Men also had higher mean PCB indices than women in the study,
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although partners' consumption patterns were related (e.g., both might be in the same category of fish

consumption).  The adjusted fecundability ratios for parental Lake Ontario fish consumption indicated

that maternal consumption of 3–6 years was associated with significantly reduced fecundability

(CFR=0.75, 95% CI 0.59–0.91), as was eating more than one monthly fish meal in 1991 (CFR = 0.73,

95% CI 0.54–0.98).  Paternal consumption was associated with slightly elevated, but non-significant,

CFRs for all three measures of fish consumption, suggesting that maternal but not paternal consumption

of contaminated fish may reduce fecundability among couples attempting pregnancy.  The investigators

considered the findings preliminary, given the retrospective data collection on TTP and fish consumption,

limited information on potential confounders, and potential sources of bias.  In addition to the limitations

indicated for the previous studies, Buck et al. (2000) commented on several biases associated with TTP,

particularly pregnancy recognition bias (when or how women became aware of pregnancy).  Another

possible bias is the fact that the analytic strategy is dependent on a woman achieving a pregnancy; if fish

consumption exerts a deleterious effect on fecundability, no pregnancy will be achieved and the women

will not be in the sample in the first place.  Hence, it is possible that women with the highest exposures

were excluded from the study since they did not achieve a pregnancy.  Due to the preliminary nature of

the findings, the investigators could not speculate as to whether the effect on fecundability could be

strong enough to reduce fertility, as measured by a reduction or absence of livebirths, or to impair

fecundity, as measured by pregnancy loss.

No statistically significant associations between increased risk for spontaneous fetal death and dietary

exposure to Lake Ontario fish were found among 1,820 multigravid, fertile women from the NYS Angler

Cohort (Mendola et al. 1995a).  Spontaneous fetal death histories (ever having a pregnancy end in

miscarriage, spontaneous abortion, or stillbirth) were obtained from New York State live-birth

certificates.  Fish consumption histories were used to construct four measures of PCB exposure for each

subject: (1) lifetime PCB exposure based on species-specific PCB levels (subjects were placed in no, low,

moderate, or high exposure classes); (2) number of years of sportfish consumption from 1955 to 1991; (3)

kilograms of sportfish consumed in the 1990–1991 season; and (4) lifetime kilograms of sportfish eaten

(no, low, moderate, or high exposure classes).  Women who never ate Lake Ontario sportfish comprised

the referent group.  Odds ratios and 95% CI were calculated in bivariate analyses to identify potential

confounders including smoking and alcohol consumption, and parental ages, paternal sportfish

consumption (none were statistically significant).  Unconditional logistic regression models were used to

calculate ORs and 95% CI for multivariate analyses.  Analyses were stratified by number of prior

pregnancies to better describe the relationship between maternal age and spontaneous death at different

levels of prior gravidity, and controlled for smoking and maternal age.  No consistent relationship was



3.  HEALTH EFFECTS - Reproductive

PCBs 207

seen between a history of spontaneous fetal death and any of the four measures of exposure.  The ORs in

the logistic regression models evaluating lifetime PCB level and lifetime sportfish consumption relative to

spontaneous fetal death tended to be slightly above 1.0 (the null value) for the low exposure categories

and below 1.0 for the moderate and high exposure categories.  Odds ratios of approximately 1.0 also were

observed in the models assessing the number of years of consumption and the mass (kg) of sportfish

consumed in 1990–1991 (Mendola et al. 1995a).  Strengths of the study included sufficient statistical

power to detect fairly small increases in ORs and the reliability of reproductive history data on birth

certificates.  Limitations included the focus on clinically recognized fetal deaths which may not detect

early pregnancy loss, the self-reported nature of both exposure and outcome data, and the lack of

biomarker monitoring to validate the self-reported exposure data.  Because the findings suggested that

early fetal loss may be important, a prospective pregnancy study is currently underway (ongoing study by

J. Vena, see Section 3.12.3).

Decreasing number of months of lifetime lactation were significantly associated with increasing levels of

PCBs or DDE in breast milk (normalized for lipid content) in a group of 98 lactating women from the

NYS Angler Cohort (Kostyniak et al. 1999).  In this sample, PCB levels in breast milk were significantly

associated with self-reported measures of fish consumption, but DDE levels were not.  The observed

association is likely to be important in estimating dose rates for these chemicals in nursing neonatal

populations, but the relevance of the association to reproductive performance is not clear.

The Michigan Anglers Cohort.   An association between conception delay and sportfish consumption

was found in a survey of 626 married couples conducted between 1993 and 1995 (Courval et al. 1999). 

At least one person in each couple was a licensed angler residing in 1 of 10 Michigan counties bordering

a Great Lake (Lake Erie, Lake Huron, or Lake Michigan).  Subjects were categorized into four sex-

specific exposure classes (none, low, medium, high) based on an index of lifetime fish consumption

(estimated number of sportfish meals consumed in the past 12 months multiplied by the number of years

since 1970 in which fish were caught and consumed):  0, 1–114, 115–270, and 271–1,127 for men, and 0,

1–54, 55–138, and 139–1,127 for women.  Conception delay, defined as ever having failed to conceive a

child after 12 months of trying, was essentially the same in both sexes (reported by 12.9% of the men and

13.3% of the women).  Unadjusted logistic regression analysis showed that ORs for conception delay

increased in women with increasing exposure class, although results of a trends test were not statistically

significant (p=0.35); the OR in the high exposure category for women was 1.4 (95% CI 0.7–2.7).  

Adjustment for age, race, region of Michigan, household income, smoking, and alcohol consumption did

not strengthen the associations in women.  The OR in the high exposure category declined in the female
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models after the addition of husbands’ fish consumption, indicating no risk associated with female

consumption after accounting for male partner consumption.  In contrast to the findings in women,

analysis of the male data provide suggestive evidence that frequent consumption of Great Lakes sportfish

may be associated with an increased risk of conception delay for men (see Section 3.2.5.2.2).  Although

data analysis controlled for several potential confounders, no information was collected regarding the

subjects’ frequency or timing of sexual intercourse during the period of attempting to conceive, whether

the partner providing fish consumption data also was the partner with whom the conception delay had

occurred, or levels of PCBs and other persistent toxic chemicals in biological samples from the subjects. 

The researchers will be addressing many of these limitations in a prospective reproductive health study. 

Additionally, the participation rate (29%) was extremely low in this study, which could have resulted in

nonresponse bias, a bias similar to selection bias.

General Population Exposures.  A case-control study was conducted that compared mean plasma

concentrations of 14 PCB congeners and 11 chlorinated pesticides in women with endometriosis and

women without endometriotic lesions (Lebel et al. 1998).  Cases (86) and controls (70) were selected

among premenopausal women with no previous diagnosis of endometriosis who underwent laparoscopy

for either pelvic pain, infertility, or tubal fulguration, and were matched according to the indication for

laparoscopy.  Cases and controls did not differ with respect to age, body mass index, history of breast

feeding, use of organochlorines, smoking, mean number of fish meals/week, income, and education,

although the proportion of women who had never been pregnant was higher in cases than controls. 

Analysis of covariance was used to adjust means for confounding variables, and ORs were estimated by

logistic regression.  Crude or adjusted mean concentrations of individual or summed congeners did not

differ between the groups.  Additionally, there was no significant linear trend in the adjusted ORs for

endometriosis as PCB concentrations increased.

In a study of 89 women (87% German) with repeated ($2) miscarriages, Gerhard et al. (1998) found that

blood concentrations of PCBs were higher than the reference level in 22% of the cases.  The sum of

congeners 101–180 was used for evaluation because they were the only congeners detected in significant

concentrations.  Blood levels of other organochlorine compounds (pentachlorophenol, DDE, β- and

γ-hexachlorocyclohexanes, HCB) were higher than reference ranges in 7–15% of the cases.  No

significant differences in PCB levels were found between women with early or late miscarriages (after

#12 or >12 weeks of gestation) and primary or secondary miscarriages (had never delivered or delivered

at least one baby).  Women with a history of at least four miscarriages (n=25) had significantly elevated

blood levels of PCBs, although other organochlorine compounds (γ-hexachlorocyclohexane and HCB)
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were also increased.  Hormonal disorders were identified as the cause of repeated miscarriages in 31% of

the women, including hyperprolactinemia in 9%, hyperandrogenemia in 7%, and luteal insufficiency in

14% of the cases.  Correlations were found between increasing PCB concentrations and some hormonal

parameters (e.g., increasing FSH and LH, decreasing TSH) and immunological parameters (e.g.,

increasing IgM, monocytes, and NK cells, decreasing interleukin 2 receptor-positive cells), but none of

the associations were specific for PCBs.  There were no significant associations between PCB

concentrations and further conceptions or the outcome of further pregnancies.

Yusho and Yu-Cheng Exposures.  Irregular menstrual cycles (60% of 81 patients) and abnormal basal

body temperature patterns (85% of 81 patients) were observed female Yusho patients in 1970 (Kusuda

1971).  Menstrual irregularities included changes in cycle intervals, duration, and flow that showed no

consistent pattern and were unrelated to severity of Yusho poisoning as indicated by degree of dermal

signs.  These alterations were accompanied by decreased urinary excretion of estrogens, pregnanediol,

and pregnanetriol.  Fertility, fecundity, and rates of spontaneous abortion have not been studied in Yusho

and Yu-Cheng patients (Hsu et al. 1994; Kuratsune 1989; Masuda 1994; Rogan 1989).  Sex ratio was not

altered in children born to 74 Yu-Cheng women during or after the poisoning began (Rogan et al. 1999). 

Of 137 live births occurring between 1978 and 1985, 69 were girls and 68 were boys.

3.2.5.2.2  Male Reproductive Effects

Occupational Exposure.  Sperm counts, fertility history, and testicular abnormalities as determined by

physical examination were normal in 55 transformer repairmen compared to 56 unexposed workers who

were similar in age, race, and marital status (Emmett et al. 1988a, 1988b).  The mean length of

employment of the exposed workers was 3.75 years, most (38) of the workers were currently exposed to

PCBs, and the predominant exposure was from Aroclor 1260 with lesser exposure to Aroclor 1242. 

Measurements of air PCB levels at four work areas showed 8-hour TWA concentrations of 0.0167–0.024,

0.0032–0.007, 0.00001–0.0004, and 0.0007–0.0124 mg/m3.  Geometric mean PCB concentrations in the

current-exposed, past-exposed, and comparison workers were 2.08, 0.83, and 0.60 ppm, respectively, in

adipose tissue and 12.2, 5.9, and 4.6 ppb, respectively, in serum.  Interpretation of the negative results of

this study is complicated by the similar PCB body burdens in the past-exposed and control groups. 
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Contaminated Fish Consumption.  

The New York State Angler Cohort.  Paternal exposure to Lake Ontario fish was not associated with an

increased risk of conception delay, as indicated by TTP, in women from the NYS Angler Cohort (Buck et

al. 1999).  The study sample included 785 spouses of male anglers reporting one or more pregnancies

between 1991 and 1993, known TTP, and complete paternal fish consumption histories.  Female anglers

were excluded from the study, as fish consumption data from their spouses and partners were not

collected.  Three measures of paternal fish consumption were used: (1) frequency of consumption

(number of Lake Ontario fish meals consumed in 1991), (2) duration of consumption (number of years),

and (3) an index of lifetime cumulative PCB exposure from fish consumption (categorized as low,

moderate, and high).  Conception delay was defined as requiring $12 menstrual cycles with unprotected

intercourse to achieve pregnancy.  Statistical analyses included descriptive methods and unconditional

logistic regression modeling to calculate ORs and 95% CIs.  Potential and known confounders included

maternal age, age at menarche, menstrual regularity, education, income, cigarette smoking; history of

prior pregnancy; and history of previous pregnancy loss.  Adjusted ORs for paternal fish consumption and

risk of conception delay were <1.0 for all categories of meal frequency and duration.  For the PCB index

measure, the ORs were <1.0 in all categories except moderate consumption.  The confidence intervals

included one in all analyses.  The ORs of <1.0 and inclusion of the value 1.0 in the confidence intervals

indicate that paternal fish consumption did not significantly increase the risk of conception delay among

the women.  When the analyses were restricted to spouses or partners with no Lake Ontario fish

consumption (n=445), similar results were obtained for each of the three paternal fish consumption

exposure variables.  Selection bias is a potential study concern as the study did not include women who

may have become pregnant accidentally, although there is no evidence to suggest that fish consumption is

systematically related to pregnancy intentions (Buck et al. 1999).  Other study limitations include possible

underestimation of paternal fish consumption because data did not include the 2 years prior to the TTP

assessment, and possible residual confounding as several potential confounders of female fecundity were

not collected.  

In further analysis of the Buck et al. (1999) study summarized above and the Buck et al. (1997) study

summarized in Section 3.2.5.2.1 (Female Reproductive Effects), Buck et al. (2000) combined maternal

and paternal fish consumption into one model looking at fecundability ratios as the outcome, rather than

TTP (continuous variable used in 1997 paper) or conception delay (>12 months unprotected intercourse

used in 1999 paper).  The sample included 606 women with known and unknown TTP who discontinued

birth control in order to become pregnant during 1991–1993 and for whom the partners' fish consumption
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data also were available.  The exposure measures included the duration, frequency, and lifetime PCB

index used in the previous studies.  As described in Section 3.2.5.2.1, Buck et al. (2000) used a discrete

time analogue of Cox proportional hazards analysis to estimate conditional fecundability ratios and

95% CI for fish consumption among couples with complete exposure data who discontinued birth control

to become pregnant.  Fish consumption was generally higher for men than women (68 and 42%,

respectively) as was the mean number of years of fish consumption (5.9 and 2.1 for the entire sample

whether they consumed fish or not).  Men also had higher mean PCB indices than women in the study,

although partners' consumption patterns were related.  The adjusted fecundability ratios for parental Lake

Ontario fish consumption indicated that maternal consumption of 3–6 years was associated with

significantly reduced fecundability, as was eating more than one monthly fish meal in 1991 (see

Section 3.2.5.2.1).  Paternal consumption was associated with slightly elevated, but nonsignificant, CFRs

for all three measures of fish consumption (only duration of 1–2 years had a CFR below 1.0).  The

findings suggest that maternal but not paternal consumption of contaminated fish may reduce

fecundability among couples attempting pregnancy. 

The Michigan Anglers Cohort.  An association between conception delay and sportfish consumption was

found in a survey of 626 married couples conducted between 1993 and 1995 (Courval et al. 1999).  At

least one person in each couple was a licensed angler residing in 1 of 10 Michigan counties bordering a

Great Lake (Lake Erie, Lake Huron, or Lake Michigan).  Subjects were categorized into four sex-specific

exposure classes (none, low, medium, high) based on an index of lifetime fish consumption (estimated

number of sportfish meals consumed in the past 12 months multiplied by the number of years since 1970

in which fish were caught and consumed):  0, 1–114, 115–270, and 271–1,127 for men, and 0, 1–54,

55–138, and 139–1,127 for women.  Conception delay, defined as ever having failed to conceive a child

after 12 months or more of trying, was essentially the same in both sexes (reported by 12.9% of the men

and 13.3% of the women).  Unadjusted logistic regression analysis showed that ORs for conception delay

increased in men with increasing exposure class: 1.2 (95% CI 0.5–2.9), 1.3 (0.6–3.1), and 2.0 (0.9–4.5);

results of a trends test were marginally statistically significant (p=0.06).  Adjustment for age, race, region

of Michigan, household income, smoking, and alcohol consumption minimally increased the odds ratios

for men.  The addition of the partners’ fish consumption in the adjustment further increased the odds

ratios associated with fish consumption in the model for men; the high fish consumption category OR was

2.8 (1.0–8.0), indicating that men with the highest fish consumption were at nearly 3 times the risk of

conception delay as nonconsumers.  The findings provide suggestive evidence that frequent consumption

of Great Lakes sportfish may be associated with an increased risk of conception delay for men.  As

discussed in Section 3.2.5.2.1, there was no evidence of increased risk of conception delay in the exposed
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women.  Although analysis of the data controlled for several potential confounders, no information was

collected regarding the subjects’ frequency or timing of sexual intercourse during the period of attempting

to conceive, whether the partner providing fish consumption data also was the partner with whom the

conception delay had occurred, or levels of PCBs and other persistent toxic chemicals in biological

samples from the subjects.  Additionally, the participation rate (29%) was extremely low in this study,

which could have resulted in nonresponse bias, a bias similar to selection bias.

General Population Exposures.  Semen samples from fertile men and those with low sperm counts

(idiopathic oligospermia or azoospermia) were analyzed for 74 PCB congeners (Bush et al. 1986). 

Multiple linear regression analysis of combined sample data showed no association between

concentration of any individual congener or total PCBs (summed congeners) and either sperm count,

motility, or percentage of normal forms.  Analysis of the data by fertility status (fertile, subfertile,

infertile) indicated that in the infertile men (sperm count <20 million cells/mL), decreasing sperm motility

was associated with increasing concentrations of three congeners (2,3',4,4',5-pentaCB [PCB 118],

2,2',3,4,4',5-hexaCB PCB 137], and 2,2',4,4',5,5'-hexaCB [PCB 153]).  The proportion of total variance

attributable to the regression (R2) was 9–16% for these congeners.  Another study found that blood

concentrations of tetra-CBs and penta-CBs, but not hexa-CBs and total PCBs, were significantly higher in

infertile males than in normal individuals (Pines et al. 1987).  Levels of p,p’-DDT and other

organochlorine compounds were also increased in the semen and blood of the men in these studies.

Yusho and Yu-Cheng Exposures.  Sexual maturation was not delayed, and testicular and scrotal

development was not altered in boys born to Yu-Cheng women, although the exposed boys had

significantly shorter penises (Guo et al. 1993).  Sex ratio was not altered in children born to 74 Yu-Cheng

women during or after the poisoning began (Rogan et al. 1999).  Of 137 live births occurring between

1978 and 1985, 69 were girls and 68 were boys.

3.2.5.2.3  Evaluation of Human Studies.  

Information is available on reproductive effects of PCBs in humans from studies of people exposed by the

general environment, consumption of contaminated rice oil in the Yusho and Yu-Cheng poisoning

incidents, consumption of contaminated fish, and occupational exposures.  A comparison of PCB levels in

blood and breast milk in some of these studies is included in Appendix A.
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Females.  Gerhard et al. (1998) examined a number of university hospital female patients (n=89) with a

history of miscarriages.  Although other substances were also detected (e.g., hexachlorobenzene), PCB

levels were found to be higher in the blood of patients with a history of three or more miscarriages. 

Another study of the general population found no association between endometriosis and concentrations

of PCBs in the blood (Lebel et al. 1998).  

Menstrual irregularities (i.e., altered intervals, duration, and flow) were observed in women exposed

during the Yusho poisoning incident (Kusuda 1971).  Heating of the PCB-contaminated rice oil also

resulted in the formation of other contaminants of concern (i.e., dibenzofurans and ter-, and

quarterphenyls) (Rogan 1989). 

In a study of Native Americans, fish consumption has been shown to be a major risk factor for elevated

PCB body burdens (Fitzgerald et al. 1996).  The studies that examined reproductive end points in women

whose diets contained Great Lakes fish found evidence that consumption of the fish may be associated

with a slightly shorter length of menstrual cycle (Mendola et al. 1997), but not with increased risk of

conception delay in females (Buck et al. 1997; Courval et al. 1999) or increased risk for spontaneous fetal

death (Mendola et al. 1995a).  Buck et al. (1997) examined time-to-pregnancy (i.e., after stopping birth

control, the number of menstrual cycles before pregnancy) as the outcome measure of conception. 

However, in a more recent study (Buck et al. 2000), their outcome measure was a fecundability ratio (i.e.,

probability of conception during a given menstrual cycle for the exposed, divided by the same probability

for the unexposed).  Utilizing this outcome, the researchers found that maternal consumption of fish for

3–6 years was associated with a reduction in fecundability (i.e., biological capacity for reproduction). 

Significantly higher levels of several PCB congeners (e.g., 153 and 138) were also detected in the breast

milk of fisheaters (Kostyniak et al. 1999).  The number of months of lifetime lactation declined in these

females with a rise in PCB concentration in breast milk.  

Mendola et al. (1997) note that the effect on menstrual cycle length in the women fisheaters is a

preliminary finding that needs to be interpreted cautiously because of certain limitations (e.g., lack of

information on confounders such as stress, use of contraceptives, body mass index, and physical

exercise).  The decreases in menstrual length were small and were considered not likely to be clinically

relevant.  However, they may be indicative of potential endocrine effects to the population.  At the

highest exposure levels, the decrease was approximately 0.5 days for women who reported regular cycles

and 1 day for all women who reported cycle length information.  The effect did not appear to be mediated

through irregular cycles since the fish consumption-based exposure levels were similar for women who
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reported regular or irregular cycles.  The human populations in which menstrual changes have been

observed differ with respect to the sources of PCBs and exposures to other chemicals that may affect

susceptibility to menstrual disturbances.  Although the studies are insufficient for determining which

specific chemical(s) may be responsible for the observed alterations, the available data support a possible

association between PCBs and menstrual disturbances. 

There was no apparent effect on mean number of pregnancies in women who were occupationally

exposed to Aroclors 1254, 1242, and/or 1016 (Taylor et al. 1989).  This study had limitations due to small

numbers of subjects and the availability of only estimates of exposure based upon job descriptions,

manufacturing process, and industrial hygiene data.  Additionally, the mean number of pregnancies

represented data not adjusted for potential confounders.  

The human studies of reproductive effects in females have not always resulted in consistent findings.  For

example, two studies of fish consumption and conception demonstrated no effect (Buck et al. 1997;

Courval et al. 1999).  However, a more recent study by Buck et al. (2000) demonstrated that fish

consumption of a 3–6 year duration was associated with a reduction in fecundity in females.  Despite the

variation in results between studies, an association can be observed between the documented reproductive

effects (e.g., menstrual irregularities and conception failure), making these findings biologically

persuasive.

Males.  Analysis of semen for 74 PCB congeners showed that increasing concentrations of three

congeners (PCBs 118, 137, and 153), but not total PCBs, were associated with decreasing sperm motility

in infertile men (Bush et al. 1986).  Another study found that blood concentrations of tetra-CBs and

penta-CBs, but not hexa-CBs and total PCBs, were significantly higher in infertile males than in normal

individuals (Pines et al. 1987).  These results do not necessarily indicate a causative relationship between

PCBs and infertility in men for a number of reasons, particularly because levels of p,p’-DDT and other

persistent toxic chemicals were also increased in semen and blood.  Bush et al. (1986) found that the PCB

congeners only accounted for a small proportion of the total variance attributable to the linear regression

analysis, and hypothesized that the increased levels of PCBs in the low sperm count samples could be due

to other factors, such as biological malfunction in the sperm generation system causing lipid leakage. 

Associations between conception delay and consumption of PCB-contaminated Great Lakes sportfish

were reported in exposed men, but not their wives, in the study of the Michigan Anglers Cohort (Courval

et al. 1999).  Although analysis of the data controlled for several potential confounders, no information

was collected regarding the subjects’ frequency or timing of sexual intercourse during the period of
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attempting to conceive, or levels of PCBs and other persistent toxic chemicals in biological samples from

the subjects.  Additionally, there was no clear association between paternal exposure to consumption of

contaminated fish and conception delay or reduced fecundability in the NYS Angler Cohort, another

cohort of Great Lakes Anglers (Buck et al. 1999, 2000).  Occupational studies of reproductive effects in

men provide no clear indications of PCB-related effects.  Sperm counts, fertility history, and testicular

examinations were normal in a study of transformer repairmen who were occupationally exposed to

Aroclors 1260 and 1242 for a mean duration of 3.75 years (Emmett et al. 1988a, 1988b).  Although the

overall evidence for associations between PCBs and effects on sperm and conception delay in males has

not always been consistent, there are indications of possible reproductive effects in males which are

supported by the findings for female study subjects with similar exposure patterns.  

3.2.5.3  Animal Studies

The highest NOAEL values and all reliable LOAEL values for reproductive effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.5.3.1  Female Reproductive Effects

Commercial Mixtures.  Information on reproductive toxicity of commercial PCB mixtures in female

animals is available from studies in rats, mice, rabbits, minks, and monkeys.  As discussed below, effects

on fertility and/or reproductive function have been observed in most of these species with minks and

monkeys showing particular sensitivity.

Wistar rats that were administered 10 mg/kg/day Aroclor 1254 by gavage for 4–6 weeks had prolonged

estrus cycle, decreased sexual receptivity, and a transient decrease in body weight gain, but no significant

effect on the number of ovulations compared to unexposed controls (Brezner et al. 1984).  Animals that

were subsequently bred (duration of exposure at time of mating not specified) experienced treatment-

related vaginal bleeding during gestation, delayed parturition, and decreased litter size.  Evaluation of

pups following gestational and lactational exposure showed decreased body weight gain, decreased

preweaning survival, premature vaginal opening, and delayed first estrus, but there were no effects on

sexual differentation, estrous cycle, mating, or pregnancy.  There were no significant changes in number

of implantation sites, litter size, or offspring sex ratio in Long-Evans rats that were exposed to

4 mg/kg/day Aroclor 1254 in the diet from 50 days prior to mating until birth (Hany et al. 1999b).  There

were no overt signs of maternal toxicity, and other dose levels were not tested.  Body weight (average of
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both sexes) was significantly reduced in the pups at birth and PND 7–21, and relative testes weights and

serum testosterone levels were reduced in adult male offspring at PND 170.

Two-generation studies were performed in which groups of 20 female Sherman rats were exposed by diet

to Aroclor 1254 in doses of 0, 0.06, 0.32, 1.5, or 7.6 mg/kg/day or Aroclor 1260 in doses of  0, 0.39, 1.5,

or 7.4 mg/kg/day (Linder et al. 1974).  Exposure to Aroclor 1254 caused significantly reduced litter sizes

at 7.6 mg/kg/day in the F1a generation (14% smaller than controls) and $1.5 mg/kg/day in the F1b, F2a,

and F2b generations (15–72% smaller than controls).  No effects on litter size were found in either

generation of rats fed 0.06 mg/kg/day of Aroclor 1254 or $0.39 mg/kg/day of Aroclor 1260.  Insufficient

information is available to determine whether the effect on litter size is due to reproductive or

developmental toxicity because fertility and other reproductive end points were not evaluated in the

study.

Reproductive effects were evaluated in female offspring of Holtzman rats following maternal exposure to

0, 8, 32, or 64 mg/kg/day of Aroclor 1254 by gavage on lactation days 1, 3, 5, 7, and 9 (Sager and Girard

1994).  Young, mature, and older adult offspring were examined at 2–4.5, 5–8, and 8.5–13 months of age,

respectively, and mated to untreated males at 112, 200, and 350 days of age, respectively.  Effects

included a dose-related reduction in preweaning weight gain that was statistically significant at

$32 mg/kg/day, delayed puberty as indicated by late vaginal opening and first estrus at $32 mg/kg/day;

reduced mating rate (sperm-positive females) in mature offspring at $8 mg/kg/day; reduced implantation

rate and mean number of embryos in young and mature offspring at 64 mg/kg/day; reduced uterine

weight during proestrus in young, mature, and older offspring at $8 mg/kg/day; and reduced uterine

response to exogenous 17-beta estradiol in ovariectomized mature offspring at $8 mg/kg/day.  Average

estrus cycle length was not significantly different in any of the groups, although cycle patterns were

altered in low- and high-dose young offspring and in mid-dose mature rats.  Pregnancy and ovulation

rates, reproductive aging, and ovarian weights were not affected by exposure Aroclor 1254.

Estrogenic effects of PCBs were also evaluated in in utero and lactationally exposed female offspring of

Sprague-Dawley rats that were administered 0 or 30 mg/kg/day doses of Aroclor 1221, 1242, or 1260 by

gavage on days 12–20 of gestation (Gellert and Wilson 1979).  Evaluation of the offspring at

approximately 6 months of age showed no exposure-related changes in ovarian weight, ovulatory status,

or vaginal estrus cyclicity.

Female ICR Swiss mice that were exposed to Aroclor 1254 in the diet at a dose of 12.5 mg/kg/day for

90 days before mating had a conception rate that was reduced approximately 30% compared to lower
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dose groups (#1.25 mg/kg/day) and controls (Welsch 1985).  There were no exposure-related effects on

fertilization rate or pre- and postimplantation embryonic losses in New Zealand rabbits that were

administered 4 mg/kg of Aroclor 1260 (only treatment level) by gavage on 3 days/week for 12–15 weeks

before artificial insemination and throughout gestation (Seiler et al. 1994).  No other reproductive

parameters were examined in these studies.

It is well established that oral exposure to low doses of PCBs causes reproductive failure in minks.  For

example, in minks that were exposed to Aroclor 1254 at an estimated dietary dose of 0.4 mg/kg/day for a

39-week period that began approximately 6 months before mating and ended when the kits were 4 weeks

of age, only two of seven mated females produced offspring with a total of two kits (one alive and one

dead) (Aulerich and Ringer 1977).  No effects on numbers of females producing offspring or kits born

were induced by similar exposure to Aroclor 1242, 1221, or 1016, although 0.4 mg/kg/day was the only

dose level tested.  Dietary exposure to 0.2 mg/kg/day Aroclor 1254 for a 21-week period that began

approximately 4 months before breeding and ceased at the end of gestation had no effect on numbers of

females producing offspring or kits born, although marked reductions occurred at 0.9 mg/kg/day, and

there were no births at 2.8 mg/kg/day (Aulerich and Ringer 1977).  Female minks that were exposed to

1.3 mg/kg/day Aroclor 1254 in the diet from approximately 5 weeks before breeding until 5 days after

parturition had an increased frequency of interrupted pregnancies and 48% reduced litter size with no live

births (Kihlstrom et al. 1992).  Similar effects on reproduction were observed in female minks that were

exposed to 0.5–1.7 mg/kg/day Aroclor 1254 or 1.8 mg/kg/day Clophen A50 from before mating until

5 days after parturition for total durations of approximately 3 months (Backlin and Bergman 1995;

Backlin et al. 1997, 1998a, 1998b; Jones et al. 1997).  No indications of PCB-induced impaired ovulation

or implantation have been observed in minks, although histopathological studies of mid- to late-gestation

placentae indicate that fetal death is mediated by degenerative changes in maternal (endothelial

detachment and thrombosis in maternal vessels) and fetal (trophoblastic disintegration and loss of fetal

capillary integrity) tissues (Backlin and Bergman 1995; Backlin et al. 1997, 1998a, 1998b; Jones et al.

1997; Kihlstrom et al. 1992).

Reproductive effects of low doses of commercial PCB mixtures have also been demonstrated in

intermediate-duration studies in female monkeys.  Exposure to 0.8 mg/kg/day Aroclor 1248 for 2 months

caused a reduction in conception rate in monkeys (Allen et al. 1974a).  Conception did not occur in two

of five monkeys that were bred 3 months posttreatment, resorption and/or abortion occurred in two of the

three pregnant monkeys, and the two nonpregnant monkeys were bred twice again during the subsequent

5 months without success.  Groups of eight female Rhesus monkeys were exposed to 0.1 or 
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0.2 mg/kg/day Aroclor 1248 in the diet from 7 months prior to breeding and throughout pregnancy

(Barsotti et al. 1976).  Increased menstrual duration (5–7 days) and bleeding occurred at $0.1 mg/kg/day,

and conception rate was decreased at 0.2 mg/kg/day.  Resorptions or abortions occurred in 3/8 and 4/6 of

low- and high-dose impregnated monkeys, compared with 0/12 in controls, and the remaining two high-

dose animals were bred 5 times without success.  Similar effects occurred in four Rhesus monkeys that

were mated after 38 weeks of dietary exposure to 0.2 mg/kg/day Aroclor 1248 (Arnold et al. 1990). 

Following extended post-implant bleeding, all of the treated monkeys aborted within 30–60 days of

gestation.  Following recovery from the abortions, the monkeys were bred again up to a maximum of

7 times but none appeared to conceive, and the menstrual cycle lengths and durations became erratic and

longer during and subsequent to the breeding period.

Information on reproductive effects of chronic exposure to PCBs is available from a study in which groups

of 16 female Rhesus monkeys ingested capsules providing 0, 0.005, 0.02, 0.04, or 0.08 mg/kg/day doses of

Aroclor 1254 for up to 72 months (Arnold et al. 1993a, 1993b, 1995, 1997).  Evaluation during the

premating phase of the study (first 37 months) found no exposure-related changes in serum levels of

estrogen and progesterone (assessed during one menstrual cycle), menstrual duration (number of days of

menstrual flow), or menstrual cycle length (number of days from first day of menses until the day

preceding the next menses) (Arnold et al. 1993a, 1993b).  The average cycle duration was slightly

increased in the 0.04 and 0.08 mg/kg/day groups compared to controls and the average cycle length was

slightly shortened in treated groups compared to controls, but none of the differences were statistically

significant.  There also were no apparent treatment-related effects on incidences of anovulatory cycles or

temporal relationships between estrogen peak and menses onset, menses end, or progesterone peak.  After

37 months of exposure, the females were mated with untreated males and dosing was continued throughout

mating and gestation until the breeding phase of the study (29 months) was completed (Arnold et al. 1995). 

Incidences for impregnation success were 11/16, 10/16, 4/15, 6/14, and 5/15 in the control to high-dose

groups.  Statistical analysis of these conception rates, adjusted for either total number of matings or

number of matings with positive sires, showed that there was a significant (p=0.017) decreasing trend in

the rate of impregnation with increasing dose from 0 to 0.08 mg/kg/day.  There was no evidence of such a

trend when conception rates among only the treated groups were compared.  Comparisons between the

treated and control groups showed that the conception rates were significantly (p<0.05) reduced at doses

$0.02 mg/kg/day.  Age of the females did not appear to be a confounding factor.  A significantly

increasing dose-related trend in fetal mortality incidence rates (p=0.040) was also found in this study. 

Comparisons between the treated and control groups showed that fetal mortality was significantly (p<0.05)

increased at 0.08 mg/kg/day and marginally (p=0.077) increased at 0.02 mg/kg/day, indicating that 
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0.02 mg/kg/day is the LOAEL for both reduced conception and fetal survival.  Although the increased

fetal mortality in the 0.02 mg/kg/day group was marginally nonsignificant, the number of animals was

small; this group had three fetal deaths in four impregnated animals, and the infant that was born died

within 2 weeks postpartum.  Maternal treatment was discontinued after approximately 7 weeks of lactation

to preclude infants from self-ingesting the mother’s dosing capsule, and restarted in the adult monkeys

when infants were weaned at 22 weeks of age and continued for the following 8 months (Arnold et al.

1997).  Necropsies performed at the end of the postweaning exposure period showed no exposure-related

histopathological changes in the uterus and other parts of the reproductive system or increased incidences

or severity of endometriosis.

Defined Experimental Mixtures.  There were no significant effects on number of implantation sites, litter

size, or offspring sex ratio in Long-Evans rats that were exposed to 4 mg/kg/day of a PCB congener

mixture simulating the congener content of human milk from 50 days prior to mating until birth (Hany et

al. 1999b).  Overt signs of maternal toxicity were not observed, and other dose levels were not tested. 

Body weight in the pups (average of both sexes) was significantly reduced at birth and PND 7–21, relative

uterine weight was significantly increased in the female offspring on PND 21, and relative testes weights

and serum testosterone levels were significantly reduced in adult male offspring at PND 170.

Contaminated Fish.  No adverse reproductive effects were found in a 2-generation study in which

Sprague-Dawley rats were fed diets containing 0, 5, or 20% (w/w) of lyophilized protein from chinook

salmon from Lake Huron or Lake Ontario (Arnold et al. 1998; Feely and Jordan 1998; Feeley et al. 1998). 

The F0 rats (30 males and 30 females/group) were mated after 70 days on the test diet and the F1 rats

(1 male and 1 female from 24 litters) were mated 70 days postweaning.  Daily intakes of total PCBs in the

female F1 rats fed diet containing 0, 5, or 20% lyophilized Lake Ontario salmon flesh were calculated to

be 0.22, 23.20, and 82.37 µg/kg/day, respectively (Feely and Jordan 1998).  PCB intakes were

qualitatively similar, but generally somewhat lower, for males compared with females and for F0 rats

compared with F1 rats, and intakes from the Lake Huron diet were about 35–40% lower than from the

Lake Ontario diet.  The DDT complex (p,p’-DDT,  p,p’-DDE, and  p,p’-DDD) accounted for 75 and 60%

of organochlorine pesticide residues in the Lake Huron and Lake Ontario fish, respectively, and other

major contaminants included CDDs and CDFs, mirex, chlordane, cadmium, lead, mercury, and arsenic. 

Comprehensive reproductive assessment, which included evaluation of conception rate and mating,

fertility, viability, and lactation indices, showed no significant exposure-related adverse effects in either

generation.
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A 2-generation reproduction study of Lake Huron fish was conducted in minks (Restum et al. 1998). 

Although numerous chlorinated pesticides and other persistent toxic substances were present in the fish,

the dietary treatments were expressed as targeted concentrations of total PCBs.  Diets were formulated to

provide 0, 0.25, 0.5, or 1.0 ppm PCBs by substituting carp from Lake Huron for ocean fish in the control

diet.  To determine whether the effects of exposure were permanent, half of the parental (P1) animals

were switched from the treatment diets to the control diet after whelping the first of two F1 generations. 

Total exposure time for the P1 minks that were switched to the control diet after weaning was about

6 months, and the P1 minks that were continued on the treatment diets until termination of the study were

exposed for approximately 16–18 months.  Effects of gestational and lactational exposure on reproductive

performance of the first F1 generation were examined by switching half of the F1 offspring to the control

diet at weaning (offspring were exposed for about 3 months), and continuing the remaining offspring on

their parental diet throughout their lifetime (continuous exposure for 12–15 months).  The second F1

generation included kits born to the P1 dams that were exposed for 6 months followed by 10–12 months

of consumption of control diet prior to whelping, as well as kits born to the P1 dams that were

continuously exposed over an 18-month period.  F2 generation minks consisted of kits born to the first F1

generation and exposed to PCBs either during gestation and lactation only, or from gestation throughout

their lifetime.  Effects included delayed onset of estrus, as determined by vulvar swelling and time of

mating, in P1 and F1 females that were continuously exposed to the mid and high doses of PCBs.  There

were no significant differences in breeding performance (numbers of confirmed bred) and reproductive

performance (number whelped/number mated) in the P1 and F1 females.  Survivability of F1 and F2

offspring was markedly decreased in the mid- and high-dose groups.  The reduced survivability of the F1

kits predominately occurred after birth during the lactation period.  For example, the first F1 litter

produced by the F0 generation showed a 70.5% survivability at birth (compared with 94.6% in controls),

but by the end of lactation, 6 weeks after birth, the average survivability was 23% (compared with about

73% in controls).  In several exposure groups, there were decreased percentages of mated females that

gave birth, but the decreases were not statistically significant.  The failure to demonstrate statistical

significance may have been due to small sample sizes for several of these groups.  For example, in a high-

dose F1 group, 2/4 mated females gave birth (50%), compared with 11/14 (79%) in the F1 control group.  

  

Single Congeners.  A series of toxicity studies was performed in which groups of 10 male and 10 female

Sprague-Dawley rats were exposed to diets containing four dose levels of various single congeners for

13 weeks (Chu et al. 1994, 1995, 1996a, 1996b, 1998b; Lecavalier et al. 1997).  Histological

examinations of the female reproductive organs and mammary glands showed mild changes in the ovaries

in 7/10 rats exposed to PCB 126 at 8.7 µg/kg/day, but not #0.83 µg/kg/day (Chu et al. 1994).  The 
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ovarian changes were characterized by loss of oogonia in the primary follicles with degeneration of the

inner layer of the corona.  No effects in reproductive tissues were found in females following exposure to

PCB 28 at #3,956 µg/kg/day; PCB 77 at 892 µg/kg/day; PCB 105 at #3,960 µg/kg/day; PCB 118 at

#170 µg/kg/day; PCB 128 at #4,125 mg/kg/day; or PCB 153 at #4,397 µg/kg/day.  Measurements of

serum leutinizing hormone and follicle-stimulating hormone concentrations, performed only in the female

rats exposed to PCB 28 and PCB 77, showed no exposure-related changes (Desaulniers et al. 1997).

Promotion of surgically-induced endometriosis was studied in B6C3F1 mice that were treated with

PCB 126 or PCB 153 by gavage every 3 weeks for a total of 5 doses (Johnson et al. 1997).  Dose levels

were 0, 100, 300, or 1,000 µg/kg/day for PCB 126 and 0, 3, or 30 mg/kg for PCB 153.  No significant

changes in the size, weight, or histology of endometriotic lesions were induced by either congener.  There

also were no significant effects on ovarian or uterine weights, although histological examination of the

ovaries (uterus not examined) from a small number of animals (three per group) suggested possible

induction of ovarian atrophy by PCB 126. 

A reproduction study of PCB 169 was conducted in which offspring of exposed female Wistar rats were

mated (Smits-van Prooije et al. 1993).  The maternal rats were treated with a single 0, 0.2, 0.6, or

1.8 mg/kg dose of PCB 169 by gavage on day 1 of gestation.  Mating of male and female offspring as

young adults (age not specified) resulted in significantly reduced mating success (females mated) and

pregnancy rate at 1.8 mg/kg.  Mating of female offspring with unexposed males as 1-year-old adults

caused nearly a completely reduced number of mated females and zero pregnancy rate at 1.8 mg/kg.

Female C57BL/6J mice were fed PCB 77 in estimated dietary doses of 0, 0.6, or 7 mg/kg/day for 2 weeks

before mating with unexposed males and subsequently throughout gestation and lactation (Huang et al.

1998b).  Female offspring were fed the same diets as the dams from weaning until 7 weeks of age, at

which time they were mated with unexposed males.  Fecundity (percentage of mated females that gave

birth) and pup survival at ages 4 and 21 days were reduced in the F0 females at 7 mg/kg/day.  There were

no effects on fecundity or litter size in the F1 females, although all of their offspring died before 4 days of

age at $0.6 mg/kg/day.  Other effects included reduced in vitro fertilizing ability of the eggs and

increased degenerated eggs in the F1 females at $0.6 mg/kg/day; these end points were not evaluated in

F0 females. 

Other Relevant Information.  Results from in vitro studies with oocytes obtained from superovulated

B6D2F1 mice showed that and 3,3',4,4'-tetraCB and Aroclors 1221, 1254, and 1268 significantly reduced
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fertilization rates and increased the incidence of degenerative ova and abnormal 2-cell embryos (Kholkute

et al. 1994a).  Of the four PCBs tested, Aroclor 1254 was the most effective.  

3.2.5.3.2  Male Reproductive Effects

Commercial Mixtures.  High oral doses of commercial PCBs induced testicular effects in weanling rats,

but not adult rats or mice.  Adult mice that were exposed to 130 mg/kg/day Aroclor 1254 in the diet for

14 days had no treatment-related changes in relative weights of the testes or preputial and vesicular

accessory glands (Sanders et al. 1974).  Similarly, no effects on testis weight, epididymis weight, or

testicular histology or cytogenicity were found in adult rats that were treated with 50 mg/kg/day

Aroclor 1254 by gavage for 7 days (Dikshith et al. 1975).  Weanling F344 rats that were administered

25 mg/kg/day Aroclor 1254 by gavage for 15 weeks, however, had significant reductions in seminal

vesicle and cauda epididymal weights, caudal epididymal sperm counts, and body weight gain (Gray et al.

1993).  These effects were not observed at lower doses of 0.1–10 mg/kg/day, and there were no changes

in testicular sperm count and motility, testicular weight, serum levels of testosterone, weight of the

testicular interstitial fluid, testosterone concentration in the interstitial fluid, or total testosterone in the

interstitial fluid compartment of the testis.  None of these mouse and rat studies evaluated reproductive

capability.   

Fertility was markedly reduced in male offspring of Holtzman rats that were lactationally exposed to

Aroclor 1254 (Sager 1983; Sager et al. 1987, 1991).  The maternal rats were treated with 8, 16, 32, or

64 mg/kg doses by gavage on lactation days 1, 3, 5, 7, and 9, and male offspring were mated with

untreated females 130–150 days postweaning (Sager 1983; Sager et al. 1987).  Significant decreases in

numbers of implants and embryos were observed at 8 mg/kg/day (21 and 29% lower than controls,

respectively) and higher doses, and there was either a significant decrease or a decline in number and

percent of normal fertilized eggs and eggs at the two- to four-cell blastocyte stages at $16 mg/kg/day. 

The reduction in male fertility appears to be due to impaired ability of sperm to fertilize eggs because

sperm production, morphology, and motility were not affected and plasma FSH and testosterone

concentrations were not reduced (Sager et al. 1987, 1991).  Seminal vesicle and ventral prostate weights

were decreased at $16 mg/kg/day.

In contrast to the effects of Aroclor 1254 summarized above, fertility was not impaired in male offspring

of Sprague-Dawley rats that were administered 0 or 30 mg/kg/day doses of Aroclor 1221, 1242, or

1260 by gavage on days 12–20 of gestation (Gellert and Wilson 1979).  There were no exposure-related
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changes in the percentage of male offspring (F1) siring progeny when they were mated with unexposed

females at approximately 6 months of age, or in the sex ratio of the F2 offspring from this mating. 

Measurements of absolute testes and ventral prostate weights in the F1 males (relative weights not

determined) showed no changes except for increased testes weight in the Aroclor 1260 group.

Limited information is available on reproductive effects of commercial PCB mixtures in male minks and

monkeys.  Mating performance and testicular histology were normal in four male minks that were fed

0.1 mg/kg/day Aroclor 1254 in the diet for approximately 6 months (Wren et al. 1987b).  Aulerich and

Ringer (1977) noted that long-term dietary exposure to Aroclor 1254 did not exert any apparent adverse

effects on spermatogenesis in minks.  Matings between unexposed females and PCB-treated males

reportedly resulted in acceptable reproduction, but no additional study information was provided.   

One of four male Rhesus monkeys that were fed 0.1 mg/kg/day Aroclor 1248 for 17 months developed

decreased libido and dermal and ocular signs of PCB toxicity after the first year of exposure (Allen and

Norback 1976).  A testicular biopsy on the affected animal showed marked hypoactivity of the

seminiferous tubules characterized by an absence of mature spermatozoa and a predominance of Sertoli

cells.  The remaining three males remained healthy and sexually active.  Evaluation of sperm morphology

and viability and the ability to fertilize unexposed females, performed during the first year of exposure,

showed no effects in any of the four males.  

Contaminated Fish.  There were no effects on breeding performance in male minks in the 2-generation

reproduction study of Lake Huron fish summarized in Section 3.2.5.3.1 (Restum et al. 1998).  No

differences in the number of attempted or confirmed matings, or testicular volumes, were observed among

the P1 and F1 generation males.

Single Congeners.  Reproductive effects were evaluated in offspring of female Wistar rats that were

treated with a single 0, 0.2, 0.6, or 1.8 mg/kg dose of PCB 169 by gavage on day 1 of gestation (Smits-

van Prooije et al. 1993).  Mating of exposed male and female offspring as young adults (age not

specified) resulted in significantly reduced mating success (females mated) and pregnancy rate at

1.8 mg/kg.  Mating of exposed male offspring with unexposed females as 1-year-old adults resulted in a

zero pregnancy rate at 1.8 mg/kg.

Female C57BL/6J mice were fed PCB 77 in estimated dietary doses of 0, 0.6, or 7 mg/kg/day for 2 weeks

before mating with unexposed males and subsequently throughout gestation and lactation (Huang et al.
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1998a).  Male F1 offspring were fed the same diets as the dams from weaning through 7 and 17 weeks of

age, at which time, they were mated with unexposed females.  Evaluation of reproductive ability of the F1

males showed no effects es as indicated by changes in fecundity (percentage of mated females that gave

birth), litter size, sex ratio, or pup survival.  Testes weights were increased in 7 mg/kg/day F1 males at

3 weeks, but not at 9 or 19 weeks of age.  Additionally, although there were no effects on breeding, in

vitro sperm-fertilizing ability was reduced in 7 mg/kg/day F1 males at 19 weeks, but not at 9 weeks of

age.     

A series of toxicity studies was performed in which groups of 10 male and 10 female Sprague-Dawley

rats were exposed to diets containing four dose levels of various single congeners for 13 weeks (Chu et al.

1994, 1995, 1996a, 1996b, 1998; Lecavalier et al. 1997).  Histological examinations showed no effects in

male reproductive tissues following exposure to PCB 28 at #3,783 µg/kg/day; PCB 77 at

#768 µg/kg/day; PCB 105 at #4,327 µg/kg/day; PCB 118 at #683 µg/kg/day; PCB 126 at

#7.4 µg/kg/day; PCB 128 at #3,534 µg/kg/day; or PCB 153 at #4,210 µg/kg/day.  Measurements of

serum testosterone concentrations, performed only in the male rats exposed to PCB 28 and PCB 77,

showed no exposure-related changes (Desaulniers et al. 1997).

Other Relevant Data.  Daily sperm production was reduced and percentages of abnormal sperm were

increased in adult male rats 1–8 weeks following administration of a single subcutaneous dose of 18 or

60 mg/kg of 3,3',4,4'-tetraCB (PCB 77) (Faqi et al. 1998).  No effects on testis histology or serum

testosterone concentration were observed, and reproductive capability was not evaluated.

Effects on the testis were evaluated in adult male rats that were neonatally exposed to either

Aroclor 1242 (.10, 40, or 80 mg/kg/day) or Aroclor 1254 (.10 or 40 mg/kg/day) by daily subcutaneous

injection from birth to PND 25 (Cooke et al. 1996).  Examinations at 135 days of age showed

significantly increased testis weight at $40 mg/kg/day Aroclor 1242 and $10 mg/kg/day Aroclor 1254,

and increased daily sperm production at 10 mg/kg/day Aroclor 1242 and $10 mg/kg/day Aroclor 1254. 

Sertoli cell proliferation was also increased in exposed rats (only examined in 15-day-old pups treated

with 40 mg/kg/day Aroclor 1242).  Both Aroclor 1242 and 1254 also suppressed serum thyroxine (T4)

concentrations and T4 replacement decreased or eliminated the testicular effects.  As discussed in

Section 3.2.2.8 (Endocrine Effects), other studies also indicate that hypothyroidism is involved in PCB-

induced testicular effects in neonatal rats.  Fertility tests showed that all Aroclor 1242-treated rats

successfully impregnated unexposed females (Aroclor 1254 was not tested).   
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3.2.5.3.3  Evaluation of Animal Studies

Reproductive toxicity in female animals has been established in a number of oral studies with commercial

PCB mixtures.  Effects have been observed in various species, including rats (e.g., prolonged estrus,

decreased sexual receptivity, and reduced implantation rate in adults and/or their offpsring exposed via

gestation and lactation), mice (decreased conception), minks (partial or total reproductive inhibition), and

monkeys (prolonged menstruation, decreased fertility) (Allen et al. 1974a; Arnold et al. 1990, 1993a,

1993b, 1995; Aulerich and Ringer 1977; Backlin and Bergman 1995; Backlin et al. 1997, 1998a, 1998b;

Barsotti et al. 1976; Brezner et al. 1984; Jones et al. 1997; Kihlstrom et al. 1992; Sager and Girard 1994;

Welsch 1985).  Minks and monkeys are particularly sensitive, with effects occurring in these species at

doses in the range of 0.1–1 mg/kg/day in intermediate-duration studies, and as low as 0.02 mg/kg/day in

monkeys following chronic exposure.

In minks, repeated exposure to 0.4–1.8 mg/kg/day doses of Aroclor 1254 or Clophen A50 caused

reproductive failure that has been associated with fetal death following embryo implantation (Aulerich

and Ringer 1977; Backlin and Bergman 1995; Backlin et al. 1997, Kihlstrom et al. 1992).  No indications

of PCB-induced impaired ovulation or implantation have been observed in minks, although

histopathological studies indicate that fetal death is mediated by changes in the placental vasculature

which cause degenerative changes in the maternal and fetal vessels during gestation (Backlin and

Bergman 1995; Backlin et al. 1997, 1998a, 1998b; Jones et al. 1997; Kihlstrom et al. 1992).  As discussed

in Section 3.5.2, multiple mechanisms are likely to be involved in PCB-induced reproductive impairment

in minks.  Although these studies provide important information on the mechanism and sensitivity of

reproductive toxicity in female minks, it is unclear if this species is an appropriate surrogate for human

toxicity.  Impaired ability to conceive and decreased fetal survival are well-documented in female

monkeys following repeated oral exposures to Aroclors 1254 and 1248 (Allen et al. 1974a; Arnold et al.

1990, 1993a, 1993b, 1995; Barsotti et al. 1976).  For example, reduced conception rates, as well as

increased incidences of abortions, resorptions, or stillbirths, were observed in groups of 16 female Rhesus

monkeys that were fed encapsulated Aroclor 1254 at dose levels of 0.02–0.08 mg/kg/day for 37 months

before breeding and subsequently throughout mating and gestation (Arnold et al. 1995).  There were no

clear effects on reproduction at 0.005 mg/kg/day, the lowest tested dose in this study and in any species. 

This dose is the LOAEL for immunological effects in the maternal monkeys and developmental toxicity

in their offspring (see Sections 3.2.3 and 3.2.6).  Mechanisms for the reproductive effects in monkeys

have not been elucidated, although Arnold et al. (1995) found no evidence that they were associated with

endometriosis.
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There is some evidence suggesting that noncommercial mixtures of PCBs may have the potential to

induce estrogenic and anti-estrogenic effects in the offspring of exposed animals.  There were no

significant effects on number of implantation sites or litter size in rats that were exposed to 4 mg/kg/day

of a PCB congener mixture simulating the congener content of human milk from 50 days prior to mating

until birth (Hany et al. 1999b).  Evaluation of the offspring, however, showed significantly increased

relative uterine weight in immature females (PND 21) and reduced testes weights and serum testosterone

levels in adult males (PND 170).  No significant exposure-related adverse effects on reproductive

parameters (mating, fertility, viability, lactation indices, litter size) were found in a 2-generation study of

rats fed contaminated fish from Lake Huron or Lake Ontario (Feeley et al. 1998).  A 2-generation

reproduction study of Lake Huron-fed minks similarly found no effects on breeding or reproductive

performance, although onset of estrus was delayed in P1 and F1 females and survivability was decreased

in F1 and F2 offspring (Restum et al. 1998).  From the available information, it is not possible to

determine whether the different results from the minks and rat studies are due to physiological or

biochemical differences between minks and rats, qualitative or quantitative differences in chemical

composition of the fish flesh, or some other cause.  Additional information on the estrogenic and

antiandrogenic effects of PCBs is discussed in Mechanisms of Toxicity (Section 3.5.2). 

A limited amount of information is available on reproductive effects of PCBs in male animals.  Short-

term exposure to high oral doses of Aroclor 1254 induced no changes in the weight or histology of the

testes or accessory glands in adult rats exposed to 50 mg/kg/day for 7 days or mice exposed to

130 mg/kg/day for 14 days (Dikshith et al. 1975; Sanders et al. 1974).  Weanling F344 rats that were

treated with 25 mg/kg/day Aroclor 1254 by gavage for 15 weeks, however, had significant reductions in

seminal vesicle and cauda epididymal weights, caudal epididymal sperm counts, and body weight gain

(Gray et al. 1993).  These effects were not observed at lower doses of 0.1–10 mg/kg/day, and there were

no changes in other testicular end points including sperm count and motility, testicular weight, and serum

levels of testosterone.  The results of the Gray et al. (1993) study may be related to the age of the rats at

the start of dosing (day 31), which is after the development of Sertoli cells is complete, and therefore may

have missed the vulnerable period in the postnatal development of the testes (see discussion in

Section 3.2.2.8.3).  None of these mouse and rat studies evaluated reproductive capability.  Observations

on small numbers of animals indicated that mating performance and testicular histology were normal in

male minks that were fed 0.1–0.9 mg/kg/day doses of Aroclor 1254 for 4–6 months (Aulerich and Ringer

1977; Wren et al. 1987b).  One of four monkeys that were fed 0.1 mg/kg/day Aroclor 1248 for 17 months

developed clinical signs of toxicity, decreased libido, and marked hypoactivity of the seminiferous

tubules, including an absence of mature spermatozoa, after the first year of exposure (Allen and Norback
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1976).  The remaining three males remained healthy and sexually active, and none of the animals had

effects on sperm morphology and viability and the ability to fertilize unexposed females, although the

latter end points were only evaluated during the first year of exposure.  

In contrast to the limited evidence for reproductive effects in exposed male adult animals, fertility was

markedly reduced in male offspring of rats that were lactationally exposed to $8 mg/kg/day

Aroclor 1254 (Sager 1983; Sager et al. 1987, 1991).  The reduction in male fertility appears to be due to

impaired ability of sperm to fertilize eggs because sperm production, morphology, and motility were not

affected and plasma FSH and testosterone concentrations were not reduced (Sager et al. 1987, 1991). 

Fertility was not impaired in the male offspring of rats that were administered 30 mg/kg/day of

Aroclor 1221, 1242, or 1260 by gavage during gestation (Gellert and Wilson 1979), but this study did not

include postnatal exposure.  Results of oral and subcutaneous studies with single congeners have shown

that gestational, lactational, or adult exposures can adversely affect morphology and production of sperm

and fertility in male rats and mice (Faqi et al. 1998; Huang et al. 1998a; Smits-van Prooije et al. 1993),

although congeneric structure-activity relationships are unclear.  

3.2.6 Developmental Effects

This section describes effects of exposure to PCBs on anthropometric measures at birth in humans as well

as on physical growth during infancy.  For consistency, the discussion of animal data is restricted mostly

to these same end points.  Effects of perinatal exposure to PCBs on other end points in the offspring,

including changes in the thyroid gland and thyroid hormones, neurobehavior, and the immune and

reproductive systems, are discussed in the respective sections in Chapter 3.

3.2.6.1 Summary

Anthropometric measures have been evaluated in newborn from women (1) exposed to PCBs through

consumption of Great Lakes and ocean fish contaminated with PCBs and other environmentally persistent

chemicals, (2) from the general population with no known high exposure to PCBs, (3) occupationally

exposed to commercial PCB mixtures, and (4) accidentally exposed to PCBs and structurally-related

chemicals.  Some studies found significant negative associations between anthropometric measures at

birth (and at early ages) and exposure to PCBs, whereas others found significant positive associations,

and yet a third group reported no significant associations.  The wide range of results may reflect the

different degree of controlling for confounders and/or the different exposure measures.  Of the studies of
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women who consumed contaminated fish from the Great Lakes, only the Michigan study reported an

association between reduced birth weight, head circumference, and gestational age in newborns and with

body weight at 4 years with prenatal exposure to PCBs (PCBs in cord blood).  A study of Lake Ontario

fisheaters, which used similar measures of exposure as the Michigan study, found no significant

association between birth weight, head circumference, or gestational age and prenatal exposure to PCBs. 

In two additional studies of Lake Michigan women, fish consumption had a positive effect on birth

weight.  A study of Swedish wives of Baltic Sea fishermen found an increased risk of low birth weight

with increasing maternal blood concentrations of the PCB congener PCB 153 used as surrogate of PCB

exposure during the year of childbirth.  In a study of the general population in the Netherlands, prenatal

exposure to PCBs (PCBs in cord blood) was associated with reduced birth weight, but not with head

circumference or height at 10 days of age.  Prenatal exposure in formula-fed children was associated with

reduced growth between birth and 3 months, but no such association was seen in breast-fed children,

suggesting that any detrimental effect observed in newborns due to prenatal exposure to PCBs may have

been counteracted by the benefits of breast feeding.  No significant association was seen between growth

during the ages of 3–7, 7–18, or 18–42 months and any measure of exposure to PCBs.  A study of the

general population in Finland found no significant association between birth weight and the concentration

of PCBs in breast milk.  No firm conclusions can be made regarding growth and development of children

and environmental exposures to PCBs, although perinatal exposure to high concentrations of PCBs and

structurally-related chemicals, as occurred in Yusho and Yu-Cheng, affects birth weight and growth during

early life.

Studies have been conducted in animals exposed to commercial PCB mixtures, single PCB congeners,

and a reconstituted PCB mixture with a composition of congeners similar to the pattern found in human

breast milk.  The results of these studies suggest that primates are much more sensitive to the effects of

perinatal exposure to PCBs than rodents.  It also appears that unless very high doses are used, PCBs are

not teratogenic.  In general, studies in rodents have used relatively high doses of PCBs.  Data in rodents

treated with commercial PCB mixtures showed that developmental toxicity can occur in the absence of

overt signs of maternal toxicity.  Limited data from a study in rats exposed during gestation showed that

Aroclor 1254 was more potent than Aroclor 1260 in reducing survival of the pups to weaning.  These two

Aroclors differ primarily in that Aroclor 1254 lacks congeners with 7–9 chlorines.  Reduced birth weight

was reported in offspring from Rhesus monkeys treated before mating and during gestation with low

doses of commercial PCB mixtures.  These monkeys also showed characteristic signs of PCB intoxication

such as hyperpigmentation.  In all of the monkey studies, signs of PCB intoxication were also evident in

the mothers.
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3.2.6.2 Human Studies

3.2.6.2.1  Growth and Development

3.2.6.2.1.1  Contaminated Fish Consumption

The Michigan Cohort.  Birth weight, length, and gestational age were evaluated in 313 newborn infants

in the Michigan study (Fein et al. 1984a, 1984b).  A detailed description of the study design is presented

in Section 3.2.4 Neurological Effects.  Briefly, of the 313 infants, 242 were born to mothers who had

consumed moderate to large quantities of Lake Michigan fish sometime during their lives, and 71 were

born to mothers who did not consume Lake Michigan fish.  In the exposed group, mean fish consumption,

estimated by recall and duration of consumption, was 6.7 kg/year and 15.9 years, respectively; this rate is

equivalent to two or three salmon or lake trout/month (Fein et al. 1984a, 1984b).  Consumption during

pregnancy was 4.1 kg/year.  The mean PCB level in maternal serum among those eating Lake Michigan

fish was 6.1 ppb (SD=3.7), while the mean among those reporting no fish consumption was 4.1 ppb

(SD=2.7).  The mean PCB residues also were significantly higher in breast milk samples from the

fisheaters as compared to the nonfisheaters, 865.6 ppb (fat basis) versus 622.2 ppb (Fein et al. 1984a). 

Data on approximately 37 potential confounders, including smoking during pregnancy, were considered

in the study analyses (Fein et al. 1984a, 1984b). 

Overall, lower birth weight, smaller head circumference, and shorter gestational age were positively

correlated with consumption of fish and levels of total PCBs in cord serum; however, when the two

populations were divided according to the cord serum levels, the great majority in the low-level group

were fisheaters, suggesting that fish consumption rates were poor indicators of PCB exposure.  Fish

consumption only during pregnancy did not predict either birth size or gestational age (Fein et al. 1984b). 

Approximately 75% of the children were re-examined at age 4 (Jacobson et al. 1990a, 1990b).  Levels of

total PCBs in maternal milk or cord serum, or total duration of breast-feeding, were not related to height

or head circumference at 4 years, but prenatal PCB exposure was associated with lower weight at age 4.

The Oswego Cohort.  A study similar to the one conducted in Michigan was initiated in Oswego County

(New York) based on babies born between 1991 and 1994 (Lonky et al. 1996) (see also

Section 3.2.4.2.1.1, Neurological Effects).  Pregnant women were recruited from the office of one

obstetric practice and, following interviews, were divided into three groups based on their estimated fish

consumption.  The high fish consumption group was composed of women who reported having eaten
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$40 PCB-equivalent pounds of Lake Ontario fish in their lifetime (n=152) (the same as the Michigan high

fish consumption group).  The low consumption group reported eating <40 PCB-equivalent pounds

(n=243), and the no-fish-consumption group had never eaten Lake Ontario fish (n=164).  The mean PCB-

equivalent pounds consumed in the high fish group was 388.47 (SD=859.0), while the mean among those

in the low-fish-consumption group was 10.14 (SD=17.8).  The three groups did not differ with regard to

demographic, health, and nutritional data, maternal substance use, infant birth characteristics.  The high-

fish consuming group had a significantly heavier pre-pregnancy weight than the nonfisheating group.  In

contrast to findings from the Michigan study, which had higher levels of exposure, birth weight, head

circumference, and gestational age were unrelated to fish consumption.  In subsequent studies, the

investigators analyzed the association between specific groups of PCB congeners (according to degree of

chlorination) and neurobehavioral outcomes in the newborn, but they provided no information regarding

such analyses being done for birth weight, head circumference, and gestational age.

 

The Green Bay Wisconsin Study.  This study was designed to evaluate the reproductive effects

associated with maternal consumption of contaminated Great Lakes fish (Dar et al. 1992).  All women

between the ages of 18 and 35 with positive pregnancy tests at two Green Bay Wisconsin obstetrical

clinics were invited to participate in this study.  The recruitment occurred between January 1, 1987 and

January 1, 1988.  Participants were asked to complete a self-administered questionnaire at the first

prenatal visit including questions on fish consumption, socioeconomic status, medical, reproductive,

family, and occupational histories as well as a section on maternal behaviors.  Of the 1341 eligible

women, 1,115 agreed to participate for an overall participation rate of 82.9%.  Nonparticipants (n=226)

completed a brief questionnaire and were found to have lower education, lower income, and were more

likely to be nonwhite.  Exposure to PCBs was estimated from fish consumption scores determined from

the questionnaire responses and corroborated by serum analyses.  Fish consumption scores were

calculated for each participant based on the amount and species of fish consumed in the preceding year. 

Levels of PCBs in the 18 species of fish that participants reported consuming were based on Wisconsin

Department of Natural Resources surveys.  Estimated PCB mean intake scores were used to establish the

exposure variable categories.  The low fisheating group (n=522) included women who consumed no

locally caught fish, while the medium group (n=401) contained participants whose PCB scores were

greater than 0 but less than the 90th percentile.  The high exposure group was composed of women whose

PCB intake scores were above the 90th percentile (n=104).  Neither the actual fish consumption scores

nor the means of the PCB scores for each exposure group were reported (Dar et al. 1992).



3.  HEALTH EFFECTS - Developmental

PCBs 231

Due to the high cost of serum PCB analyses, maternal serum specimens were drawn from a random

sample of participants (n=100) to assess the validity of the fish consumption variables.  Correlation

analysis between the fish consumption variables and serum PCB levels yielded a correlation coefficient of

0.666.  The sum of the individual congener levels of PCBs in serum ranged from 0.6 to 5.0 ppb.  The

mean for each exposure group was not provided.  The birth size outcomes evaluated in this study included

birth weight, birth length, head circumference, ponderal index, and birth weight percentiles for gestational

age (method not specified).  These data were abstracted from hospital and clinic reports.  Only data on

birth weight were presented in this publication due to the similarity of results obtained from the other

parameters.  Multiple regression analyses were performed to assess the relationship between fish

consumption and the outcomes of interest.  Effect modification was assessed through the inclusion of

interaction terms in the models.  Factors known to influence birth outcomes were included as potential

confounders (sex of child, birth order, smoking, caffeine and alcohol consumption during pregnancy,

gestational age, pregnancy weight gain, usual maternal weight, and demographic variables).  

Birth weight was found to increase with increasing PCB exposure, based on the fish consumption scores. 

Maternal weight gain modified the effect of fish consumption (PCB exposure) on birth weight; birth

weight increased with fish consumption in women gaining <34 pounds during pregnancy while there was

little difference in mean birth weights for the three fish consumption categories in women gaining more

than 34 pounds during pregnancy (Dar et al. 1992).  Smoking and caffeine consumption were negatively

related to birth weight while male infants were found to be slightly heavier than female infants.  

The Sheboygan Wisconsin Study.  A study of Sheboygan, Wisconsin residents was conducted in 1980

and 1981 to assess the relationship between maternal serum and breast milk PCB levels and infant health,

behavior, and development (Smith 1984).  Routine testing for PCBs in 1978 along the Sheboygan River

in Wisconsin revealed that game fish had PCB levels far in excess of the standard set for fish by the FDA

(5 ppm at the time of the study, currently 2 ppm).  To ascertain the potential health risks associated with

the elevated PCB levels, a study of mother-infant pairs was undertaken in 1980 and 1981.  A total of

73 of the mothers were included in the study.  The participants were divided into three groups based on

their screening survey responses (it is unclear if these groups were meant to be exposure variable

categories or simply a description of the study population).  Group 1 (n=23 pairs) included women who

were breast feeding and ate Lake Michigan or Sheboygan River fish at least twice a month for $3 years. 

Group 2 (n=39 pairs) included women who were breast feeding and ate Lake Michigan or Sheboygan

River fish not more than twice a year (and had not done this for more than 3 years). Group 3 (n=11 pairs)
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included women who were not breast feeding and ate Lake Michigan or Sheboygan River fish at least

twice a month for 3 or more years.

Maternal serum and a breast milk sample were also taken during each of the mother-infant evaluations. 

The first evaluation took place during the second month of postnatal life while the second occurred at

4 months of age.  Prenatal maternal serum samples were not taken for any of the participants.  The

maternal survey instrument included questions on demographic variables, work history, medical history

including reproductive history and the most recent pregnancy, smoking and alcohol consumption, and

general diet.  Information on fish consumption also was collected from this questionnaire and included

data on species, amount, and frequency of fish meals.  The data collected on the infants included a health

history, dietary history, and growth and development assessment (Smith 1984).  Statistical analyses

included preliminary descriptive analyses using t-tests and chi-square tests.  Multiple regression and

logistic regression were used for the final models.

The mean level of PCBs in the first maternal serum was 5.76 ppb (range=1.29–14.9 ppb) while the mean

for the second was 5.48 ppb (range=1.15–14.1 ppb).  These levels indicated a low exposure level (Smith

1984).  The means were very similar between the three groups of mother-child pairs.  The mean breast

milk PCB levels (fat basis) in the first sample of Sheboygan women was 1.13 ppm

(range=0.29–4.02 ppm) while the mean for the second sample was 1.14 ppm (range=0.34–3.79 ppm).

Several variables were significant predictors of serum PCB levels (first sample) in linear regression

modeling.  These included the mother's education, a fish diet after birth, occupation, total bilirubin,

cholesterol, and phosphorus (negatively associated).  Regression analyses indicated that serum PCB level

and cholesterol were significant predictors of the first breast milk sample PCB level.  Regression analyses

examining the relationship between birth weight and serum PCB levels (first sample) found that maternal

serum PCB level was positively associated with birth weight after controlling for gestational age,

smoking, and mother's weight.  Fish consumption was not included as a variable in this analysis.  In this

investigation, the first breast milk sample was collected 2 months postnatal, and breast feeding would

decrease serum concentrations.  Therefore, a major confounder not adjusted for was breast feeding

duration.

The Wives of Swedish Fishermen Cohort Study.  A study of the wives of fishermen from two established

cohorts was conducted to investigate whether east coast wives with a presumably higher intake of fatty

fish (and PCBs) were more likely to have adverse reproductive outcomes than those living on the west
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coast and elsewhere in Sweden (Rylander et al. 1995).  Cohorts of fisherman from the east and west

coasts of Sweden were established based on membership in fishermen organizations from 1930 forward. 

Through linkage to the national Swedish population register and to registers at the local parish offices,

1,568 women from the east coast and 4,027 from the west coast who were, or had been, married to these

fishermen were identified.  From 1973 to 1991, 757 women from the east coast cohort gave birth to

1,501 infants while 1,834 women from the west coast cohort gave birth to 3,553 infants.  

Exposure to PCBs was represented by a variable called "east coast affiliation."  The east coast of Sweden

borders the Baltic Sea, a source of fatty fish (salmon and herring) thought to be contaminated with

persistent organochlorine compounds.  The west coast of Sweden is thought to have less contamination

than the east.  The study was designed as a retrospective cohort investigation comparing children born to

east coast women (exposed) and west coast women (unexposed) who were, or had been, married to

fishermen.  The majority of the data in this study was collected from the Swedish Medical Birth Registry,

which includes information on maternal demographics, smoking during pregnancy, prenatal care,

delivery, and pediatric assessments of the newborns.  The principal end points evaluated in this study

were birth weight, birth length, and head circumference.  Two cutpoints were used as an indicator of low

birth weight, 2,500 and 3,000 g.

Smoking was less frequent among west coast women during early pregnancy than among east coast

women (22.7 versus 38%).  In addition, there was a higher proportion of short women (<165 cm) among

the east coast cohort as compared to the west (48.6 versus 39.2%).  Weight distributions during early

pregnancy were similar for both cohorts.

In order to assess the dietary habits of both the east and west coast fishermen's wives, interviews were

conducted with a 5% random sample (n=38) of east coast cohort members and 2% random sample (n=31)

of west coast cohort members.  Equal numbers of female residents from the general population were also

interviewed; these "control" women were matched to the east and west coast wives by age and county of

residence.  Both the east and west coast women, who were married to fishermen, ate locally caught fish,

both lean and fatty species, twice as often as their referents.  The fishermen's wives also consumed about

3 times the amount of fatty fish species/month as their referents.

Among the fishermen's wives, west coast cohort members ate significantly more lean fish species than the

east coast cohort members.  There were no statistically significant differences between the east and west
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coast fishermen's wives in the total number of fatty fish meals eaten/month or in the amount of fatty fish

consumed on a monthly basis.

  

Comparison between the cohorts showed that birth weight and head circumference, but not length at birth,

were slightly reduced (p<0.001) in the east coast group.  The effect on head circumference was observed

even when multiple births and infants with major malformations were excluded.  Odds ratios were

calculated to evaluate the effect of cohort affiliation on low birth weight using a stratified analysis to

control for confounders.  East coast affiliation was significantly associated with low birth weight

(<3,000 g) even after adjustment for gender of the child, maternal age, parity, marital status, and smoking. 

Stratified analyses for head circumference and birth length were not presented in this report.

In a more recent publication from this group, the authors examined the association between the

concentration of 2,2',4,4',5,5'-hexaCB (PCB 153) in maternal serum during the year of childbirth and birth

weight of 57 east coast low birth weight cases and 135 controls matched on gender, parity, and calendar

year of birth (Rylander et al. 1998b).  In 1995, blood samples were collected from the wives and ex-wives

of fisherman from the east cost who had given birth during the period of 1973–1991.  PCB 153 in

maternal blood was used as biomarker of exposure to PCBs and the concentration during the year of

childbirth was estimated using kinetic models.  The median concentration in serum (fresh weight) in 1995

was 1.0 ppb for the case mothers compared to 0.92 ppb for control mothers.  Rylander et al. (1998b)

found an increase in the risk of a low birth weight at maternal blood PCB 153 concentrations of 300 and

400 ng/g (ppb, lipid basis). 

3.2.6.2.1.2  General Population Exposure

The North Carolina Breast Milk and Formula Project.  The North Carolina Breast Milk and Formula

Project (NCBMFP) is a cohort study designed to assess the relationship between exposure to prenatal and

postnatal PCBs and DDE and growth and development in infants and children (Rogan et al. 1986a,

1986b).  A detailed description of this cohort study in presented in Section 3.2.4.2.1.2 (Neurological

Effects).  Briefly, the participants were administered a questionnaire while in the hospital following

delivery.  Maternal serum, cord blood, and placenta samples were collected at birth as well as colostrum,

breast milk, or formula.  The first follow-up visit occurred at 6 weeks with subsequent evaluations at

3 and 6 months postpartum.  Breast milk or formula was collected at each of these visits.  PCB levels in

milk at birth averaged around 1.8 ppm (fat basis).  A total of 912 children were available with at least
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partial neonatal information (Rogan et al. 1986a).  The outcomes evaluated in the neonatal period

included birth weight and head circumference.  

The relationships of birth weight and head circumference to PCB levels were assessed by multiple

regression.  The covariates (potential confounders) included in the analyses were infant race, sex,

mother's age, education, occupation, smoking, alcohol consumption, prior pregnancies, maternal weight,

center enrolling the participant, and jaundice.  The analysis of head circumference also included the birth

weight variable (Rogan et al. 1986a).  The multiple regression analyses found no associations between

birth weight or head circumference and PCB level.  The birth weight decrement was noted for smokers as

was the male-female difference.  Larger mothers also had significantly larger babies.  Head circumference

was associated with the infant's birth weight and sex, and the mother's education and occupation (Rogan

et al. 1986a).

The Dutch Mother-Child Study.  The Dutch Mother-Child Study was designed as a prospective study to

assess the possible adverse effects of prenatal and postnatal PCB and dioxin exposure.  Details of this

study are presented in Section 3.2.4 (Neurological Effects).  Briefly, 207 pairs (105 breast-fed and

102 formula-fed) were from Rotterdam, a highly industrialized area, while 211 pairs (104 breast-fed and

107 formula-fed) were from Groningen, a semi-urban area in northern Holland (Koopman-Esseboom et

al. 1994b).  The exposure variables used in this study were maternal serum and milk samples as well as

cord blood specimens.  

The effect of prenatal cord blood PCB exposure on birth size at 10 days of age was evaluated using a

series of linear regression models (one for each outcome) in 207 mother-infant pairs from Rotterdam. 

Covariates included in the models were parity, gestational age, smoking, alcohol use during pregnancy,

and a factor representing parental height.  Gender, an important determinant of size, was not included

among the covariables for some reason even though there were significantly more boys in the breast-fed

(59%) than in the formula-fed group (46%).  This may have resulted in confounded effect measures.  A

significant decrease in birth weight at 10 days of age was observed with cord blood PCB exposure; birth

weight declined by a mean of 86 g at the 50th percentile of exposure relative to the 10th percentile

exposure levels while a mean 165 g decrease was observed for those in the 90th percentile of exposure

relative to the 10th percentile.  Head circumference and height at 10 days of age were not significantly

associated with cord blood PCB levels.  Similar effects were observed when using maternal plasma PCB

levels as the exposure variable with weight, height, and head circumference as outcomes at 10 days of age

(Patandin et al. 1998).
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The effect of prenatal PCB exposure on growth rate was assessed in the formula-fed group (n=102) using

linear regression modeling.  Covariates were identical to those described in the previous paragraph, with

the addition of the relevant variable value at 10 days of age in each model (e.g., change in birth weight

between 0 and 3 months included birth weight at 10 days of age).  Gender was not included in these

models.  Cord blood PCB levels showed a significant inverse association with growth rate at 0–3 months

of age for each index (i.e., birth weight, height, and head circumference).  Similar findings were observed

when maternal plasma PCB levels were used as the exposure.  Prenatal PCB levels in formula-fed

children were not significantly associated with growth rate for any of the indices from 3–7, 7–18, or

18–42 months (Patandin et al. 1998).

The associations between growth rates and prenatal and postnatal PCB/dioxin levels also were evaluated

in 107 children from Rotterdam who were breast-fed.  Both cord blood levels and postnatal breast milk

levels were included in these models as were the covariates described above.  PCB levels (prenatal or

postnatal) were not associated with growth rates at 0–3 months of age.  Postnatal PCB/dioxin levels were

negatively associated with a change in height between 3 and 7 months (p=0.04), but not with weight or

head circumference growth rates.  Pre- and postnatal PCB levels were not associated with changes in

growth rate between 7–18 and 18–42 months of age in the breast-fed children (Patandin et al. 1998).

Finnish General Population Study.  This study was part of follow-up studies into levels of dioxins,

dibenzofurans, and PCBs in human milk coordinated by WHO/EURO.  The objectives of the study were

to correlate the birth weight and sex of a child to dioxins/dibenzofurans and PCB concentrations of its

mother’s milk and to evaluate personal and environmental determinants that correlated with the levels of

these chemicals in human milk in two areas in Finland, an urban area and a rural area (Vartiainen et al.

1998).  One hundred sixty-seven random human milk samples were collected 4 weeks after delivery for

2 weeks.  Information on each mother and child was gathered by a questionnaire that included questions

on all relevant covariates.

The concentration of PCBs in breast milk from urban and rural mothers was approximately 500 and

400 ppb (fat basis), respectively.  The average weight for all children was 3,630 g and the median was

3,625 g.  The mean weight of the urban children was not significantly different from rural children,

although dioxin international TEQs were significantly higher in milk from urban mothers.  No correlation

was found between the weight of children and total PCBs in all of the children, in boys, in girls, among

all primiparae, or in primiparae girls or boys.  The birth weight, especially of boys, slightly decreased
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with increasing concentrations of TEQs, 2,3,4,7,8-penta CDF, 1,2,3,7,8-pentaCDD, and 2,3,7,8-TCDD,

but when the analysis was restricted to primiparae, the correlation lost statistical significance.  

3.2.6.2.1.3  Occupational Exposure

Upstate New York Capacitor Manufacturers Study.  This study comprised women workers of two

facilities of the same company located in adjacent communities in upstate New York that manufactured

capacitors using PCBs with Aroclors 1254, 1242, and 1016 as their primary dielectric fluid (Taylor et al.

1984).  Birth certificates for pregnancies between 1958 and 1975 were used to obtain information on birth

weight, maternal age, parity, year of birth, race, sex, and date of the last menses.  The high-exposure

workers were directly exposed to Aroclors during the manufacturing process for at least 1 year prior to

birth of the infant; the workers with low exposure were employed in areas where Aroclors were not used

directly.  

Fifty-one infants born to 39 women with high exposure to PCBs had lower mean birth weights and

shorter mean gestational ages than those of 337 infants born to 280 women with low exposure to PCBs. 

After adjusting for gestational age, however, the difference in birth weight was markedly reduced,

suggesting that the difference in weight may have resulted partially from a shortened gestation period. 

Furthermore, while the infants born to the high-exposure women were, on the average, lighter than

matched community controls, those born to low-exposure women were heavier than matched community

controls; thus, a dose-response relationship was not established.  While relatively little detail was given

regarding the statistical analysis of the results, Taylor et al. (1984) state that they had no information on

tobacco use, underlying medical conditions, maternal height, and history of low birthweight, all factors

known to influence birthweight.  In a follow-up study of the same population in which most of these

confounders were accounted for, a significant effect of high-homolog exposure was seen for birth weight

and gestational age (Taylor et al. 1989).  The difference in birth weight between the two groups was 60 g. 

However, when gestational age was accounted for in addition to the other variables related to birth

weight, estimated serum PCB was no longer a significant predictor of birth weight.  Taylor et al. (1989)

concluded that the data suggested a significant relation between increased estimated PCB level and

decreased birth weight and gestational age, and that the decrease in birth weight is partially related to

shortened gestational age.
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3.2.6.2.1.4  Accidental Exposure

Yusho and Yu-Cheng.  Decreased birth weight was a commonly reported effect of Yusho and Yu-Cheng

exposure (Funatsu et al. 1971; Lan et al. 1987; Rogan 1989; Taki et al. 1969; Yamaguchi et al. 1971).  A

survey of 128 children known to have been in utero during or after Yu-Cheng exposure found that mean

birth weight was decreased by approximately 15% compared to a group of 115 unexposed controls

(Rogan et al 1988).  Exposed children also were shorter than controls; these children were a few months

to 6 years old.  Lan et al. (1987) documented the decreased birthweight of 49 Yu-Cheng children exposed

transplacentally and born between 1979 and 1986, and showed that the deficit continued through the

second child born after the outbreak, but was not detectable in the third.  In a review of the Yusho

poisoning incident, Masuda (1994) stated that most babies were small-for-date and their postnatal growth

curves were similar in shape to the national standard curves, but lower for some of the babies.  Relative to

unexposed controls, height and weight gains of school children with Yusho significantly decreased after

the poisoning, and the same tendencies were observed in some of the girls (Masuda 1994).  These

tendencies to reduced growth were later found to be reversed, as subsequent increaments tended to be

close to the average value in the control group (Yoshimura and Ikeda 1978).   It should be kept in mind

that in both the Yusho and Yu-Cheng poisoning episodes, there was exposure to relatively high

concentrations of CDF and PCQ impurities.  Further information on Yusho and Yu-Cheng incidents can

be found in ATSDR (1994).

3.2.6.2.2  Evaluation of Human Studies

Anthropometric measures have been evaluated in children from women (1) who consumed Great Lakes

fish contaminated with PCBs and other chemicals (Dar et al. 1992; Fein et al. 1984b; Jacobson et al.

1990a, 1990b; Lonky et al. 1996; Smith 1984), (2) who consumed Baltic Sea fish contaminated with

organochlorines (Rylander et al. 1995, 1998b), (3) from the general U.S. (Rogan et al. 1986a, 1986b),

Dutch (Patandin et al. 1998), and Finnish populations (Vartiainen et al. 1998), (4) who were

occupationally exposed to commercial PCB mixtures (Taylor et al. 1984, 1989), and (5) who were

accidentally exposed to PCBs and other structurally related chemicals in the Yusho and Yu-Cheng

poisoning incidents (Funatsu et al. 1971; Lan et al. 1987; Rogan 1989; Yamaguchi et al. 1971).  A

comparison of PCB levels in blood and breast milk in some of these studies is included in Appendix A.

The results have been varied, with some studies finding significant inverse associations between exposure

to PCBs and anthropometric measures at birth (and at early ages), some studies reporting significant
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positive associations, and yet a third group reporting no significant associations.  The wide range of

results may reflect the different degree of controlling for confounders and/or the different exposure

measures, levels, and substances.  Also, in some cases, the difference in serum PCB levels between case

studies and controls may have been too small to allow detection of differences between the variables

measured.  Of the studies of women who consumed contaminated fish from the Great Lakes, the

Michigan study (Fein et al. 1984b; Jacobson et al. 1990a, 1990b) reported an association between reduced

birth weight, head circumference, and gestational age in newborns and with body weight at 4 years with

prenatal exposure to PCBs (PCBs in placental cord blood).  

A study of wives of Swedish fishermen found that newborn infants born to mothers from the east coast

(Baltic Sea) gave birth to infants with significantly lower birth weight and head circumference compared

to infants born to mothers from the west coast (Rylander et al. 1995).  East coast mothers were reported to

consume more contaminated fatty fish (and PCBs) than women from the west coast where fish

contamination was much less.  In a subsequent study of east coast/Baltic Sea mothers (Rylander et al.

1998b), their low birth weight infants (1,500–2,750 g weight) were compared with control infants from

this same cohort (3,250–4,500 g weight).  Blood samples from the mothers were analyzed for PCB

congener 153, which was used as a surrogate of total PCB exposure during the year of childbirth.  The

mothers of the low birth weight infants were reported to have a higher median PCB blood level

(1,000 pg/g) compared to the control mothers (920 pg/g).  These researchers also found an increased risk

of low birth weight with increasing maternal blood concentrations of PCB 153 (at 300 or 400 ng/g, lipid

basis).

In the Dutch general population cohort, prenatal exposure to PCBs (PCBs in cord blood) was associated

with a reduced birth weight, but not with head circumference or height at 10 days of age (Patandin et al.

1998).  Prenatal exposure (as measured by cord and maternal blood PCB levels) in formula-fed children

was associated with reduced growth (weight, length, and head circumference) between birth and

3 months.  No such association was seen in breast-fed children, suggesting to the investigators that any

detrimental effect observed in newborns due to prenatal exposure to PCBs may have been counteracted

by the benefits of breast feeding.  Additionally, there were no significant associations between growth

during the ages of 3–7, 7–18, or 18–42 months and any measure of exposure to PCBs.  In an occupational

study, Taylor et al. (1989) studied high PCB exposed females employed in capacitor manufacturing

facilities and compared them with female workers in low PCB exposure jobs.  A significant association

was observed between the increased estimated PCB exposure level and decreased birth weight and

gestational age.  In addition, effects on birth weight and growth during early life have been demonstrated
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following perinatal exposure to high concentrations of PCBs and structurally-related chemicals during the

Yusho and Yu-Cheng poisoning incidents.

Consumption of PCB-contaminated fish had a positive effect on birth weight in two studies of Lake

Michigan women (Dar et al. 1992; Smith 1984).  This finding could be related to the beneficial effects of

certain fatty acids in fish (Olsen et al. 1990).  In one of these studies (Smith 1984), the concentration of

PCBs in breast milk was higher than in breast milk from women from the Michigan cohort (1.13 vs

0.87 ppm) in the Jacobson study discussed above.  In the other study (Dar et al. 1992), fish consumption

levels were less than in the Jacobson study.

In the Oswego cohort of Lake Ontario fish consumers (Lonky et al. 1996) there was no significant

association between prenatal exposure to PCBs, assessed by the same fish consumption measures as in the

higher exposure Michigan study, and birth weight, head circumference, or gestational age.  In addition, a

study of the general population in Finland found no significant association between birth weight and the

concentration of PCBs in breast milk (Vartiainen et al. 1998).  In this study, the mean concentration of

PCBs in milk (0.4–0.5 ppm) was slightly lower than in the Dutch general population study (0.62 ppm)

(Koopman-Esseboom et al. 1994b; Patandin et al. 1998).

For those studies with effects, there is consistency in the outcome of lower birth weight for infants

exposed in utero to maternal body burdens of PCBs.  This association remains constant regardless of the

method by which PCB exposure is measured (e.g., estimate by fish consumption or actual body burdens

in maternal blood).  Jacobson et al. (1990b) have demonstrated that, even at the age of 4 years, the

children most highly exposed to PCBs weighed less on the average than those with the least exposure. 

This tendency can also be seen in the Dutch study (Patandin et al. 1998), which reported a significant

association between lower infant growth rate in 0–3 month olds and mothers’ body burden as

demonstrated by cord and maternal PCB levels.  The consistency with which this finding has been

demonstrated strengthens the position that PCBs (and related substances) are developmental toxicants.  In

addition, birth weight is a sound indicator of newborn development and health.
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3.2.6.3 Animal Studies

Developmental effects discussed in this section are restricted mainly to effects on fetal development, birth

weight and weight gain in early life, and teratogenicity.  Information regarding effects on the thyroid,

immune system, and reproduction in offspring following perinatal exposure to PCBs is presented in

Sections 3.2.3, 3.2.4, and 3.2.5, respectively.

The highest NOAEL values and all reliable LOAEL values for developmental effects for each study are

recorded in Table 3-2 and plotted in Figure 3-2.

3.2.6.3.1  Birth Weight and Early Development

Oral Exposure    

Commercial PCB Mixtures.  Doses of #100 mg/kg/day Aroclor 1254 administered on Gd 6–15 by

gavage did not affect maternal weight gain nor induce developmental toxicity in Wistar rats, as evidenced

by number of litters, litter size and weight, and number of resorption sites (Villeneuve et al. 1971).  Morse

et al. (1996b) also reported that treatment of Wistar rats on Gd 10–16 with up to 25 mg

Aroclor 1254/kg/day by gavage did not affect maternal body weight, fetal body weight, number of live

fetuses, late gestational death, number of resorptions, number of live pups born, sex ratio, and postnatal

death.  However, a study with Aroclor 1254 in Holzman rats reported a significant reduction in fetal

weight at 5 mg/kg/day and reduced fetal survival at 15 mg/kg/day after dosing also on Gd 6–15; both

effects were dose-related (Spencer 1982).  A dose of 2.5 mg/kg/day was without effect.  Maternal body

weight loss occurred at 30 mg/kg/day.  Decreased survival of pups to weaning was found in Sherman rats

administered nine doses of 100 mg Aroclor 1254/kg by gavage on Gd 7–15 (Linder et al. 1974), but that

treatment did not affect the number of litters or the litter size at birth.  Doses of #50 mg/kg/day did not

affect survival at weaning.  No effect on the number of litters, litter size, survival to weaning, or body

weight at weaning were observed in the offspring of rats treated with doses of 100 mg/kg/day

Aroclor 1260 on Gd 7–15 (Linder et al. 1974).  Offspring from Long-Evans rats exposed to 4 mg

Aroclor 1254/kg/day via the diet starting 50 days prior to mating until birth had significantly reduced

weight at birth, and on PND 7, 14, and 21 (Hany et al. 1999b).  This was observed in the absence of any

overt sign of maternal toxicity.  There were no significant treatment-related effects on number of

pups/litter, number of implantation sites, or sex ratio.
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Litter size was significantly reduced in Osborne-Mendel rats fed a diet that provided approximately

25 mg Aroclor 1254/kg/day during gestation and lactation (Collins and Capen 1980c).  Body weight of

pups at 21 days was significantly reduced with dietary PCB levels of 2.5 and 25 mg/kg/day, but was not

affected at birth or at 7 and 14 days.  Doses of approximately 13.5 mg Aroclor 1254/kg/day administered

during gestation and lactation induced high early mortality in the pups (Overmann et al. 1987).  Doses of

approximately 1.3 mg/kg/day significantly decreased pups’ weight on PND 21 and 14, and doses of

0.13 mg/kg/day decreased pups’ weight on PND 14 (Overmann et al. 1987).  Doses of 1.3 mg/kg/day had

no significant effect on maternal weigh or food consumption.  High early mortality was also observed in

pups from Long-Evans rats treated with 4 or 8 mg Aroclor 1254/kg/day from Gd 6 through PND 21

(Goldey et al. 1995).  Wistar rats that were treated with 10 mg/kg/day Aroclor 1254 by gavage during

gestation had delayed parturition and decreased litter size (Brezner et al. 1984).  This dose level resulted

in no weight gain in the dams.  Offspring of these rats that were exposed throughout lactation experienced

decreased pre- and postweaning survival, premature vaginal opening, and delayed first estrus, but no

effects on sexual differentiation, estrus cycle, mating, or pregnancy.  

Offspring of mice exposed to doses up to 12.5 mg Aroclor 1254/kg/day on Gd 6–18 did not show adverse

developmental effects, as judged by number of litters, number of dead and reabsorbed fetuses, fetal

weight, incidence of gross malformations, and skeletal development (Welsch 1985).  A single, but much

higher dose (244 mg/kg) of Aroclor 1254 given on Gd 9 to pregnant mice significantly increased the

percentage of fetuses with hydronephrosis, did not induce cleft palate, and did not affect the number of

resorptions and number of dead and live fetuses (Haake et al. 1987).  Maternal weight gain was not

influenced by PCB treatment (Haake et al. 1987).

Doses up to 10 mg Aroclor 1254/kg/day administered to rabbits on Gd 1–28 did not induce

developmental toxicity, as monitored by total number of fetuses, number of viable fetuses or resorption

sites, fetal weight, fetal liver weight, and placental weight (Villeneuve et al. 1971).  Doses of

12.5 mg/kg/day or higher, however, significantly increased the number of dead fetuses, resorption sites,

and fetuses aborted.  Aroclor 1248 did not affect litter size, appearance, or postnatal mortality in New

Zealand rabbits administered doses of #91 mg/kg/day in the diet for 11 weeks, but a dose of

28 mg/kg/day induced focal liver necrosis in the offspring (Thomas and Hinsdill 1980).  

Administration of 2.2 mg of Clophen A50/kg/day by gavage to pregnant guinea pigs during Gd 16–60

caused high incidence of fetal mortality, but did not cause maternal lethality or any other overt sign of

maternal toxicity (Brunstrom et al. 1982).  Also, administration of 2.5 mg/kg/day Clophen A50 (50%
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chlorine by weight) to guinea pigs on Gd 18–60 significantly increased the frequency of dead fetuses and

stillbirth (27.4 versus 9.4% in controls), decreased litter size, and decreased maternal weight gain during

gestation and birth weight (Lundkvist 1990).  First vaginal opening was abnormal in the surviving

offspring, occurring at an older age and with a shorter duration, but there was no significant effect on age

at first ovulation. 

A dose of 0.1 mg/kg/day Aroclor 1254 administered in a juice-oil emulsion to two Cynomolgus monkeys

starting at Gd 60 resulted in delivery of dead, term infants after approximately 105 days of dosing

(Truelove et al. 1982).  The infant of one monkey that was similarly treated with 0.4 mg/kg/day had

reduced birth weight and weight gain, and later died of bronchopneumonia at 139 days of age.  The only

sign of maternal toxicity was loss of fingernails.  Resorption and/or abortion occurred in monkeys that

were bred 3 months following dietary treatment with 0.8 mg/kg/day Aroclor 1248 for 2 months (Allen et

al. 1974a).  Chronic developmental data are limited to studies in monkeys.  In these studies, the exposure

period ranged from 12 to 37 months.  Pregnant Rhesus monkeys that were fed a diet that provided

approximately 0.007 or 0.03 mg/kg/day Aroclor 1016 for a total of 12 months (before mating and during

gestation) experienced uncomplicated pregnancies, carried their infants to term, and delivered viable

offspring (Barsotti and Van Miller 1984).  Information regarding maternal body weight and age was not

provided.  Head circumference and crown-to-rump length were not affected by treatment with

Aroclor 1016, but mean birth weight in the high-dose group was significantly lower than in controls. 

Both groups of neonates showed hyperpigmentation.  At weaning, body weight in the high-dose group

was still lower than in controls, but the difference was not statistically significant.  Dose-related early

abortions were reported in female monkeys fed a diet that provided 0.1 or 0.2 mg/kg/day Aroclor 1248 for

15 months (five of eight in the low-dose group and four of six in the high-dose group); this period

included breeding, gestation, and lactation (Allen and Barsotti 1976).  Mean birth weight in both groups

was significantly lower than in controls and remained low for the next 12 weeks.  Skeletal development

was not affected by PCB treatment.  At 2 months of age, the infants had signs of PCB intoxication such as

facial acne, swollen eyelids, loss of eyelashes, and hyperpigmentation of the skin, and three of the six

infants died of PCB intoxication between days 44 and 329.  Gross and microscopic examination of the

major organs revealed a rudimentary thymus, extremely small spleen lymph nodes, hypocellularity of the

bone marrow, and degenerative changes in the liver.  Maternal toxicity, evidenced as facial acne, swollen

eyelids, and lack of facial hair, was observed at weaning.  One year after receiving a control diet, the

same females from the Allen and Barsotti (1976) study were bred again (Allen et al. 1980).  Mean birth

weights of the infants of the former high-dose mothers were significantly lower than those of controls,

and signs of PCB intoxication (hyperpigmentation about the hairline) developed during suckling.  Early
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infant mortality was also observed (two of four in the former low-dose group and two of seven in the

former high-dose group).  Histological examination of infant tissues showed hypocellularity of the

thymus and of lymph nodes in the spleen and hyperplastic gastritis.

Arnold et al. (1995, 1997) treated female monkeys with Aroclor 1254 for 37 months (0.005, 0.02, 0.04, or

0.08 mg/kg/day) after which time they were mated with untreated males; dosing continued through

mating and gestation.  Treatment ceased when the infants were 7 weeks old.  The young monkeys were

sacrificed at the age of 122 weeks.  Statistical analysis of the results showed a significant increasing dose-

related trend in fetal mortality incidence rates (combined fetal and postpartum deaths).  However, when

only the treated groups were compared, there was no evidence of such a trend.  Results of the Fisher’s

exact test showed a significant increase rate for only the highest dose group with the 0.02 mg/kg/day dose

approaching significance.  Mean birth weight was not significantly affected by maternal treatment with

Aroclor 1254.  The major clinical findings in the offspring from treated females were the presence of

inflammation and/or enlargement of the tarsal (Meibomian) gland, nail lesions, and gum recession.

Single Congeners.  No effect on maternal body weight or on gestational length, litter size, percent live

births, birth weight, or pup weight at weaning was observed following administration of 0.001 mg/kg/day

PCB 126 or 8 mg/kg/day PCB 77 to pregnant Sprague-Dawley rats on Gd 10–16 (Seo et al. 1995). 

Administration of 0.001 mg/kg/day of PCB 126 to Long-Evans rats beginning 5 weeks before and

continuing through gestation and lactation did not result in any significant effect on neonatal mortality,

birth weight, litter size, or on weight gain monitored up to PND 60 (Rice 1999a)

Pregnant C57BL/6J mice given up to 21 mg PCB 77/kg/day by gavage on 5 consecutive days beginning

on days 1, 6, or 11 of pregnancy showed no adverse effect on maternal body weight or on pup weight,

crown-rump length, litter size, sex ratio, day of eye opening, or upper incisor eruption (Rodriguez et al.

1997).  Administration of a single gavage dose of approximately 0.8 or 1 mg PCB 126/kg to pregnant

C57B46 mice on Gd 10 significantly increased the percentage of fetuses with cleft palate (Zhao et al.

1997b).  However, no fetuses with cleft palate were seen after administration of up to 271 mg PCB 153. 

Combined administration of PCB 126 and PCB 153 significantly reduced the incidence of cleft palate

compared to that produced by PCB 126 alone.

Defined Experimental Mixtures.  Offspring from Long-Evans rats exposed via the diet to 4 mg/kg of a

reconstituted PCB mixture composed according to the congener pattern in human breast milk starting

50 days prior to mating until birth had significantly reduced weight at birth, and PND 7, 14, and 21 (Hany
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et al. 1999b).  This was observed in the absence of any overt signs of maternal toxicity.  There were no

significant treatment-related effects on number of pups/litter, number of implantation sites, or sex ratio. 

Arnold et al. (1999) administered a PCB mixture of congeneric composition similar to that found in

Canadian breast milk to Rhesus and Cynomolgus monkeys during the first 20 weeks of life; each infant

received 0.0075 mg PCBs/kg/day.  There was no statistically significant difference between the control

and treated groups for body weight gains throughout the study.

3.2.6.3.2  Evaluation of Animal Studies

Studies in animals suggest that primates are much more sensitive to the effects of perinatal exposure to

PCBs than rodents.  It also appears that unless very high doses are used, PCBs are not teratogenic in

animals.  Hydronephrosis was reported in mice treated with a single dose of 244 mg Aroclor 1254/kg on

Gd 9 (Haake et al. 1987) and increased incidence of fetuses with cleft palate was reported by Zhao et al.

(1997b) following treatment of mice with a single dose of 0.8 mg of PCB 126/kg, a dioxin-like congener. 

Treatment with up to 271 mg/kg of the di-ortho-substituted congener PCB 153 did not induce cleft palate

(Zhao et al. 1997b).  Susceptibility to both hydronephrosis and cleft palate formation by dioxin-like

congeners is a trait that segregates with the Ah locus (Hassoun et al. 1984) and Zhao’s findings are

consistent with this fact. 

Data in rats treated with commercial PCB mixtures showed that developmental toxicity can occur in the

absence of overt signs of maternal toxicity as evidenced by reduced fetal weight and viability in a study

by Spencer (1982) and reduced birth weight and postnatal growth in a study by Hany et al. (1999).  It

should be noted that Villaneuve et al. (1971) and Morse et al. (1996b) reported adverse developmental

effects at Aroclor 1254 doses much higher than those used by Spencer (1982) in similarly designed

experiments.  It is possible that the Holzman strain of rats, which Spencer (1982) used, is more

susceptible than the Wistar rat, which the other two studies used.  Hany et al. (1999b), in addition to

testing Aroclor 1254, also treated rats with a reconstituted PCB mixture of congeneric composition

similar to the pattern found in human breast milk and both mixtures induced similar reductions in birth

weight and in weight gain during lactation. 

Linder et al. (1974) administered Aroclor 1254 or Aroclor 1260 at the same dose levels on Gd 7–15 to

Sherman rats and found that Aroclor 1254 significantly reduced survival to weaning, whereas

Aroclor 1260 did not.  These two Aroclors differ primarily in that Aroclor 1254 lacks congeners with

7–9 chlorines (Albro et al. 1981), but further information is needed before speculating as to which PCB
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congeners might or might not be responsible for neonatal lethality.  Studies in rats which included in

utero and lactational exposure to Aroclors suggest that transfer of PCBs via milk may be considerable, as

decreased body weight was seen in the pups after weeks of nursing even though body weight at birth was

not significantly different than unexposed rats (Collins and Capen 1980c; Goldey et al. 1995; Overmann

et al. 1987).  It should be kept in mind that, in general, studies in rats used fairly high doses of Aroclors to

the dams such that it is reasonable to assume that breast milk had the potential to accumulate high

concentrations of PCBs. 

As previously mentioned, monkeys seem to be much more sensitive to developmental effects of PCBs

than rodents.  Reduced birth weight was reported in offspring from Rhesus monkeys treated before

mating and during gestation with 0.03 mg Aroclor 1016/kg/day (Barsotti and Van Miller 1984).  These

monkeys also showed characteristic signs of PCB intoxication such as hyperpigmentation.  Reduced mean

birth weight also was reported in monkeys exposed to Aroclor 1248 (Allen and Barsotti 1976; Allen et al.

1980).  Doses even smaller of Aroclor 1254 (0.005 mg/kg/day), while not significantly affecting birth

weight or growth, produced clear signs of PCB intoxication manifested as skin, nail, and gum lesions

(Arnold et al. 1995, 1997).  In all of these studies in monkeys, maternal toxicity was also evident.  

3.2.7 Genotoxic Effects

3.2.7.1  Summary

The genotoxicity of PCBs has been tested in in vivo and in vitro studies with generally negative results. 

End points that have been examined in these studies include gene mutations in bacteria and Chinese

hamster V79 cells, chromosomal aberrations in human lymphocytes and rat and mouse bone marrow cells

and spermatogonia, micronuclei in mouse bone marrow cells, and dominant lethal mutations in rat sperm

cells. 

3.2.7.2  In Vivo Studies

Available information on in vivo genotoxic effects of PCBs in humans is limited by confounding

exposures that involved mixtures of chemicals.  Chromosomal aberrations and sister chromatid exchanges

in peripheral lymphocytes were increased in 32 workers involved in the manufacturing of

DELOR 103 and DELOR 106 (Czechoslovakia-made PCBs with three and six chlorine atoms in the

biphenyl ring, respectively) for 2–25 years (Kalina et al. 1991).  These increases over control values
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achieved statistical significance in workers exposed for >10 years.  Although control and exposed groups

were matched regarding smoking and alcohol drinking habits, the exposed workers were also exposed to

benzene and formaldehyde.  Another occupational study found a moderately increased incidence of

chromatid exchanges in peripheral lymphocytes from a group of 12 workers who were exposed to PCBs

following a fire in an electric station (Melino et al. 1992).  The authors also observed that the number of

chromosome breaks per cell was often higher in the exposed subjects than in unexposed controls. 

Additionally, lymphocytes from the exposed workers appeared to be more fragile than those from

unexposed individuals.  However, exposure to toxic chlorinated dioxins and/or furans generated during

the fire may have occurred.

Six of 16 workers engaged in cleaning oil from old transformers showed abnormal banding pattern for fes

oncogene-related proteins; all of the 6 were smokers (Brandt-Rauf and Niman 1988).  Since none of the

nonsmoking workers (six) showed this pattern, the role of PCBs, if any, in the induction of genetic

abnormalities described in this study cannot be ascertained.  A control unexposed group was not included

in this study.

PCBs gave generally negative results in in vivo assays in animals (see Table 3-4).  Several studies

investigated genotoxic effects in rats following acute oral exposure to PCBs.  Single doses #5,000 mg/kg

of Aroclor 1242 administered by gavage did not induce chromosome abnormalities in bone marrow cells

or spermatogonial cells of rats (Green et al. 1975a).  In the same study, doses #750 mg/kg/day

Aroclor 1254 administered for a 5-day period did not increase the incidence of chromosomal

abnormalities in rat bone marrow cells.  Dominant lethal mutations were not induced in male Osborne-

Mendel rats following gavage treatment with a single dose of 625–2,500 mg/kg Aroclor 1242, or with

five daily doses of 125 or 250 mg/kg Aroclor 1242 or 75–300 mg/kg Aroclor 1254 (Green et al. 1975b). 

Rats treated with a single dose of 1,295 mg/kg Aroclor 1254 showed evidence of DNA damage in

hepatocytes 4–12 hours after treatment (Robbiano and Pino 1981).  However, this damage was no longer

detectable 48 hours after treatment due to DNA repair.  Whysner et al. (1998) administered

Aroclor 1260 as a single dose of 50 mg/kg or as a concentration of 200 ppm in the diet for 14 days. 

Neither the single dose nor the exposure in the diet produced detectable DNA adducts in the liver.

Two studies that examined genotoxic effects of intermediate-duration oral exposure to PCBs were

identified.  Rats administered 0.25–25 mg/kg/day Aroclor 1254 in their diets for #35 days had no

evidence of chromosomal damage in bone marrow and spermatogonial cells (Garthoff et al. 1977). 

Dietary exposure to 1.25 or 5 mg/kg/day Aroclor 1254 for 70 days did not induce dominant lethal 
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Table 3-4.  Genotoxicity of Polychlorinated Biphenyls In Vivo

Species (test system) End point Results Reference
Polychlorinated biphenyl
mixture

Mammalian cells:
Rat spermatogonia Chromosomal abnormalities – Dikshith et al. 1975 Aroclor 1254
Rat spermatogonia Chromosomal abnormalities – Dikshith et al. 1975 Aroclor 1254
Rat hepatocytes DNA fragmentation + Robbiano and Pino 1981 Aroclor 1254
Rat spermatogonia Chromosomal abnormalities – Green et al. 1975a Aroclor 1242
Rat bone marrow cells Chromosomal abnormalities – Green et al. 1975a Aroclor 1242
Rat bone marrow cells Chromosomal abnormalities – Green et al. 1975a Aroclor 1242
Rat sperm cells Dominant lethal mutation – Green et al. 1975b Aroclor 1242
Rat sperm cells Dominant lethal mutation – Green et al. 1975b Aroclor 1254
Mouse bone marrow cells Micronuclei – Bruce and Heddle 1979 Aroclor 1254
Mouse sperm cells Chromosomal abnormalities – Bruce and Heddle 1979 Aroclor 1254

Nonmammalian cells:
Chicken embryos Chromosomal abnormalities – Blazak and Marcus 1975 Aroclor 1242
Ring dove Chromosomal abnormalities + Peakall et al. 1972 Aroclor 1254
Drosophila melanogaster Chromosomal abnormalities – Nilsson and Ramel 1974 Clophen 30
D. melanogaster Chromosomal abnormalities – Nilsson and Ramel 1974 Clophen 50

DNA = deoxyribonucleic acid; – = negative result; + = positive result
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mutations in male rats (Green et al. 1975b).  Lack of dominant lethality was indicated by no consistent

changes in numbers of implantations and dead implantations per pregnant untreated female.  The 70-day

duration of the feeding study covered the spermatogenic cycle of the rat.

PCBs did not induce chromosomal aberrations when tested in Drosophila melanogaster (Nilsson and

Ramel 1974) and chicken embryos (Blazak and Marcum 1975), although slight effects were reported in

ring dove embryos (Peakall et al. 1972).

3.2.7.3  In Vitro Studies

PCBs are generally nongenotoxic in in vitro assay systems (see Table 3-5).  Aroclor 1254 was not

mutagenic in the bacteria S. typhimurium with or without exogenous metabolic activation (Bruce and

Heddle 1979; Heddle and Bruce 1977; Schoeny et al. 1979).  Gene mutations also were not induced by

Aroclor 1242 or Clophen A60 in Chinese hamster V79 cells (Hattula 1985).  Varying results were found

in two assays for Aroclor 1254-induced chromosomal damage in cultured human lymphocytes, but the

different findings may be the consequence of a higher test concentration in the positive study

(Hoopingarner et al. 1972; Sargent et al. 1989).  Aroclor 1254 induced DNA damage in rat liver cells in

vitro as indicated by an increase in unscheduled DNA synthesis (Althaus et al. 1982), but it was not

reported whether the genotoxic doses were also cytotoxic.

Chromosome breakage and micronuclei were not induced in human lymphocytes in whole blood or

isolated cultures following in vitro exposure to the single congener 3,3'4,4'-hexaCB (PCB 77) (Belpaeme

et al. 1996).  In another study, PCB 77, but not Aroclor 1254, induced DNA adducts in the Hep G2

human cell line and in primary fetal rat and quail hepatocytes (Dubois et al. 1995). 

3.2.7.4  Evaluation of Genotoxicity Studies 

The generally negative results of in vitro and in vivo genotoxicity studies indicate that commercial PCB

mixtures are not potent genotoxicants.  Although PCBs have been found to be generally inactive as

mutagens in S. typhimurium strains and in several other tests of genotoxicity that may be predictive of

tumor initiation activity, in vitro studies with rat microsomes have indicated that metabolism of lower

chlorinated congeners can lead to covalently modified macromolecules including proteins and DNA

(Hayes 1987; Robertson and Gupta 2000; Silberhorn et al. 1990).  Therefore, although the available data 
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Table 3-5.  Genotoxicity of Polychlorinated Biphenyls In Vitro

Results

Species (test system) End point
With

activation
Without

activation Reference
Polychlorinated biphenyl
mixture

Prokaryotic organisms:
Salmonella typhimurium 
(plate incorporation)

Gene mutation – – Schoeny et al. 1979 Aroclor 1254

S. typhimurium
(plate incorporation)

Gene mutation – – Heddle and Bruce 1977 Aroclor 1254

S. typhimurium
(plate incorporation)

Gene mutation – – Bruce and Heddle 1979 Aroclor 1254

Eukaryotic organisms:
Chinese hamster V79
cells (tissue culture)

Gene mutation No data – Hattula 1985 Aroclor 1242

Chinese hamster V79
cells (tissue culture)

Gene mutation No data – Hattula 1985 Clophen A60

Human lymphocytes
(tissue culture)

Chromosomal
abnormalities

No data – Hoopingarner et al. 1972 Aroclor 1254

Rat hepatocytes (tissue
culture)

DNA repair synthesis No data + Althaus et al. 1982 Aroclor 1254

Human lymphocytes
(tissue culture)

Chromosomal
damage

No data + Sargent et al. 1989 Aroclor 1254

DNA = deoxyribonucleic acid; – = negative result; + = positive result
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indicate that PCBs are not potent genotoxicants, there is some experimental support for the possible

involvement of genotoxic mechanisms in the development of PCB-induced cancer.

3.2.8 Cancer

3.2.8.1 Summary

The carcinogenicity of PCBs in humans has been investigated in retrospective cohort mortality studies

that investigated cancer in exposed workers, and in case-control studies of environmental exposure that

examined associations between serum or adipose tissue levels of PCBs and occurrence of cancer.  Some

of the mortality studies suggest that occupational exposures to PCBs were associated with cancer at

several sites, particularly the liver, biliary tract, intestines, and skin (melanoma).  A report of liver cancer

in Yusho victims appears to support the occupational hepatocarcinogenicity data.  There is no clear

association between occupational exposures to PCBs and cancer in other tissues, including the brain,

hematopoietic, and lymphatic systems.  Case-control studies of the general population are inconclusive

with respect to associations between environmental exposures to PCBs and risk of breast cancer or

non-Hodgkin’s lymphoma, although there are preliminary indications that particular subgroups of women

may be at increased risk for breast cancer.  Overall, the human studies provide some evidence that PCBs

are carcinogenic.  In contrast to the studies in humans, there is conclusive evidence that commercial PCB

mixtures are carcinogenic in animals based on induction of tumors in the liver and thyroid.

3.2.8.2 Human Studies

Most of the information on the carcinogenicity of PCBs in humans is available from cohort mortality

studies of workers exposed during the manufacture and use of capacitors and case-control studies of

breast cancer in women exposed to background levels in the environment.

3.2.8.2.1  Liver, Biliary Tract, and Gall Bladder

Occupational Exposure.  A small excess risk of liver-related cancer was found in studies of workers from

two capacitor manufacturing plants in New York and Massachusetts (Brown 1987b; Brown and Jones

1981).  The workers had completed at least 3 months of employment between 1940 and 1976 in areas of

the plants considered to represent the potential for the highest exposure to PCBs.  Aroclor 1254 was used

at first, but usage was later changed to Aroclor 1242, and finally to Aroclor 1016.  Historical exposure
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data were not available, but personal time-weighted average concentrations of Aroclor 1016 in 1977

ranged from 0.024 to 0.393 mg/m3 at Plant 1 and 0.170 to 1.26 mg/m3 at Plant 2.  These data were

collected shortly after changes in work practices and engineering controls were effected, and the use of

PCBs was reduced to 25% of the 1976 level.  The workers were also exposed to additional chemicals,

including trichloroethylene, toluene, and methyl isobutyl ketone.  The first study (Brown and Jones 1981)

included 2,567 total subjects comprised of 968 workers (583 males, 385 females) in Plant 1 and

1,599 workers (675 males and 924 females) in Plant 2.  Of these workers, 25.5 and 8.2% in Plant 1 and

19.4 and 8.9% in Plant 2 were exposed for 3–10 years and $10 years, respectively.  The second study

(Brown 1987b) was conducted after 7 additional years of observation on 2,588 total subjects, comprised

of 981 workers (593 males, 388 females) in Plant 1 and 1,607 workers (677 males and 930 females) in

Plant 2.  Expected numbers of deaths were based on U.S. white male and white female cause-specific

mortality rates.  A slight increase in mortality due to cancer of the liver, biliary tract, or gall bladder

(3 observed/1.07 expected, SMR=280, 95% CI 58–820) that was not statistically significant (p>0.05) was

found in the first study (Brown and Jones 1981).  The follow-up study (Brown 1987b) identified two

additional cases of liver/biliary tract/gall bladder cancer, which made the excess statistically significant

(5 observed/1.9 expected, SMR=263, CI not reported, p<0.05).  Four of the five cancer cases occurred in

women who worked in Plant 2 (4 observed/0.9 expected, SMR=444, CI not reported, p<0.05).  Although

the four cases in women occurred in the plant with the higher exposure range, there was no clear increase

in the risk of liver/biliary tract/gall bladder cancer with increasing latency (time from start of exposure to

end of observation) or length of employment; however, the confidence in this analysis is low due to the

small numbers of deaths.  Reclassification of the data showed that only two of the five deaths were from

liver cancer and the remaining three were in the biliary tract (two cases) or gall bladder (one case) (Brown

1987b).  Additionally, one of the two liver cancers was not a primary carcinoma as it metastasized from

another site (unknown).  If the metastatic liver cancer is not included in the analysis, the SMR for liver

and biliary tract cancer in the whole cohort loses statistical significance (SMR=210, p$0.05) (Nicholson

and Landrigan 1994).  Other findings included a slight increase in rectal cancer in the first study, but not

in the follow-up (see Section 3.2.8.2.3).  Limitations of these studies include small number of deaths,

relatively short periods of observation, and possible misclassification of the cause of death because it is

not clear in every case if death was due to primary cancer of the liver, biliary tract, or gall bladder.

Liver cancer was not statistically significantly increased in a retrospective cohort mortality study of

7,075 workers from two capacitor manufacturing/repairing plants in New York (Kimbrough et al. 1999a). 

An unspecified number of the male workers in this study were included in the cohort studied by Brown

(1987b) and Brown and Jones (1981) summarized above.  The Kimbrough et al. (1999a) cohort was
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comprised of hourly workers (2,984 male, 2,544 female) and salaried workers (1,078 male, 469 female)

employed for at least 90 days between January 1, 1946 and June 15, 1977, and followed to death or

January 31, 1993, whichever came first.  Follow-up was essentially complete (98.7%), and the mean age

at end of employment ranged from 31 to 35 years in the four subgroups, mean follow-up time was

31 years, mean age of all cohort members alive at the end of follow-up was 57 years, and mean age at

death was 62 years.  PCB exposures were predominantly to Aroclor 1254 from 1946 to 1954,

Aroclor 1242 from 1954 to 1971, and Aroclor 1016 from 1971 to 1977.  Exposures were qualitatively

classified as high, low, or undefinable based on types and locations of jobs and some area measurements. 

No personal exposure monitoring was performed, although previously reported data on 290 self-selected

workers from one of the plants had serum PCB levels in ranges of 6–2,530 and 1–546 ppb (ng/mL) for

lower and higher chlorinated homologs, respectively (Wolff et al. 1982a).  Workers with high exposure

jobs had direct PCB contact (dermal and/or inhalation), workers with low exposure jobs primarily had

inhalation exposure to background levels of PCBs in the plant, and workers with undefinable exposures

had exposures that varied depending on where tasks were performed.  Exposure-specific analysis was

limited to workers with the greatest potential for exposure, (i.e., hourly workers who ever worked in a

high-exposure job, worked for at least 6 months in a high-exposure job, or worked for at least 1 year in a

high-exposure job).  Workers who exclusively worked in high-exposure jobs could not be analyzed as a

separate group due to small numbers (112 males, 12 females).  SMRs were calculated for hourly and

salaried workers by gender, length of employment (6 or 12 months), and latency categories (<20 or

$20 years), using age-, sex-, race-, and time-specific U.S. general population rates for comparison.  No

statistically significant elevations in mortality from cancer of the liver and biliary passages were found in

any of the groups, including in the most highly exposed workers, and SMRs for liver/biliary cancer did

not statistically significantly increase with length of cumulative employment and latency.  SMRs for

cancer of the liver and biliary passages were <100 in the male hourly workers (2 observed/2.5 expected,

SMR=80, 95% CI 10–289), female hourly workers (2 observed/2.2 expected, SMR=89, CI 11–321), and

male salaried workers (1 observed/1.2 expected, SMR=79, CI 2–439), and could not be calculated in the

female salaried workers due to no observed cases (0.3 expected).  Other findings in this study included a

suggestive increase in mortality from intestinal cancer as discussed in Section 3.2.9.2.2.  A healthy

worker effect was demonstrated by SMRs that were less than expected for mortality from all causes and

from all cancers.

Interpretation of the Kimbrough et al. (1999a) findings is complicated by a few study limitations and

biases, including some exposure misclassifications related to use of length of employment alone as a

surrogate of exposure, potentially insufficient dosage differences between exposed and comparison
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groups, a degree of selection bias due to the healthy worker effect that may have resulted in an

underestimate of SMRs, concern for low statistical power due to small numbers of deaths from site-

specific cancers in some of the groups (e.g., female hourly workers with high exposure and $20 years

latency), relatively young age at follow-up, and use of the general population for comparison rather than

an internal control group or a group of workers from another company.  These issues are discussed by

Bove et al. (1999), Frumkin and Orris (1999), and Kimbrough et al.  (1999b).  Some of the limitations are

typical of occupational cohort mortality studies, and strengths of the study include its size (the largest

cohort of PCB workers ever studied) and essentially complete follow-up of long duration.  Unresolved are

the puzzling Kimbrough et al. (1999a) findings of significantly lower than expected mortality from all

cancers among males and the lower number of observed cases of liver and biliary tract cancers among

females compared to the smaller cohort studied by Brown et al. (1997b), a subset of the same study

population.  These unresolved findings suggest that ascertainment of cancer mortality was not complete in

this study.  Overall, the study limitations are sufficient to cast doubt on the negative findings for liver and

biliary tract cancer and other site-specific cancers.  Increases in mortality from intestinal cancer, rectal

cancer, and melanoma are summarized in Sections 3.2.8.2.2, 3.2.8.2.3, and 3.2.8.2.4, respectively.

Mortality from liver and bile duct cancer was increased (2 observed cases/0.78 expected, SIR=256, 95%

CI 31–926) in a small group of workers at a Swedish capacitor manufacturing facility (Gustavsson and

Hogstedt 1997; Gustavsson et al. 1986).  The subjects were exposed to PCBs of 42% chlorine content for

an average of 6.5 years between 1965 and 1978.  Airborne PCB levels measured on one occasion in 1973

were 0.1 mg/m3, and dermal exposure was common.  The first study of these workers included 142 males

and had a median latency time of 13 years (Gustavsson et al. 1986).  The second study added 9 years of

follow-up and included 242 males (Gustavsson and Hogstedt 1997).  Although only two cases were

observed in the category for liver and bile duct cancers, both cases were relatively rare bile duct types (a

cholangiocarcinoma of the primary bile duct in one high-exposure worker employed for 3 years, and an

adenocarcinoma of the Papilla Vaterii in one low-exposure worker employed for 9 years).

Mortality from cancers of the digestive system, which included the liver and biliary tract, was increased in

a study of 544 male and 1,556 female workers involved in the manufacture of PCB-impregnated

capacitors in a plant in Italy (Bertazzi et al. 1987).  The workers were employed for a minimum of 1 week

between 1946 and 1978 and were examined during 1946–1982.  PCB mixtures containing 54% chlorine

(Aroclor 1254 and Pyralene 1476) were used until 1964; these were progressively replaced by mixtures

containing 42% chlorine (Pyralene 3010 and 3011) until 1970, when only Pyralene 3010 and 3011 were

used.  The maximum quantities of PCBs were used in 1967–1968, and the use of PCBs was abandoned
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completely since 1980.  Area samples taken in 1954 and 1977 showed air PCB concentrations ranging

from 5.2 to 6.8 mg/m3 (Aroclor 1254) and 0.048 to 0.275 mg/m3 (Pyralene 3010), respectively. 

Concentrations of total PCBs on workers' hands in 1977 and 1982 ranged from 0.3 to 9.2 and 0.09 to

1.5 µg/cm2, respectively.  Deaths from digestive system cancers were statistically significantly increased

in males when compared with national rates (6 observed/1.7 expected, SMR=346, 95% CI 141–721) and

local rates (6 observed/2.2 expected, SMR=274, 95% CI 112–572).  The digestive system category was

not defined, but is not specific for the stomach and intestines as the six cases included cancers of the liver

(one case), biliary tract (one case), and pancreas (two cases), as well as stomach (two cases).  Follow-up

evaluation of the cohort by Tironi et al. (1996) after an additional 9 years of latency found that mortality

from digestive system cancers was still increased in comparison to local rates (10 observed/5.1 expected,

SMR=195, CI 94–359), although the excess was not as high as found previously.  Other findings included

increased mortality from hematological neoplasms as discussed in Section 3.2.8.2.6.  Limitations of the

Bertazzi et al. (1978) and Tironi et al.  (1996) studies include questionable grouping of digestive system

cancers; small number of cases; short minimum exposure period; lack of pattern or trend when data were

analyzed by duration of exposure, latency, and year of first exposure; and some cancer deaths in males

with low potential for direct PCB exposure.  

Mortality from cancer of the liver, biliary passages, and gall bladder was not increased in the Sinks et al.

(1992) study of capacitor manufacturing workers or Loomis et al. (1997) study of electric utility workers

summarized in Section 3.2.8.2.4.

Contaminated Fish Consumption.  Mortality from liver cancer was not increased in the Svensson et al.

(1995a) study of Swedish east coast (Baltic Sea) and west coast fisherman summarized in

Section 3.2.8.2.2.

Yusho and Yu-Cheng Exposures.  A retrospective study of 887 male and 874 female patients that were

observed for an average of 11 years following registration as Yusho victims found statistically

significantly (p<0.01) increased mortality from liver cancer in the males compared to national death rates

(9 observed/1.61 expected, SMR=559, 95% CI not reported) (Kuratsune et al. 1987).  Elevated mortality

from liver cancer was also seen in the females, but the increase was not statistically significant

(2 observed/0.66 expected, SMR=304, p>0.05).  Comparisons based on local death rates also showed a

statistically significantly increased mortality from liver cancer in the males (9 observed/2.34 expected,

SMR=385, p<0.01) but not in females (2 observed/0.79 expected, SMR=253, p>0.05), as well as in males

when early liver cancer cases (those occurring <9 years after poisoning) were excluded
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(4 observed/1.04 expected, SMR=385, p<0.05).  However, because the geographic distribution of liver

cancer deaths was markedly uneven (there was no significant increase in one of two locations), the cancer

could not be conclusively associated with Yusho exposure.

A retrospective mortality study of 1940 Yu-Cheng cases summarized in Section 3.2.8.2.6 found no

statistically significantly increased mortality from cancer of the liver and intrahepatic bile ducts (Hsieh et

al. 1996).

3.2.8.2.2  Gastrointestinal Tract

Occupational Exposure.   Mortality from cancer of the stomach or intestines was not statistically

significantly increased in the Kimbrough et al. (1999a) study of capacitor workers summarized in

Section 3.2.8.2.1, although the rate for intestinal cancer (large and small intestine) was elevated and

approached statistical significance (20 observed/12.7 expected, SMR=157, 95% CI 96–242) in the hourly

female subgroup of workers.  Most of these cancers occurred in women with $20 years of latency and the

increase in this subgroup was statistically significant (SMR=189, 95% CI not reported, p<0.05).  There

was no increasing trend with length of employment and the SMR was 100 for women employed for

$10 years with a latency period of $20 years (Kimbrough et al. 1999b).  Comparison with the regional

population resulted in a SMR which is still elevated (SMR=120, 95% CI 74–186) and similar to the SMR

of 157 based on the national rates (Kimbrough et al. 1999b).  Due to the small number of cases, healthy

worker effect bias, and exposure misclassification bias, it is remarkable that an elevation of intestinal

cancer was found among hourly women workers.  However, this finding must be viewed as suggestive

given the limitations of the study.

Deaths from cancers of the digestive system were statistically significantly increased in the Bertazzi et al.

(1987) study of capacitor workers summarized in Section 3.2.8.2.1.  This category was not specific for the

stomach and intestines as it included other parts of the digestive system, including the liver and biliary

tract.  Of six observed deaths from digestive system cancers, one was due to hepatocellular carcinoma and

another from a cancer of the biliary tract.

Mortality from cancer of the stomach or intestine was not statistically significantly increased in other

studies of capacitor manufacturing workers (Brown 1987b; Brown and Jones 1981) summarized in

Section 3.2.8.2.1, or in the Loomis et al. (1997) study of electric utility workers summarized in

Section 3.2.8.2.4.  Mortality from cancer of the digestive organs (not otherwise specified) was not
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increased in the Sinks et al. (1992) study of capacitor manufacturing workers summarized in

Section 3.2.8.2.4.

Contaminated Fish Consumption.  Cancer incidences were studied in cohorts of fisherman from the

Swedish east coast (on the Baltic Sea) (2,896 subjects) and Swedish west coast (8,477 subjects)

(Svensson et al. 1995a).  Both cohorts ate almost twice as much fish as the general regional populations,

although intake of fatty fish was higher in the east coast fisherman (Svensson et al. 1995b).  Plasma levels

of PCB congeners, particularly non-ortho PCBs, were also higher in the east coast fisherman compared

west coast fisherman and referents from both coasts; the sum of non-ortho, mono-ortho, di-ortho, and

other congeners expressed as the TEQ was about 2 times higher in the east coast fisherman than in those

from the west coast.  The incidence of stomach cancer was increased in the east coast fisherman when

compared with both the regional general population (Incidence Rate Ratio [IRR]=1.6, 95% CI 1.0–2.4)

and the west coast fisherman (IRR=2.2, CI 1.3–3.5).  Stomach cancer was not increased in the west coast

fisherman when compared to the regional general population.  Although the east and west coast fisherman

ate almost twice as much fish as controls, and intake of fatty fish and PCBs was higher in the east coast

fisherman compared to the west coast fisherman and referents from both coasts, the east coast fisherman

also consumed smoked fish (a risk factor for stomach cancer) twice as often as the west coast fisherman

(Svensson et al. 1995a).

Yusho and Yu-Cheng Exposures.  The retrospective study Yusho victims summarized in

Section 3.2.8.2.1 found no statistically significant (p<0.05) increased mortality from cancer of the

stomach or esophagus (Kuratsune et al. 1987).  The retrospective study of Yu-Cheng victims summarized

in Section 3.2.8.2.6 found no statistically significantly increased mortality from cancer of the stomach or

small intestine (Hsieh et al. 1996).

3.2.8.2.3  Rectum

Occupational Exposure.  An elevation in rectal cancer was found in the first of two studies of two

capacitor manufacturing plants in New York and Massachusetts (Brown 1987b; Brown and Jones 1981). 

Background information on these studies is provided in Section 3.2.8.2.  Brown and Jones (1981) found

that rectal cancer mortality was statistically significantly (p<0.05) increased in 1,309 females (3 observed/

0.5 expected, SMR=600, 95% CI not reported) from Plant 2, but not among 675 males from Plant 2

(0 observed/0.20 expected), 924 males from Plant 1 (1 observed/0.31 expected, SMR=323, 95% CI not

reported), 385 females from Plant 1 (0 observed/0.18 expected), or 2,567 total males and females from
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both plants (4 observed/1.19 expected, SMR=336, 95% CI 92–860).  Follow-up evaluation (Brown

1987b) of 2,588 total workers from both plants after a further 7 years of observation found no additional

deaths from rectal cancer (4 observed/1.9 expected, SMR=211), and the excess in the females from

Plant 2 was no longer statistically significant because of the small numbers of observed and expected

cases (3 observed/0.8 expected, SMR=375, p>0.05).

There was a non-statistically significant (p>0.05) increase in rectal cancer mortality (4 observed/

2.3 expected, SMR=169, 95% CI 46–434) in the female hourly worker subgroup of the capacitor manu-

facturing workers studied by Kimbrough et al. (1999a) (Section 3.2.8.2.1).  Mortality from rectal cancer

was not increased in the Sinks et al. (1992) study of capacitor manufacturing workers or Loomis et al.

(1997) study of electric utility workers summarized in Section 3.2.8.2.4.

Contaminated Fish Consumption.  Mortality from cancer of the rectum or colon was not statistically

significantly increased in the Svensson et al. (1995a) study of Swedish east coast (Baltic Sea) and west

coast fisherman summarized in Section 3.2.8.2.2.

Yusho and Yu-Cheng Exposures.  The retrospective study Yusho victims summarized in

Section 3.2.8.2.1 found no statistically significantly increased mortality from cancer of the rectum,

sigmoid colon, and anus (Kuratsune et al. 1987).  

3.2.8.2.4  Skin

Occupational Exposure.  Mortality analysis of 3,588 workers (2,742 male, 846 female) employed at an

Indiana capacitor manufacturing facility when PCBs were used (1957–1977) provided evidence of

exposure-related malignant melanoma (NIOSH 1991; Sinks et al. 1992).  The mean latency was

19.2 years (range, 0.04–32.5 years), mean duration of employment was 4.1 years (range,

1 day–20.2 years), and mean age at hire was 27 years (range, 16.8–62.6 years).  Aroclor 1242 was used

until 1970, and Aroclor 1016 was used subsequently.  Area monitoring for PCBs in 1977 showed mean

concentrations ranging from 0.016 to 0.076 mg/m3.  The workers were also exposed to various solvents

(toluene, xylene, methyl ethyl ketone, trichloroethylene, and 1,1,1-trichloroethane) and unspecified

metals from brazing and soldering operations.  Mortality from all causes and all cancers was lower than

expected, indicating a healthy worker effect.  More deaths were observed than expected for malignant

melanoma (8 observed/2 expected, SMR=4.1, 95% CI 1.8–8.0, p<0.01).  The excess mortality from

melanoma affected both men and women.  All eight melanoma deaths occurred $5 years after first
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employment, and three occurred in individuals who had worked for >10 years.  One of the eight cases of

malignant melanoma was diagnosed 2 months before starting employment and should not have been

included in the analysis; the excess mortality remained when this case was excluded from analysis

(SMR=3.5, 95% CI 1.4–7.3).  Two other melanoma cases possibly should have been excluded from

analysis due to low risk from short-term exposure of <6 months; however, PCBs are bioaccumulative and

exposure may have been high.  A ninth worker died with malignant melanoma listed as a contributory

cause of death; this person had worked at the plant for 1 month and died 20 years after exposure.  There

was no clear relationship between malignant melanoma and latency or duration of employment.  Analysis

performed to determine if a dose-response relationship existed between average estimated cumulative

PCB exposure (duration of employment multiplied by a primarily qualitative exposure intensity rating)

and mortality showed no statistically significant differences in estimated exposures between the workers

that died from malignant melanoma and other workers at the same plant.  Other findings in this study

included a non-statistically significant increase in brain cancer as discussed in Section 3.2.8.2.5. 

Limitations of this study include possible insensitivity of mortality as an index of risk for malignant

melanoma; inability to evaluate risk of cancers with long latency periods (<10% of the person-years at

risk were accumulated with $20 years of latency); insufficient monitoring data, which precluded detailed

exposure weighting; and exposure intensity ratings, which may have resulted in exposure

misclassification and obscured a dose-response relationship.  Screening of the affected workers for

malignant melanoma was recommended based on the conclusion that the workers were at excess risk

(NIOSH 1990).

There were non-statistically significant (p>0.05) increases in mortality from skin melanomas in the hourly

male workers (5 observed/3.8 expected, SMR=130, 95% CI 42–303), hourly female workers

(3 observed/2.0 expected, SMR=144, 95% CI 30–421), and salaried male workers

(4 observed/1.9 expected, SMR=210, 95% CI 57–538 in the Kimbrough et al. (1999a) study of capacitor

manufacturing workers summarized in Section 3.2.8.2.1.

Mortality from malignant melanoma was not statistically significantly different than expected in the

Gustavsson and Hogstedt (1997) study of capacitor manufacturing workers summarized in

Section 3.2.8.2.1.

Preliminary data, reported in letters to the editor of the journal, indicated that the incidence of malignant

melanoma was increased in a small group New Jersey petrochemical refinery workers who were involved

in processes that used Aroclor 1254 (Bahn et al. 1976, 1977; Lawrence 1977; NIOSH 1977).  Two cases
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of malignant melanoma were observed in 31 men believed to have been heavily exposed to PCBs; when

compared to 0.04 expected cases based on national rates, the increase was statistically significant

(p=0.001).  An additional malignant melanoma was observed in another group of 41 workers believed to

have had less exposure.  Aroclor 1254 had been used over a 9-year period ending in the late 1950s, but

PCB exposure was not quantified and concurrent exposure to other potential and known carcinogens was

not evaluated.  Other limitations of this study include the small number of cases and cohort size, and the

use of expected cancer rates based on U.S. population data rather than on local New Jersey rates.

Loomis et al. (1997) analyzed cancer mortality among 138,905 men employed as electric utility workers

for at least 6 months between 1950 and 1986 at five power plants.  No increases in total-cancer mortality

were found when data were analyzed by total cohort, duration of employment, job category, or estimated

cumulative exposure to PCBs in insulating fluids.  Mortality from malignant neoplasms of the skin was

not increased in the total cohort (116 observed/111.9 expected, SMR=1.04, 95% CI 0.86–1.24), although

relative risk of malignant melanoma by duration of employment appeared to increase in the job category

with the greatest potential for dermal exposure to PCBs (i.e., in mechanics, but not in electricians,

lineman and cable splicers, or laborers and material handlers).  The mortality RR for malignant melanoma

in mechanics employed for >0–5 years and >5–10 years were 2.57 (95% CI 1.06–6.20, based on eight

deaths) and 3.16 (95% CI 0.92–10.85, based on three deaths), respectively; analysis for >10 years

duration was precluded by small number of deaths.  Analysis of mortality by cumulative exposure was

only performed for the total cohort (all job categories combined).  Mortality from malignant melanoma in

the total cohort increased with increasing cumulative exposure; the RRs relative to unexposed men were

1.23 (95% CI 0.56–2.52), 1.71 (95% CI 0.68–4.28), and 1.93 (95% CI 0.52–7.14) for men with <2000,

>2000–10,000, and >10,000 hours of cumulative exposure, respectively, without consideration of latency. 

A latency interval of 20 years yielded RRs of 1.29 (95% CI 0.76–2.18), 2.56 (95% CI 1.09–5.97), and

4.81 (95% CI 1.49–15.50) for the same cumulative exposure levels, although the RR for the highest

exposure category is based on only one death.  Although mortality from melanoma was highest among

workers in the job category with the greatest potential for dermal exposures, this study is limited by small

numbers of subjects in the higher exposure and longer latency groups, as well as possible incomplete

control of confounding due to exposure to sunlight.

Of 55 transformer workers who were exposed to Askarel PCBs (0.00001–0.012 mg/m3) for a mean

duration of 3.75 years, 2 gave a history of removal of a melanoma (type not reported) (Emmett et al.

1988a).  No melanomas were reported by 56 age-matched nonexposed subjects, and the difference

between the groups was not statistically significant.
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Contaminated Fish Consumption.  Cancer incidences were studied in the Svensson et al. (1995a) study

of Swedish east coast (Baltic Sea) and west coast fisherman summarized in Section 3.2.8.2.2.  When

compared to the regional general populations, incidences of lip cancer were significantly increased in

both the east and west coast fisherman (SIR=2.6, 95% CI 1.1–5.4 and SIR=1.9, CI 1.3–2.8, respectively),

and incidences of squamous cell skin cancer were increased in the east and west coast fisherman

(SIR=2.3, CI 1.5–3.5 and SIR=1.1, CI=0.9–1.4, respectively).  The incidence of skin cancer in the east

coast fisherman was also higher than in the west coast fisherman (SIR=1.9, CI 1.2–3.1).  Mortality from

skin cancer was increased in the fisherman from the west coast (SMR=3.05, CI=0.99–7.13), but not east

coast (SMR=0, CI=0.00–15.4).  Mortality from melanoma was not increased in either the east coast

fisherman (SMR=0, CI=0.00–1.73) or west coast fisherman (SMR=0.67, CI=0.25–1.46).  The

investigators noted that exposure to ultraviolet (UV) radiation in sunlight is too small to explain the

observed difference in skin cancer sunlight and that UV light is not a risk factor for lip cancer.

General Population Exposures.  An increased annual occurrence of ocular melanoma was discerned in

Ohio residents during 1967–1977 (1.09 cases/100,000 persons/year versus 0.6 in other reports), with no

statistically significant difference in the number of cases reported from year to year (Davidorf and Knupp

1979).  No relationship between PCB exposure and the occurrence of ocular melanoma was suggested by

a crude state-wide geographic comparison, which showed that distribution of the cancer was similar in

counties with and without presumed elevated exposures, as indicated by high PCB levels in fish or

presence of industries that might use PCBs.

3.2.8.2.5  Brain and Central Nervous System 

Occupational Exposure.  Suggestive increases in mortality from brain cancer were reported in the Sinks

et al. (1992) study of capacitor manufacturing workers and Loomis et al. (1997) study of electric utility

workers summarized in Section 3.2.8.2.4.  Sinks et al. (1992) found a non-statistically significant increase

in brain cancer mortality in 3,588 male and female workers based on five cases in both sexes compared to

2.8 expected (SMR=1.8, 95% CI 0.6–4.2, p>0.05).  There was no clear relationship between brain cancer

and latency or duration of employment, although there was an indication that brain cancer deaths were

more common among those with a longer duration of employment (three deaths occurred after

$10 years).  Additional analysis was performed to determine if a dose-response relationship existed

between average estimated cumulative PCB exposure and mortality from brain cancer.  This analysis

showed no statistically significant differences in estimated exposures between the workers that died from
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brain cancer and other workers at the same plant, although the estimated exposure of the brain cancer

fatalities was approximately twice as high as that of the other workers.

Loomis et al. (1997) found that mortality from brain cancer was increased among mechanics who were

dermally exposed to PCBs in capacitor fluids for 0–10 years (RR=1.84, 95% CI 0.90–3.78).  There were

no deaths from brain cancer in mechanics employed for >10 years.  Mortality from brain cancer was also

increased in the total cohort of electric utility workers with cumulative exposures of <2,000 hours

(RR=1.61, 95% CI 0.86–3.01) and 2,000–10,000 hours (RR=1.79, 95% CI 0.81–3.95) and no latency

period.  The RRs of 1.6–1.8 rose to about 2.0 when a latency period of 5 years was used, but latencies of

10 and 20 years diminished or eliminated the effect.  There were no deaths from brain cancer in workers

in the highest cumulative exposure category (>10,000 hours).  The lack of either strong or consistent

associations of brain cancer with exposure, as well as the tendency for brain cancer mortality rates to

decline with longer employment and greater exposure, weakens support for a causal relation.

Mortality from cancer of the brain and nervous system was not statistically significantly different than

expected in Kimbrough et al. (1999a) and Gustavsson and Hogstedt (1997) retrospective studies of

capacitor manufacturing workers summarized in Section 3.2.8.2.1.

3.2.8.2.6  Hematological

Occupational Exposure.  Hematological cancers were increased in the Bertazzi et al. (1987) study of

544 male and 1,556 female Italian capacitor manufacturing workers summarized in Section 3.2.8.2.2. 

Mortality from hematological neoplasms was statistically significantly (p<0.05) higher than expected in

the females based on local rates (4 observed/1.1 expected, SMR=377, 95% CI 115–877).  All four of the

hematologic neoplasms in females were associated with lymphatic tissue (three deaths from Hodgkin’s

disease and one death from lymphosarcoma).  Mortality from hematological neoplasms was also

increased in females compared to national rates (4 observed/1.5 expected, SMR=266, CI not reported),

and males compared to both national rates (3 observed/0.8 expected, SMR=375, CI not reported) and

local rates (3 observed/1.1 expected, SMR=263, CI not reported), but these increases were not statistically

significant.  Follow-up evaluation of the cohort after an additional 9 years of latency found an additional

death from a hematologic neoplasm (lymphatic leukemia) in the females (no change in males), although

the increase in the women was no longer statistically significant based on local rates

(5 observed/3.5 expected, SMR=141, 95% CI 46–330) (Tironi et al. 1996).    
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Mortality from cancers of the lymphatic and hematopoietic tissues was not increased in other studies of

capacitor manufacturing workers summarized in Sections 3.2.8.2.1 and 3.2.8.2.4 (Brown 1987b; Brown

and Jones 1981; Gustavsson and Hogstedt 1997; Gustavsson et al. 1986; Kimbrough et al. 1999a; Sinks et

al. 1992), or in the Loomis et al. (1997) study of electric utility workers summarized in Section 3.2.8.2.4.

Contaminated fish Consumption.  There was no increased mortality from Hodgkin’s lymphoma or non-

Hodgkin’s lymphoma in the Svensson et al. (1995a) study of Swedish east coast (Baltic Sea) and west

coast fisherman summarized in Section 3.2.8.2.2.  Mortality from multiple myeloma was increased in the

fisherman from the east coast (SMR=3.08, 95% CI=1.24–6.35) and west coast (SMR=2.08,

CI=0.76–4.53), as was mortality from leukemia was increased in the east coast fisherman (SMR=1.38,

CI=0.45–3.22).

General Population Exposures.  Two studies reported an association between risk of non-Hodgkin’s

lymphoma and exposure to PCBs (Hardell et al. 1996; Rothman et al. 1997).  Adipose tissue

concentrations of total PCBs and 34 non-coplanar congeners were compared in 27 Swedish hospital

patients with non-Hodgkin’s lymphoma (NHL) (B-cell type) and 17 surgical controls without malignancy

(Hardell et al. 1996).  Analysis of three coplanar congeners (PCB 77, 126, and 169) was performed in

20 of the cases and all 17 controls.  The mean total PCB concentration, calculated as the sum of the non-

coplanar congeners, was about 33% higher (p=0.06) in the cases than controls.  Mean levels of

11 individual non-coplanar congeners were statistically significantly (p<0.05) increased compared to

controls; the difference was most significant (p#0.01) for PCB 156 and PCB 208.  Mean concentrations

of the three coplanar congeners were not statistically significantly different in the cases and controls.  An

increased risk of NHL (OR=2.7, 95% CI 0.8–9.4]) was calculated for cases with total PCB concentrations

higher than the median concentration (1,300 ng/g lipid) of the total group.

An association between serum PCBs and increased risk of NHL was found in a nested prospective case-

control study of Maryland residents (Rothman et al. 1997).  Serum levels of total PCBs were compared in

74 cases of NHL and 147 matched controls identified in a cohort established in 1974.  The mean time to

diagnosis after enrollment into the cohort was 12.1 years.  The mean PCB concentration was statistically

significantly higher in the cases than controls (10% increase, p=0.0014).  Conditional logistic regression

analysis showed that the risk of NHL increased significantly with increasing PCB serum concentrations (p

for trend=0.0008); the ORs in the two highest concentration quartiles were 2.8 (95% CI 1.1–7.6) and

4.5 (95% CI 1.7–12.0).  Additional analysis indicated that the effect of PCBs on risk of NHL was

increased among participants who were seropositive for Epstein-Barr virus early antigen.
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Yusho and Yu-Cheng Exposures.  A retrospective cohort mortality study followed, 1940 Yu-Cheng cases

(929 males, 1,011 females, >95% of all registered cases) for 12 years following exposure in 1979 (Hsieh

et al. 1996).  The average age of the subjects was 27 years at the beginning of the study.  Mortality from

Hodgkin’s disease was increased in comparison to Taiwan national or local rates in the males

(SMR=61.17, 95% CI 1.55–340.72 or SMR=86.45, 95% CI 2.19–481.52, respectively).  There was no

statistically significantly increased mortality from leukemia.  The retrospective study Yusho victims

summarized in Section 3.2.8.2.1 found no statistically significantly increased mortality from leukemia

(Kuratsune et al. 1987).  

3.2.8.2.7  Breast

Occupational Exposure.  Mortality from breast cancer was not increased in the Brown and Jones (1981),

Brown (1987b), and Kimbrough et al. (1999a) studies of capacitor manufacturing workers summarized in

Section 3.2.8.2.1.

General Population Exposures.  Eight case-control studies compared breast tissue concentrations of

PCBs in women with breast cancer and women with benign breast disease or who died in accidents.  Four

of these studies found higher average levels of total PCBs or individual congeners in breast fat among the

cases than in controls (Dewailly et al. 1994; Falck et al. 1992; Guttes et al. 1998; Wasserman et al. 1976). 

Wasserman et al. (1976) reported that the mean concentration of total PCBs in malignant breast tissue of

nine Brazilian women collected after diagnosis (date not reported) was about 3 times higher (p<0.01) than

that found in adjacent breast glandular or adipose tissue from the same women, or in normal breast tissue

from five controls.  Total PCB levels in breast fat were 40% higher (p<0.02) in 20 Connecticut patients

with breast cancer compared to 20 age-matched controls who had benign breast disease (Falck et al.

1992); adipose samples were obtained near the time of diagnosis in 1987.

Dewailly et al. (1994) measured breast adipose levels of total PCBs and 10 individual congeners in

Canadian women with benign breast disease (n=17), breast cancer with estrogen receptor (ER)-positive

breast cancer cells (n=9), and breast cancer with ER-negative cells (n=9).  Analysis near the time of

diagnosis during 1991–1992 showed no statistically significant group differences in total PCBs.  Mean

congener concentrations in ER-negative cases were generally lower than those in control subjects,

although the difference was statistically significant (p=0.02) only for PCB 118.  ER-positive case patients,

however, showed congener levels that were generally higher than controls, with the difference reaching 

statistical significance (p=0.05) for PCB 99.  Guttes et al. (1998) measured concentrations of total PCBs 
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and 12 congeners in breast fat samples from 45 German women with breast cancer and 20 controls with

benign breast disease; samples were obtained at the time of diagnosis in 1993–1994.  Geometric mean

levels of total PCBs were not statistically significantly different in the cases and controls after statistical

adjustment for age differences.  Mean concentrations of PCB 126 and PCB 153 were 25% (p=0.04) and

24% (p=0.08) higher, respectively, in the cases compared to controls.

In contrast to the findings summarized above, the four other case-control breast tissue studies found no

increased levels of total PCBs or individual congeners in patients with breast cancer (Aronson et al. 2000;

Liljegren et al. 1998; Mussalo-Rauhamaa et al. 1990; Unger et al. 1984).  There was no statistically

significant difference in mean PCB levels in breast fat from 14 newly diagnosed Danish breast cancer

patients and 21 noncancer patients, or in samples taken at autopsy from groups of 18 deceased women with

breast cancer and 35 deceased women without breast cancer (Unger et al. 1984).  Mussalo-Rauhamaa et al.

(1990) similarly found no statistically significant difference in mean concentrations of PCBs in breast fat

of 44 breast cancer cases from Finland and 33 controls without cancer.

Breast adipose tissue concentrations of PCB congeners were assessed in a case-control study of

43 Swedish women with invasive breast cancer and 35 controls with benign breast disease (Liljegren et al.

1998).  Total or individual levels of 36 non-coplanar congeners, or individual levels of coplanar congeners

3,3',4,4'-tetraCB (PCB 77), 3,3',4,4',5-pentaCB (PCB 126), and 3,3',4,4',5,5'-hexaCB (PCB 169), did not

statistically significantly differ between cases and controls in the entire group or in subgroups of pre- and

postmenopausal women.  Analysis of coplanar congeners was limited to PCB 77, PCB 126, and PCB 169

in 19 cases and 19 controls.  Logistic regression analysis was used to estimate risk associated with

exposure to elevated tissue levels of total non-coplanar congeners, and each of the three coplanar

congeners in all women, as well as subgroups who were postmenopausal, had ER-positive tumors, or were

postmenopausal with ER-positive tumors.  Based on age- and parity-adjusted data, increased risks of breast

cancer were associated with PCB 77 (tissue concentration >4.5 ng/g lipid) in postmenopausal women

(OR=5.8, 95% CI 0.8–42), women with ER-positive tumors (OR=5.0, CI 0.8–28) and postmenopausal

women with ER-positive tumors (OR= 33, CI 1.8–588), and PCB 126 (>145 ng/g lipid) in women with

ER-positive tumors (OR=5.1, CI 0.8–30).  An OR for PCB 126 in postmenopausal ER-positive women

was not calculated due to insufficient data.

Aronson et al. (2000) investigated the association between risk of breast cancer and breast adipose tissue

concentrations of total PCBs or 14 individual congeners.  Analyses were performed on biopsy tissue from

217 Canadian women diagnosed with breast cancer and 213 matched controls with benign breast lesions.  
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Mean breast fat concentrations of total PCBs and individual congeners were not statistically significantly

higher in the cancer cases than in controls.  Multiple logistic regression was used to calculate ORs for

increasing tissue concentrations of total PCBs and individual congeners.  When the whole group was

adjusted for age, menopausal status, and other confounders, risk was increased for 2,3,3',4,4'-pentaCB

(PCB 105) and 2,3,4,4',5-pentaCB (PCB 118).  The ORs for these congeners increased linearly with tissue

concentrations (p values for trend #0.01), reaching 3.17 (95% CI 1.51–6.68) for PCB 105 and

2.31 (CI 1.11–4.78) for PCB 118 in the highest concentration categories ($13 and $50 µg/kg,

respectively).  Risks for breast cancer were even higher among premenopausal women for PCB 105

(OR=3.91, CI 1.73–8.86) and PCB 118 (OR=2.85, CI 1.24–6.52).  Risks among postmenopausal women

were elevated for PCB 170 and PCB 180, but these were not clearly tissue concentration-related.

 

Four case-control studies used serum PCB concentrations as the marker of exposure with measurements

performed after the diagnosis of breast cancer (Moysich et al. 1998, 1999b; Wolff et al. 1993; Zheng et al.

2000).  Studies by Moysich et al. (1998, 1999b) were based on 154 cases of postmenopausal breast cancer

and 192 matched postmenopausal controls from western New York.  Based on serum congener analysis

performed within 3 months of diagnosis in 1986–1991, exposure was characterized as total PCBs, total

number of detected peaks, and three congener groups (less chlorinated, moderately chlorinated, and more

highly chlorinated PCBs).  No statistically significant differences in mean PCB concentrations were found

between cases and controls in the total sample, or in subgroups of who breast-fed (85 cases, 106 controls)

or never lactated (46 cases, 61 controls), using any of the measures of exposure (Moysich et al. 1998). 

Additionally, analyses using unconditional logistic regression showed that higher serum levels of total

PCBs, moderately chlorinated congeners, more highly chlorinated congeners, or greater number of

detected peaks, were not associated with increased risk of breast cancer.  There was an indication of a

small increase in risk for women with detectable levels of less chlorinated congeners (OR=1.66, 95%

CI 1.07–2.88), and in parous women who had never lactated having higher serum levels of total PCBs

(OR=2.87, CI 1.01–7.29), moderately chlorinated congeners (OR=3.57, CI 1.10–8.60), and detected

congener peaks (OR=3.31, CI 1.04–11.3).  Further study of the 154 cases and 192 controls investigated the

association between cytochrome P-4501A1 genotype and breast cancer risk in the postmenopausal women

(Moysich et al. 1999b).  An increased risk of breast cancer was associated with elevated serum PCB

concentrations ($3.73 ng/g of serum) among women with CYP1A1 polymorphism, as indicated by an OR

of 2.96 (95% CI 1.18–7.45) in women carrying at least one CYP1A1 valine for isoleucine substitution

allele (Ile:Val or Val:Val), compared with women with lower serum PCB levels and who were

homozygous for the isoleucine allele (Ile:Ile).  No effect of CYP1A1 was found among women with lower

serum levels of PCBs or women homozygous for the isoleucine allele.  
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Zheng et al. (2000) investigated the relationship between serum PCBs and breast cancer risk in a case-

control study of 475 Connecticut patients with confirmed cancer and 502 age-matched controls with

benign breast diseases.  Blood samples were collected at the time of recruitment in 1995–1997 and

analyzed for 9 PCB congeners.  There were no statistically significant differences in mean serum level of

total PCBs between the cases and controls in all subjects or subgroups of cases based on stage of cancer at

time of diagnosis, type of cancer treatment, type of cancer or benign breast disease, or ER status.  Logistic

regression analysis showed no statistically significant association between breast cancer risk (OR) and

serum total PCB levels for all subjects or subgroups based on parity, lactation, or menopausal status. 

Additionally, mean serum levels for each of three structure-activity congener groups (potentially

estrogenic, potentially antiestrogenic and immunotoxic (dioxin-like), and phenobarbital-type cytochrome

P-450 (CYP1A and CYP2B) enzyme inducers) were comparable between the cases and controls, and there

was no statistically significant increasing trend for risk of breast cancer with increasing serum levels of

these congener groups.

Wolff et al. (1993) found that mean concentrations of total PCBs were 19% higher in the sera of 58 New

York City women with breast cancer than in 171 matched cancer-free controls, but the difference only

approached statistical significance (p=0.058).  The blood samples were collected between 1985 and 1991

and analyzed within 6 months of cancer diagnosis.  Conditional logistic regression analysis showed that

the relative risk of breast cancer increased less than 2-fold for a change in serum PCB levels from

3.9 ng/mL (10th percentile) to 10.6 ng/mL (90th percentile; OR=1.70, 95% CI 0.79–3.68), and that there

was no statistically significant positive trend (p=0.16) with increasing concentrations of PCBs. 

Wolff et al. (2000) found a more conclusive lack of association between serum total PCBs and breast

cancer in a prospective investigation nested within the same cohort from which the women in their 1993

study were selected.  Cases (n=148) and individually matched controls (n=295) were identified among

women whose blood had been collected at least 6 months before diagnosis in October 1994.  In addition,

among 84 cases and 196 controls, two or more consecutive annual blood samples were available to

estimate elimination half-lives of total PCBs.  Cases and controls had similar mean serum levels of PCBs,

and this difference remained statistically nonsignificant when ER status of the tumors was considered. 

Additionally, PCB half-lives did not differ between cases and controls.  Conditional logistic regression

analysis showed no positive association between serum PCB levels and risk of breast cancer; although ORs

were elevated in the three upper concentration quartiles relative to the lowest one, none of the ORs were

statistically significant and there was no evidence of a trend (p=0.23).  The risk of breast cancer was not

influenced by menstrual status, lactation history, or PCB half-life. 
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Five other prospective studies similarly found no association between serum levels of PCBs and breast

cancer incidence using blood samples collected prior to diagnosis (Dorgan et al. 1999; Helzlsouer et al.

1999; Høyer et al. 1998; Hunter et al. 1997; Krieger et al. 1994).  Total plasma PCBs were determined in

blood samples collected during 1989–1990 in a prospective study of the health of nurses in the United

States (Hunter et al. 1997).  Mean plasma levels of PCBs did not statistically significantly differ between

230 women who developed breast cancer before June 1992 and pair-matched controls who did not

subsequently develop breast cancer.  There was no association between plasma levels of PCBs and

established or suspected risk factors for breast cancer (e.g., menopausal status, age, age at menarche, age at

birth of first child, number of children, and history of lactation), nor any increase in relative risk of breast

cancer with increasing concentrations of PCBs.  It should be noted that the short follow-up period (not

more than 3 years) could have contributed to the negative findings.

A prospective nested case-control study of blood samples collected in 1964–1971 compared serum levels

of total PCBs in 150 California women (50 white, 50 black, 50 Asian) who were later diagnosed with

breast cancer with levels in matched controls who did not develop breast cancer in the interval at least

6 months after the blood was drawn through the end of 1990 (Krieger et al. 1994).  Serum samples were

collected an average of 14 years prior to cancer diagnosis.  Mean concentrations of PCBs were not

statistically significantly different in cases or controls in the total group or racial/ethnic subgroups,

regardless of menopausal and estrogen-receptor status.  Conditional logistic regression analyses showed no

statistically significant trends for increased breast cancer risk with increasing serum PCB levels or by year

of diagnosis or length of follow-up. 

A case-control study of 240 breast cancer patients and 477 matched controls (two controls for each case)

was nested within a prospective study conducted in Denmark (Høyer et al. 1998).  Blood samples were

collected in 1976 and breast cancer was diagnosed during the following 17 years.  Conditional logistic

regression analysis indicated no increased risk of breast cancer with increasing serum levels of total PCBs. 

Exclusion of women who developed breast cancer within 5 years of serum sampling did not alter the

results.  The average amount of time between the collection of the serum sample and the diagnosis of

breast cancer is unclear.

Serum PCBs were measured in blood samples collected in 1974 or 1989 in a breast cancer case-control

study nested within a prospective cohort study of Washington County, Maryland residents (Helzlsouer et

al. 1999).  A group of 346 women who were diagnosed with breast cancer by June, 1994 (i.e., after a

follow-up period of up to 20 years) were matched to 346 cancer-free controls by age, race, menopausal 
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status, and date of blood donation.  Mean and median concentrations of total PCBs in 1974 or 1989 were

not statistically significantly different in women who subsequently developed breast cancer than in

controls.  Logistic regression analysis showed that the risk of breast cancer did not statistically

significantly increase with increasing serum levels of total PCBs measured in 1974 or 1989.  Additionally,

there was no statistically significantly increased risk of breast cancer associated with increasing

concentrations of 26 individual congeners, or three groupings of congeners based on structure-activity

considerations (potentially estrogenic, potentially antiestrogenic and immunotoxic (dioxin-like), and

phenobarbital-type cytochrome P-450 (CYP1A and CYP2B) enzyme inducers).  Length of follow-up,

menopausal and estrogen-receptor status, lactation and birth history, and putative high-risk genotypes for

detoxification enzymes such as glutathione transferase (GSTM1, GSTT1, GSTP1, or COMT) did not

contribute to an increased risk of breast cancer.     

The association between breast cancer and PCB exposure was evaluated in 105 cases and 208 matched

controls in a prospective nested case-control study using the Columbia, Missouri breast cancer serum bank

(Dorgan et al. 1999).  Breast cancer was diagnosed up to 9.5 years after blood samples were obtained

between 1977 and 1987.  Exposure was estimated using lipid-adjusted serum levels of total PCBs and

27 individual congeners.  The percent of participants with total PCBs or individual congeners above the

assay detection limit was not statistically significantly higher in cases compared to controls.  Conditional

logistic regression analysis of the entire group showed no indication of increased relative risk of breast

cancer among women with elevated serum levels of total PCBs or individual congeners.  A positive

association between serum PCB 138 concentration and breast cancer was suggested (p=0.07) when blood

was collected close to the time of diagnosis (#2.7 years, 53 cases, 104 controls), based on RRs of 1.7 (95%

CI 0.7–4.2) and 1.9 (CI 0.8–4.8) in the middle and highest concentration tertiles, respectively.

3.2.8.2.8  Other Sites

Occupational Exposure.  Pancreatic cancer was increased in 1,939 males employed between 1947 and

1975 at a transformer manufacturing plant in Canada (Yassi et al. 1994).  Only a very small number of

transformers contained PCBs, and there was considerably more exposure to mineral oil refined

predominantly from naphthenic base crudes.  Therefore, unlike the typical studies of capacitor

manufacturing workers who were mainly exposed to PCBs, the transformer plant workers in the Yassi et

al. (1994) study were predominantly exposed to mineral oil not containing PCBs.  Mortality from

pancreatic cancer was statistically significantly increased.  Based on 11 observed deaths, SMRs for 



3.  HEALTH EFFECTS - Cancer

PCBs 270

pancreatic cancer ranged from 2.92 (95% CI 1.17–6.01) to 12.9 (95% CI 2.59–37.7), depending on cohort

definition and acceptability criteria used.  The authors also reported that those who entered the cohort prior

to 1960 had a higher mortality risk than those who entered later.  Additionally, SMRs for pancreatic

cancers were higher in the departments in which transformers were assembled than in departments in

which the exposures were thought to be lower.  The role of PCBs is unclear due to the exposure to other

transformer chemicals and study limitations such as the fact that no medical history of the workers was

provided.  Wong (1995) raises serious concerns about the Yassi et al. (1994) pancreatic cancer findings. 

For instance, in the group with the highest SMR, three cancers were reported.  One of these had worked for

<1 year and had died within 1 year of leaving the plant.  Another case that was "possibly" linked to

employment at the plant had worked at the plant for 1 year.  Thus, two of the three cases in the group with

the highest SMR had neither sufficient duration of exposure nor latency for their cancers to be considered

occupationally related to PCB exposure at the plant.

Kidney adenocarcinoma was found in three male public utility workers (aged 34–56) exposed to

unspecified PCBs while servicing and repairing transformers for 5–14 years (Shalat et al. 1989).  The

workers were employed by the same company during the same period, but the total exposed population

was not reported.  Although kidney cancer is relatively rare in young men (range,

1.3–29.7 cases/100,000 in the age group of the subjects), an association between PCB exposure and kidney

cancer cannot be demonstrated due to limitations of the study, particularly exposure to other chemicals

including unspecified organic solvents and herbicides.

Mortality from pancreatic, kidney, or urinary cancer was not statistically significantly increased in other

studies of capacitor manufacturing workers summarized in Sections 3.2.8.2.1 and 3.2.8.2.4 (Brown 1987b;

Kimbrough et al. 1999a; Sinks et al. 1992), or in the Loomis et al. (1997) mortality study of electric utility

workers summarized in Section 3.2.8.2.4.

Contaminated Fish Consumption.  Mortality from pancreatic cancer was not increased in the Svensson et

al. (1995a) study of Swedish east coast (Baltic Sea) and west coast fishermen summarized in

Section 3.2.8.2.2. 

Yusho and Yu-Cheng Exposures.  The retrospective study of Yusho victims summarized in

Section 3.2.8.2.1 found no statistically significant (p<0.05) increased mortality from cancer of the pancreas

(Kuratsune et al. 1987.).
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3.2.8.2.9  Evaluation of Human Studies

The carcinogenicity of PCBs in humans has been investigated in retrospective occupational studies that

investigated cancer mortality in exposed workers, and in case-control studies of environmental exposure

that examined associations between serum or adipose tissue levels of PCBs and occurrence of cancer.  As

discussed below and summarized in Appendix A, some of these studies provide meaningful evidence that

PCBs are carcinogenic in humans.

Occupational mortality data indicate that exposures to PCBs during capacitor manufacturing and repairing

were associated with cancer of the liver, biliary tract and/or gall bladder, intestinal cancer, and skin

melanoma.  A slight but statistically significant increase in cancer of the liver, biliary tract, and gall

bladder category was found by Brown (1987b) based on a small number of deaths (five cases) in a cohort

of 2,588 workers (SMR=263, p<0.05).  Of the five deaths, four occurred in women from one plant, and

two deaths were from liver, two from biliary tract, and one from gall bladder cancer.  One of the two liver

cancers was not a primary carcinoma as it metastasized from another site, and the SMR loses statistical

significance if the metastatic liver cancer is not included in the analysis.  No analysis was performed to

assess risk from biliary cancer alone.  Mortality from cancer of the liver/biliary tract/gall bladder was not

statistically significantly increased in any of the other occupational studies of PCB workers (Bertazzi et al.

1987; Gustavsson and Hogstedt 1997; Gustavsson et al. 1986; Kimbrough et al. 1999a; Loomis et al. 1997;

Sinks et al. 1992), although Bertazzi et al. (1987) did observe one death from biliary tract cancer and

another from a primary liver cancer in six cases classified as digestive system cancers, and there were two

deaths from relatively rare types of bile duct cancers in the small cohort of 242 workers evaluated by

Gustavsson and Hogstedt (1997).  Because no individual study indicated a statistically significantly

increased risk of primary liver/biliary tract/gall bladder cancer, Nicholson and Landrigan (1994) combined

the results from the various studies available at the time by summing observed and expected cases.  Based

on a total of 8 observed and 2.8 expected cases from studies of capacitor manufacturing workers from

three cohorts (Bertazzi et al. 1987; Brown 1987b; Brown and Jones 1981; Gustavsson et al. 1986),

statistically significant increases were found for liver/biliary tract/gall bladder (SMR=285, p=0.008) and

for biliary tract/gall bladder separately (p<0.05, SMR not reported).  Although the Nicholson and

Landrigan (1994) analysis is based on combined results from cohorts having different durations and levels

of exposure, latencies, and follow-up, and did not include data from the most recent studies (Gustavsson

and Hogstedt 1997; Kimbrough et al. 1999a), it provides an indication that PCBs are associated with

cancer of the liver, biliary tract, and/or gall bladder in humans.  The finding for biliary cancer is

particularly meaningful considering its relatively rare nature and the fact that data on liver and 
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biliary cancers were not reported separately in most studies.  Additionally, support for the

hepatocarcinogenicity of PCBs in humans is provided by data indicating that mortality from liver cancer

was increased following Yusho exposure (Kuratsune et al. 1987).

Data suggestive of PCB-related intestinal cancer were reported in the Kimbrough et al. (1999a) mortality

study of capacitor workers.  Mortality from cancer of the intestines (large and small) was not statistically

significantly increased in any of the groups of male or female workers in this study; however, the mortality

rate for intestinal cancer in the hourly female subgroup was elevated and approached statistical

significance (SMR=157, 95% CI 96–242).  Additionally, most of the intestinal cancer cases (18 of 20) in

this subgroup occurred in women with $20 years of latency, who had a rate that was significantly elevated

(SMR=189, p<0.05).  There was no trend for increased risk with cumulative exposure; however, there is

low precision in this analysis due to a particularly small number of deaths in each exposure duration

category.  There was no indication of increased mortality from stomach cancer in this study, or from

cancer of the intestines or stomach in other studies of PCB workers.  Bertazzi et al. (1978) did report a

statistically significantly increased mortality from digestive system cancers in male workers (SMR=274,

p<0.05), but this classification included cancers of the liver, biliary tract, and pancreas as well as stomach,

and no deaths from intestinal cancer were reported.  Additionally, follow-up evaluation of the same cohort

after an additional 9 years of latency showed that mortality from digestive system cancer was no longer

statistically significantly increased.  The incidence of stomach cancer was significantly elevated in

Swedish fisherman that had high intake of PCBs in fish (Svensson et al. 1995a), but the effect cannot be

definitely attributed to PCBs because consumption included smoked fish and PCBs were not the only

contaminants in the fish.

Mortality from malignant melanoma was statistically significantly increased in one study of capacitor

workers (Sinks et al. 1992).  The excess mortality affected both men and women (SMR=350, p<0.01). 

Because the number of deaths was relatively small and a dose-response relationship or increase with

latency could not be established, the results of this study are not conclusive.  Two other studies support the

skin cancer finding of Sinks et al. (1992).  Bahn et al. (1976, 1977) observed two cases of malignant

melanoma in 31 refinery workers believed to have been heavily exposed to PCBs (Bahn et al. 1976, 1977). 

Although the increase was statistically significant (p#0.001), it cannot definitely be attributed to PCBs

because the workers were exposed to other chemicals in the refinery.  Mortality from malignant melanoma

appeared to increase with cumulative exposure and latency among electric utility power plant mechanics

who were dermally exposed to PCBs in capacitor fluids (Loomis et al. 1997).  Although SMRs were

elevated at 2.57 (95% CI 1.06–6.20) and 3.16 (95% CI 0.92–10.85) in mechanics employed for 
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>0–5 years and >5–10 years, respectively, the association between malignant melanoma and exposure is

unclear due to a small number of deaths, which precluded assessment of employment durations longer than

10 years and analysis by cumulative exposure and latency.  Considering the limitations of the Bahn et al.

(1976, 1977) and Loomis et al. (1997) studies, the apparent relationships to PCB exposure are more

uncertain than in the Sinks et al. (1992) study, although the data from the three studies collectively suggest

an association.

Other findings in the Sinks et al. (1992) study of capacitor manufacturing workers and Loomis et al.

(1997) study of electric utility workers included slightly increased mortality from brain cancer in some

subgroups.  Because confidence intervals on risk ratios were broad with lower 95% limits <1.0, and there

was no clear relationship between brain cancer and exposure duration, level, or latency, the association

between PCBs and brain cancer is uncertain.

There is also no clear association between PCBs and hematopoietic or lymphatic cancers.  Investigations

of a cohort of Italian capacitor workers found statistically significantly increased mortality from

hematological neoplasms in females in the first study (SMR=377, CI 115–877, p<0.05) (Bertazzi et al.

1987), but not upon follow-up after an additional 9 years of latency (SMR=141, CI 46–330) (Tironi et al.

1996).  All of the cases of hematological neoplasms (five observed) were associated with lymphatic

tissues, including three deaths from Hodgkin’s disease (Hodgkin’s lymphoma).  Although mortality from

lymphatic or hematopoietic cancers was not increased in any of the other studies of capacitor

manufacturing workers, the cases of Hodgkin’s disease observed by Bertazzi et al. (1987) may be

consistent with the significantly increased mortality from Hodgkin’s disease found in Yu-Cheng victims

(Hsieh et al. 1996).  Two background environmental exposure studies found that mean concentrations of

PCBs in adipose tissue (Hardell et al. 1996) and serum (Rothman et al. 1997) were statistically

significantly higher in patients with NHL than in controls without NHL.  Although these studies also

showed that the risk of NHL increased significantly with increasing levels of PCBs in adipose and serum,

additional information is needed to conclude that the NHL is specifically due to PCBs.  The absence of

consistent evidence for lymphatic cancers might result from the rarity of these cancers, and not from a lack

of an association between PCBs and the cancers.

Associations between exposure to PCBs and breast cancer were investigated in a few of the occupational

retrospective cohort mortality studies and in a number of case-control studies of women with background

environmental exposures.  The occupational studies found no indications of increased mortality from

breast cancer in female capacitor manufacturing workers who were mainly exposed to PCBs by the 
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inhalation and/or dermal routes (Brown 1987b; Brown and Jones 1981; Kimbrough et al. 1999a).  The

environmental exposure studies assessed relationships between breast cancer and levels of PCBs in breast

fat or blood in the general population.  These studies were generally conducted to investigate a

hypothetical role of organochlorine compounds, including PCBs, in the development of breast cancer.  In

environmental case-control studies that compared breast tissue PCB concentrations in women with and

without breast cancer, some reported higher levels of total PCBs and/or congeners in breast fat among

cases than in controls (Dewailly et al. 1994; Falck et al. 1992; Guttes et al. 1998; Wasserman et al. 1976),

whereas others found no elevated breast adipose PCB levels in breast cancer cases (Aronson et al. 2000;

Liljegren et al. 1998; Mussalo-Rauhamaa et al. 1990; Unger et al. 1984).  Risk analyses, performed in two

of the tissue studies, suggest increased risks of breast cancer associated with increased tissue levels of

some congeners in subgroups of women that were postmenopausal or had estrogen receptor-positive

tumors (Aronson et al. 2000; Liljegren et al. 1998).  Other case-control studies used serum PCB

concentrations as the marker of exposure with blood samples taken after the diagnosis of breast cancer

(Moysich et al. 1998, 1999b; Wolff et al. 1993; Zheng et al. 2000), or prospectively collected prior to

diagnosis (Dorgan et al. 1999; Helzlsouer et al. 1999; Høyer et al. 1998; Hunter et al. 1997; Krieger et al.

1994; Wolff et al.  2000).  None of the serum studies found significantly different mean blood levels of

PCBs in breast cancer cases and controls.  Additionally, logistic regression analyses showed no statistically

significant associations between breast cancer risk and serum PCBs in most of the serum studies.  The

negative findings in the serum studies were generally not influenced by menopausal or estrogen receptor

status, birth or breast-feeding history, types of congeners, and/or other contributing or confounding factors. 

Increased risks were associated with serum PCBs in postmenopausal women who were parous and had

never breast-fed or in postmenopausal women with a putative high-risk CYP1A1 variant genotype

(Moysich et al. 1998, 1999b), but these findings are only suggestive due to small number of subjects and

variance with another study (Zheng et al.  2000).  

As discussed above, associations between PCBs and breast cancer have been reported in only a few of the

many case-control studies.  Inconsistencies in the results could be related to methodological differences in

the studies.  For example, most of the breast tissue studies are limited by small numbers of subjects and/or

inadequate control for known breast cancer risk factors, not all of the blood studies adjusted for serum

lipids or factors such as menstrual status, parity, and duration of lactation, and only some studies used

congener-based exposure assessment or considered timing of exposure assessment relative to the etiology

of cancer.  Many of the better designed studies have been prospective, using blood samples obtained a

number of years prior to the diagnosis of cancer (Dorgan et al. 1999; Helzlsouer et al. 1999; Høyer et al.

1998; Hunter et al. 1997; Krieger et al. 1994; Wolff et al. 2000), but none of the prospective studies found
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a relationship between serum PCBs and breast cancer.  Interpretations, however, are hampered by

differences in target analytes since some studies have found associations with congeners that were not

considered in larger studies due to expense of analysis.  Although the overall epidemiologic evidence for

an association between breast cancer and PCBs is inconclusive, there are meaningful preliminary

indications that specific subgroups may be at risk.

The human studies examining the cancer causing effect of PCBs often have methodological limitations. 

However, the evidence, taken in totality, indicates a potential cancer causing effect for PCBs.  EPA

determined that the human data are inadequate, but suggestive, of carcinogenicity (IRIS 2000), and IARC

(1987) concluded that the evidence for carcinogenicity to humans is limited.  

3.2.8.3  Animal Studies

Reliable cancer effect levels (CELs) are recorded in Table 3-2 and plotted in Figure 3-2.

3.2.8.3.1  Inhalation Exposure

No studies were located regarding carcinogenicity of PCBs in animals following inhalation exposure.

3.2.8.3.2  Oral Exposure

Chronic Oral Bioassays.  A number of oral cancer studies of commercial PCB mixtures have been

performed in animals.  As summarized below, these studies demonstrate the hepatocarcinogenicity of

PCBs as well indicate that the thyroid is a site of tumorigenesis.

Hepatocellular carcinomas developed in female Sherman rats fed an estimated dose of 5 mg/kg/day

Aroclor 1260 (purity not reported) for .21 months (Kimbrough et al. 1975).  Almost all treated rats

(170 of 184) exhibited a few to multiple tan nodules on the surface of the liver and more upon sectioning. 

Only one control rat had gross abnormalities of the liver.  Hepatocellular carcinomas were diagnosed in

14.1% (26 of 184) of the treated rats and 0.6% (1 of 173) of the controls.  Neoplastic nodules were found

in 84.7% (144 of 170) of the treated rats with surface nodules and in none of the controls (0 of 173).  The

total reported incidence of neoplastic liver lesions was 92.4% (170 of 184) in treated rats and 0.6% (1 of

173) in controls.  Incidences of neoplastic lesions were not increased in tissues other than liver (all major

tissues and organs were examined). 
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Liver tumors also developed in Sprague-Dawley rats fed an estimated average dose of 4.2 mg/kg/day

Aroclor 1260 (purity not reported) for 24 months (Norback and Weltman 1985).  In treated rats that

survived 18 months or longer, 95.7% (45 of 47) of the females and 15.2% (7 of 46) of the males had

hepatocellular carcinomas or neoplastic nodules, indicating a sex-related effect.  Of the 47 treated females,

43 had trabecular carcinomas and/or adenocarcinomas, and another 2 had neoplastic nodules only.  Of the

46 treated males, 2 had trabecular carcinomas and another 5 had neoplastic nodules.  Incidences of

hepatocellular neoplasms in control rats were 0% (0 of 32) in males and 2% (1 of 49) in females; the

1 female had a single neoplastic nodule.  Hepatocellular lesions progressed as follows:  centrilobular cell

hypertrophy at 1 month; foci of altered cells at 3 months and areas at 6 months; neoplastic nodules at

12 months; trabecular carcinoma at 15 months; and adenocarcinoma at 24 months.  The authors observed

that, while the tumors met morphologic criteria for malignancy, they were relatively nonaggressive

because they did not metastasize to distant organs or invade blood vessels.  Mortality was not affected,

probably because of the late appearance and slow growth of the tumors.  Preneoplastic lesions in the

biliary tract (simple cholangiomas, also referred to as bile duct hyperplasia) occurred at a higher incidence

in treated males and females (14 and 21%, respectively) than in control males and females (2 and 2%,

respectively).  

Liver neoplastic nodules and hepatocellular carcinomas developed in 50% (63 of 126) and 48.4% (61 of

126) of male Wistar rats, respectively, that were fed Clophen A60 (60% chlorine by weight) at an

estimated dosage of 5 mg/kg/day for up to 832 days (Schaeffer et al. 1984).  The incidences of these

lesions were significantly (p<0.05) higher than control values of 3.8% (5 of 131) and 0.8% (1 of 131),

respectively.  Combined incidences of neoplastic nodules and hepatocellular carcinomas were 98.4%

(124 of 126) and 4.5% (6 of 131) in the treated and control groups, respectively.  Time-dependent

progression from altered foci to neoplastic nodules to hepatocellular carcinoma was observed.  The

Clophen A60 mixture was reported to be free of CDFs, but it is not certain whether these contaminants

were absent from the mixture because no information was provided on detection limit or analytical

technique, nor is it known whether and how the mixture may have been treated to remove CDFs.

In a study conducted by NCI (1978), male and female Fischer 344 rats were fed Aroclor 1254 (purity not

determined) in estimated doses of 1.25, 2.5, or 5.0 mg/kg/day for 104–105 weeks.  Low incidences of

hepatocellular carcinomas and unspecified adenomas occurred in the middle- and high-dose groups, but in

none of the control or low-dose groups, which contained 24 rats each.  The incidences of combined tumors

were 4.2% (1 of 24) and 12.5% (3 of 24) in the middle- and high-dose males, respectively, and 4.5% (1 of

22) and 8.3% (2 of 24) in the middle- and high-dose females, respectively.  Analysis of these 
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results revealed no statistically significant difference between treated groups and matched controls.  Re-

examination and reclassification of the NCI (1978) liver data by Ward (1985) found that total tumor

incidence (hepatocellular adenomas and carcinomas) was significantly increased (p<0.05) in the high-dose

males.  Tumor incidences for males in the control, low-, middle-, and high-dose groups were 0% (0 of 24),

4.2% (1 of 24), 8.3% (2 of 24), and 29.2% (7 of 24), respectively, and the response showed a significant

(p<0.01) dose-related trend.

There were no nonhepatic tumors clearly related to Aroclor 1254 treatment in the NCI (1978) study,

although adenocarcinomas in the stomach, jejunum, or cecum of two treated males (mid-dose group) and

two treated females (low- and mid-dose groups), and a stomach carcinoma in one treated male (high-dose

group) were found.  Although their incidences were not statistically significant, the low historical

incidences of these lesions suggested that they were treatment-related.  Morgan et al. (1981) re-examined

the NCI (1978) gastrointestinal data and found increased incidences of stomach metaplasia that were dose-

related and stomach adenocarcinomas in six treated rats.  When compared with incidences of stomach

adenocarcinomas in historical controls (1 of 3,548), the total incidence (6 of 144) was statistically

significant.  This comparison may not be appropriate, however, because the Aroclor 1254-treated animals

were specially examined.  The investigators commented that the stomach adenocarcinoma and intestinal

metaplasia appeared to be related and might have the same initiating mechanism.  They concluded that

Aroclor 1254 led to induction of intestinal metaplasia and probably to induction of adenocarcinoma in the

glandular stomachs of Fischer 344 rats.  No correlation between rats having stomach and liver lesions was

found.  Ward (1985), who also re-examined the NCI (1978) gastrointestinal data, noted that the metaplastic

lesions were similar to those seen in monkeys, but differed in being focal and singular, while monkey

lesions were diffuse.  The appearance of the few metaplastic lesions in the stomachs of controls differed

from those in treated rats, which resembled precancerous lesions induced by gastric carcinogens.  A

significant dose-related trend in combined incidences of lymphomas and leukemias in male rats also was

found by NCI (1978), but incidences in each dose group were not statistically significantly different from

matched controls. 

In another study of Aroclor 1254 (purity not reported), no neoplastic nodules or hepatocellular carcinomas

developed in small groups of Sherman rats (10 per sex) treated with estimated dietary doses as high as

72.4 mg/kg/day for 8 months (Kimbrough et al. 1972).  Increased incidences of adenofibrosis of the liver

were observed, but this lesion was not considered precancerous by the investigators.  Sensitivity of this

study is limited by the small number of animals, and the short duration may be insufficient to express

possible carcinogenicity and to draw any negative conclusions.
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The carcinogenicity of a lower chlorinated PCB mixture was evaluated in male Wistar rats that were fed

Clophen A30 (42% chlorine by weight) in estimated dosages of 5 mg/kg/day for up to 832 days (Schaeffer

et al. 1984).  Liver neoplastic nodules and hepatocellular carcinomas were diagnosed in 29.2% (38 of 130)

and 3.1% (4 of 130), respectively, in the treated rats compared to 4% (2 of 53) and 2% (1 of 53),

respectively, in controls.  The increased incidence of neoplastic nodules is statistically significant (p<0.05),

but this pathology classification could have included nonneoplastic hyperplasia as well as benign

adenomas.  Combined incidences of neoplastic nodules and hepatocellular carcinomas were 7.7% (10 of

130) and 4.5% (6 of 131) in the treated and control groups, respectively.

A panel of pathologists re-evaluated seven of the PCB cancer studies in rats for the purpose of minimizing

differences among studies that may have been due to the diagnostic criteria used or individual variability

among pathologists (Moore et al. 1994).  Also, under a new diagnostic criteria and nomenclature, lesions

that had been previously diagnosed as neoplastic nodules were now classified as either hepatocellular

hyperplasia or hepatocellular adenoma.  A study was defined as “a protocol that examined the pathological

effects associated with the chronic dietary exposure to a PCB mixture in one sex of rat.”  The studies re-

examined were: Kimbrough et al. (1975) (Aroclor 1260), Norback and Weltman (1985) (Aroclor 1260),

NCI (1978) (Aroclor 1254), and Schaeffer et al. (1984) (Clophen A30).  In general, the results showed

consistency in diagnoses between the original reports and the re-evaluation.  One key difference was a

change in some diagnoses from neoplastic nodule to focus of cellular alteration, which downgraded the

finding to a nonneoplastic lesion.  The results led the authors to conclude that PCBs with a 60% chlorine

content consistently induce a high yield of liver tumors in rats, which supported the original findings.  In

addition, the reassessed results now showed that the studies in which rats were fed mixtures with 54 or

42% chlorination showed no statistically significant increases in liver tumors, and that there was no clear

sensitivity differences in tumor response between males and females.  

A more recent carcinogenicity study provides comparative data on the four most widely used commercial

Aroclor mixtures (1016, 1242, 1254, and 1260) in rats (General Electric Co. 1997a, 1997b; Mayes et al.

1998).  This is a comprehensive investigation designed to clarify carcinogenic differences in the mixtures

by allowing direct comparisons of Aroclors using current tumor diagnostic criteria, and thereby address

some of the limitations in previous studies and problems associated with inter-study comparisons.  Groups

of 50 male and 50 female Sprague-Dawley rats were fed Aroclor 1016, 1242, 1254, or 1260 in the diet for

24 months at three dose levels per compound (two for Aroclor 1242) in ranges of 2.0–11.2, 2.0–5.7,

1.0–6.1, or 1.0–5.8 mg/kg/day, respectively.  One control group of 100 males and 100 females was used

for the entire study (i.e., for all Aroclors).  The base feed contained <0.15 ppm of PCBs 
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(estimated dose <0.01 mg/kg/day).  The Aroclor 1016, 1242, 1254, and 1260 test mixtures contained

PCDD concentrations of 0.6, 0, 20, and 0 ppb, respectively, and PCDF levels of 0.035, 2.9, 23, and

4.9 ppm, respectively.  The Aroclor 1254 was treated for PCDF removal because the level was considered

higher than the acceptable range.  The cleanup procedure removed >99% of the PCDFs, and additionally

reduced the concentration of congener 3,3',4,4',5-pentaCB (PCB 126) by approximately 35%, which was

still about 2 times greater than that of “ordinary” Aroclor 1254.  It was subsequently found that the tested

lot of Aroclor 1254 had been made by a modified procedure that was used only in the final years of

manufacture, and accounted for <1% of the total Aroclor 1254 production for the years 1958–1977 (Frame

1999).

Comprehensive histological examinations were performed on all rats in the high-dose and control groups

at the end of the study (24 months), as well on animals in all groups that died prior to 24 months (Mayes et

al. 1998).  Evaluations of all remaining animals included the liver, brain, mammary gland, thyroid (males

only), and gross lesions.  Statistically significantly increased tumor incidences were found in the liver and

thyroid, while significant decreases occurred in the mammary gland.  The response in the liver was both

Aroclor- and sex-dependent (much greater in females than males), consisted primarily of benign

hepatocellular adenomas and, for females, increased with dose and followed the general incidence pattern

of Aroclor 1254 > Aroclor 1260 . Aroclor 1242 > Aroclor 1016.  For females exposed to Aroclor 1254,

percentages with liver tumors were statistically significantly (p#0.05 or p#0.01) increased as follows: 

hepatocellular adenomas in all dose groups at 1.4, 2.9, and 6.1 mg/kg/day (36, 52, and 54%, respectively,

vs. 1% in controls), hepatocellular carcinomas in the middle- and high-dose groups (8 and 12%,

respectively, vs. 0%), and hepatocholangiomas in the middle-dose group (12 vs. 4%).  For females

exposed to Aroclor 1260, hepatocellular adenomas were significantly increased in all dose groups at 1.4,

2.8, and 5.8 mg/kg/day (18, 20, and 42%, respectively, vs. 1% in controls), and hepatocellular carcinomas

and hepatocholangiomas were increased at the high dose (10 and 6%, respectively, vs. 0% in controls). 

For females exposed to Aroclor 1242, hepatocellular adenomas were increased in both dose groups at

2.8 and 5.7 mg/kg/day (20 and 24%, respectively, vs. 1% in controls).  For females exposed to

Aroclor 1016, hepatocellular adenomas were increased in the middle- and high-dose groups at 5.4 and

11.2 mg/kg/day (10 and 10%, respectively, vs. 0% in controls).  In males, liver tumor responses were

nonsignificant (p>0.05) in all groups except for increased hepatocellular adenomas at the highest dose

(4.1 mg/kg/day) of Aroclor 1260 (14 vs. 4% in controls).  The liver neoplasms did not adversely affect

survival rates in any of the Aroclor-exposed groups.
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Thyroid follicular cell adenomas were significantly (p#0.05 or p#0.01) increased in male rats in a non-

dose-related and non-Aroclor-related manner (Mayes et al. 1998).  Increased percentages of males with

follicular cell adenomas were induced by Aroclor 1242 in both dose groups at 2.0 and 4.0 mg/kg/day

(10 and 10%, respectively, vs. 1% in controls), Aroclor 1254 in all dose groups at 1.0, 2.0, and

4.3 mg/kg/day (12, 8, and 10%, respectively, vs. 1%), and Aroclor 1260 in the low and middle-dose

groups at 1.0 and 2.0 mg/kg/day (12 and 8%, respectively, vs. 1%).  The morphologic appearance of the

thyroid tumors were reported to be characteristic of those that developed as a secondary response to

chronic overstimulation by thyroid-stimulating hormone.  The incidence of spontaneous mammary gland

tumors (fibroadenoma, adenoma, and/or adenocarcinoma) in females was statistically significantly

decreased by Aroclor 1254 at the high dose of 6.1 mg/kg/day (27 vs. 45% in controls), and Aroclor 1260

in the low and middle-dose groups of 1.4 and 2.8 mg/kg/day (35 and 36%, respectively, vs. 45% in

controls).  Additionally, statistically significant negative trends (p#0.05) for total mammary tumors

occurred for Aroclors 1242, 1254, and 1260.

Oral carcinogenicity evaluations of commercial PCB mixtures in mice are limited to two less-than-lifetime

studies that did not examine tissues other than liver (Ito et al. 1973; Kimbrough and Linder 1974). 

Incidences of benign hepatomas were statistically significantly increased in male Balb/cJ mice fed an

estimated dose of 49.8 mg/kg/day Aroclor 1254 (purity not reported) for 11 months, but not in mice

similarly treated for 6 months followed by a 5-month recovery period (Kimbrough and Linder 1974).  The

hepatoma incidences were 0% in two control groups (0 of 34 and 0 of 24), 45.5% (10 of 22) in the

11-month exposure group, and 4.2% (1 of 24) in the 6-month exposure group.  No malignant tumors were

observed, but the investigators noted that the tested mouse strain only rarely develops hepatomas

spontaneously and considered the hepatomas to be potentially malignant.  Additionally, adenofibrosis

occurred in all of the 22 mice treated for 11 months.  

Liver nodular hyperplasia and hepatocellular carcinomas were found in 58.3% (7 of 12) and 41.7% (5 of

12) of dd strain mice, respectively, that were fed an estimated dose of 65 mg/kg/day Kanechlor 500

(52–54% chlorine by weight, purity not reported) for 32 weeks (Ito et al. 1973).  Neither of these

incidences was significantly increased compared to control values of 0% (0 of 6), but the statistical power

of this study is low due to the small number of animals, relatively short treatment duration, and no

posttreatment observation period.  Proliferative liver lesions were not observed in mice fed lower doses

(32.5 or 13 mg/kg/day) of Kanechlor 500, or in mice similarly exposed to the lower chlorinated mixtures

Kanechlor 400 (48% chlorine by weight) or Kanechlor 300 (40–42% chlorine by weight) at estimated
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dietary doses of #65 mg/kg/day for 32 weeks.  Limitations of this study include small numbers of animals,

relatively short treatment period, and no observation period following treatment.

The EPA has derived cancer potency estimates for oral exposure to PCBs (Cogliano 1998; EPA 1996c,

2000a).  Based on rat liver tumor incidence data for Aroclors 1260, 1254, 1242, and 1016 from the Mayes

et al. (1998)/General Electric Co. (1997a, 1997b) study and Aroclor 1260 from the Norback and Weltman

(1985) study, a range of upper-bound slope factors were calculated to represent the potency of

representative classes of environmental PCB mixtures.  A three-category approach is used that considers

how environmental processes (partitioning, chemical transformation, and bioaccumulation) affect each

exposure pathway or situation by altering the composition and cancer potential of the original PCB

mixtures.  The highest slope factor (2.0 per [mg/kg]/day) is for the high risk and persistent category, which

is used for pathways in which environmental processes are likely to increase risk, such as food chain

exposure, sediment or soil ingestion, dust or aerosol inhalation, and exposure to dioxin-like, tumor-

promoting, or persistent congeners.  Due to the potential for higher sensitivity in early life, the highest

slope factor is also used for all early-life exposures.  An intermediate slope factor (0.4 per [mg/kg]/day) is

used for the low risk and persistence category, which is appropriate for exposure pathways in which

environmental processes tend to decrease risk, such as drinking water ingestion of water soluble

congeners, inhalation of evaporated congeners, and dermal exposure (because PCBs are incompletely

absorbed through the skin).  The lowest slope factor (0.07 per [mg/kg]/day) applies to the lowest risk and

persistence category, and is used when congener or homologue analyses of an environmental mixture

verify that congeners with more than four chlorines comprise <0.5% of total PCBs, as well as the absence

of dioxin-like, tumor-promoting, and persistent congeners.  For the upper slope factor of

2 per (mg/kg)/day, doses corresponding to risk levels ranging from 10-4 to 10-7 are 5x10-5 to

5x10-8 mg/kg/day, respectively, as indicated in Figure 3-2.

Tumor Promotion Studies.  It is well documented that orally administered commercial PCB mixtures

can promote tumors in the liver (hepatocellular carcinomas, adenomas, and neoplastic nodules) and lung

(alveologenic adenomas) of rats and mice following initiation with carcinogens such as

N,N’-dimethylnitrosamine (DMNA), N,N’-diethylnitrosamine, N-ethyl-N’-hydroxyethylnitrosoamine,

hexachlorocyclohexanes, 2-acetylaminofluorene, and 3'-methyl-4-dimethylaminoazobenzene (Anderson

et al. 1986, 1991, 1994; Beebe et al. 1993; Buchmann et al. 1991; Hirose et al. 1981; Ito et al. 1973;

Kimura et al. 1976; Nishizumi 1976; Preston et al. 1981; Silberhorn et al. 1990; Tatematsu et al. 1979 ). 

These studies typically administered the tumor initiator with a proliferative stimulus (e.g., hepatotoxic
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dose, partial hepatectomy, or neonatal administration) and showed effects using higher chlorinated PCB

mixtures (>50% chlorine by weight, particularly Aroclors 1254 and Kanechlor 500) as the promoter.

The promoting activity of PCBs is also indicated by short-term assays in which orally administered

commercial mixtures or single congeners promoted development of putative preneoplastic lesions in rat

liver following induction by various initiators (Anderson et al. 1991; Buchmann et al. 1991; Deml and

Oesterle 1982, 1987; Deml et al. 1983; Hemming et al. 1993; Laib et al. 1991; Oesterle and Deml 1983,

1984; Pereira et al. 1982; Preston et al. 1985; Rose et al. 1985; Sargent et al. 1991; Silberhorn et al.

1990).  Enzyme-altered hepatic foci, identified by alterations in adenosine triphosphatase (ATPase),

GGT, or placental glutathione S-transferase (PGST) activity, were used as markers of promoting

activity.  The commercial PCBs showing promotion in these studies were usually the higher-chlorinated

mixtures Aroclor 1254 or Clophen A50.  The congener studies have shown promoting activity with non-

ortho PCBs such as PCB 77 and PCB 126; mono-ortho-substituted PCBs such as PCB 105 and

PCB 114, and di-ortho PCBs such as PCBs 47, 49, and 153.  Although structurally diverse congeners

show promoting activity, the co-planar PCBs appear to be most effective.  Additional information on

tumor promotion by PCBs is discussed in Section 3.5.2 (Mechanisms of Toxicity).

3.2.8.3.3  Dermal Exposure

Dermal carcinogenicity studies of PCBs consist of skin tumor initiation and promotion assays.  A single

dose of 0.1 mg of Aroclor 1254 (purity not reported) showed no conclusive initiator activity when

applied to the shaved skin of female CD-1 mice followed by promotion with the phorbol ester

12-O-tetradecanoylphorbol-13-acetate (TPA) twice weekly for 32 weeks (DiGiovanni et al. 1977).  The

finding is inconclusive due to low skin papilloma incidence and lack of control mice treated with TPA

alone.  Aroclor 1254 (purity not reported) was not a skin tumor promoter when applied to the shaved

skin of female CD-1 mice (0.1 mg/mouse, twice weekly for 30 weeks) that were initiated with dimethyl-

benzanthracene (DMBA) (Berry et al. 1978, 1979), or to female HRS/J hairless mice (1 mg/mouse, twice

weekly for 20 weeks) that were initiated with N-methyl-NN-nitro-N-nitrosoguanidine (MNNG) (Poland

et al. 1983).  These results must be interpreted with caution since only one dose level of Aroclor 1254

was tested, and the doses may have been too low, as indicated by slight, although not statistically

significant, promotion in the Poland et al. (1983) study.  The initiation and promotion studies tested

sufficient numbers of animals and, except as noted above, included positive and negative control groups. 

Pretreatment with a single topical dose of 0.1 mg of Aroclor 1254 inhibited skin tumor initiation by

DMBA in female CD-1 mice by as much as 45% (Berry et al. 1979).
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3.2.8.3.4  Evaluation of Animal Studies

The carcinogenicity of several commercial PCB mixtures has been evaluated in a number of chronic oral

bioassays in rats.  The most comprehensive and adequately performed study compared Aroclors 1016,

1242, 1254, and 1260 and found that all four mixtures induced liver tumors when fed to female Sprague-

Dawley rats (General Electric Co. 1997a, 1997b; Mayes et al. 1998).  Aroclor 1260 also induced liver

tumors in male rats.  The liver response was both Aroclor- and sex-dependent (much greater in females

than males), consisted primarily of benign hepatocellular adenomas and, in females, increased with dose

in the general potency pattern of Aroclor 1254 > Aroclor 1260 . Aroclor 1242 > Aroclor 1016. 

Previous lifetime dietary exposure studies found that commercial mixtures with 60% chlorine content

(Aroclor 1260 and Clophen A60) induced liver tumors in three strains of rats (Kimbrough et al. 1975;

Moore et al. 1994; Norback and Weltman 1985; Schaeffer et al. 1984), with indications of a sex-

dependent  response (stronger in females) in one of these studies (Norback and Weltman 1985).  Many

of the rat liver tumors were benign, although sequential morphologic analyses demonstrated the eventual

progression of the benign liver lesions to malignant carcinomas (Norback and Weltman 1985).  Lifetime

carcinogenicity tests of commercial PCB mixtures containing <60% chlorine were performed in only a

few studies prior to the Mayes et al. (1998) bioassay.  Liver tumors were reportedly induced by

Aroclor 1254 in Fischer 344 rats (NCI 1978; Ward 1985) and a 42% chlorine mixture (Clophen A30) in

Wistar rats (Schaeffer et al. 1984), but re-evaluation of these studies using current diagnostic criteria

showed no statistically significant increases in tumor incidences or clear sensitivity differences in tumor

responses between males and females.  The chronic rat studies provide a limited amount of evidence for

neoplastic or preneoplastic changes in tissues other than the liver.  Incidences of preneoplastic lesions in

the biliary tract were increased in both sexes by exposure to Aroclor 1260 (Norback and Weltman 1985),

although the response was greater in females.  There was a suggestive indication of Aroclor 1254-

induced precancerous intestinal metaplasia and adenocarcinomas in the stomach of rats in one study

(Morgan et al. 1981; NCI 1978; Ward 1985).  The preneoplastic lesions in the biliary tract and stomach

have not been reported in other studies, particularly Mayes et al. (1998).  Statistically significant

increases in thyroid gland follicular cell adenomas were induced by Aroclors 1242, 1254, and 1260 in

males, but not females (Mayes et al. 1998).   

The oral carcinogenicity of commercial PCB mixtures has also been tested in mice, but these studies are

limited by intermediate-duration exposures, lack of postexposure observation, and histological

examinations that were limited to the liver.  These studies generally indicate that less-than-lifetime dietary 



3.  HEALTH EFFECTS - Wildlife

PCBs 284

exposure to commercial mixtures with 42–60% chlorine induced precancerous liver lesions (Ito et al.

1973; Kimbrough and Linder 1974; Kimbrough et al. 1972).   

It is well documented that oral exposure to commercial PCBs and single congeners can promote

preneoplastic lesions and tumors in the liver and lung of rats and mice following initiation with other

carcinogens (Anderson et al. 1986, 1991, 1994; Beebe et al. 1993; Buchmann et al. 1991; Deml and

Oesterle 1982, 1987; Deml et al. 1983; Hemming et al. 1993; Hirose et al. 1981; Ito et al. 1973; Kimura et

al. 1976; Laib et al. 1991; Nishizumi 1976; Oesterle and Deml 1983, 1984; Pereira et al. 1982;  Preston et

al. 1981, 1985; Rose et al. 1985; Sargent et al. 1991; Silberhorn et al. 1990; Tatematsu et al. 1979).  The

commercial PCBs showing promotion in these studies were usually the higher-chlorinated mixtures such

as Aroclor 1254.  Congeners showing promoting activity are structurally diverse, although the co-planar

PCBs appear to be most effective.

Several studies in which relatively low doses (0.1 mg/mouse) of Aroclor 1254 were applied to the skin of

mice showed no conclusive initiation or promotion activity (Berry et al. 1978, 1979; DiGiovanni et al.

1977; Poland et al. 1983).  Studies corroborating these findings on skin tumor initiation, promotion, and

inhibition or evaluating the carcinogenicity of PCBs applied to the skin without initiators or promoters

have not been performed.

Before the comprehensive four-Aroclor comparative carcinogenicity study was conducted by Mayes et al.

(1998), only commercial PCBs mixtures with 60% chlorine had been adequately tested, and there was

controversy about whether mixtures with lower chlorine content were carcinogenic.  The liver and thyroid

tumor results of the Mayes et al. (1998) rat study, in addition to confirming the carcinogenicity of higher

chlorinated PCBs, provide compelling evidence that all commercial PCB mixtures can cause cancer in

animals.  The sufficiency of the evidence of carcinogenicity of PCBs in animals is recognized by both

EPA (Cogliano 1998; IRIS 2000) and IARC (1987).

3.3 HEALTH EFFECTS IN WILDLIFE POTENTIALLY RELEVANT TO HUMAN HEALTH 
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3.3.1 Overview

The EPA’s final rule strictly limiting the manufacture, processing, distribution, and use of PCBs under

Section 6(e) of the Toxic Substances Control Act was promulgated in 1979 (EPA 1979a).  A technical

support document for the EPA rule was comprised primarily of a draft environmental impact statement

that outlined the significance of the release of PCBs into the environment from both human and wildlife

health perspectives (EPA 1978c).  Health effects in wildlife that were cited in the support document

included the following: mortality in piscivorous birds; reproductive impairment in monkeys, minks, ring

doves, and American kestrels; immunotoxicity in monkeys and birds; and endocrine and neurobehavioral

effects in birds.  A variety of other health effects have since been evaluated in wildlife, some of which

may be relevant to human health.  Environmental monitoring studies have shown that PCBs are highly

persistent in the environment (see Section 6.3, Environmental Fate), and therefore continue to present a

potential health hazard to humans.  

Wildlife may be regarded as sentinels for human health.  Wildlife sentinel species data may be used for

several purposes related to exposure and hazard assessment (NRC 1991; van der Schalie et al. 1999),

including the following: (1) provide additional weight of evidence in a human health risk assessment;

(2) act as an early warning for potential effects in humans (e.g., by identifying new locations of potential

concern for human health, or identifying new end points of potential human concern not previously

observed in experimental animal studies); (3) suggest potential cause-and-effect relationships for further

study; (4) investigate the bioavailability of contaminants from environmental media; and (5) monitor

contamination in the food web, such as during the course of remedial actions.  Reviews of public health

considerations regarding toxic substances (including PCBs) in the Great Lakes region have incorporated

effects in wildlife in a weight-of-evidence analysis of the potential for detrimental effects in humans in

the region, particularly in human populations that rely heavily on Great Lakes fish for their dietary

protein (Johnson et al. 1998b, 1999).

The purpose of this section is to provide a qualitative synopsis of health effects in wildlife to address the

potential concern that effects observed in wildlife that are attributable to PCB exposure may also occur in

humans, and to highlight information in the wildlife database that contributes to the weight of evidence

supporting the critical effects that form the basis for the chronic- and intermediate-duration oral MRLs.
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A hazard identification table (Table 3-6) is provided to quickly scan the wildlife database for taxa or

categories of toxicological end points that are of particular interest.  Since Table 3-6 is intended for

hazard identification, data concerning effects from parenteral exposures were included, as well as oral,

inhalation, and dermal routes that are more directly relevant to human environmental exposures. 

Table 3-6 distinguishes between correlational evidence from field observations and experimental

evidence.  Correlational evidence from field studies inherently has multiple sources of uncertainty, many

of which are controlled in experimental studies.  Observations that indicate a positive relation between

environmental PCB exposure (sometimes represented by PCB concentration in tissue) and an adverse

health effect in free-ranging wildlife are represented in Table 3-6 as correlational field observations. 

Effects that were observed in experimental studies under controlled or closely monitored exposure

conditions were included in the table as experimental observations.  However, no entry was made in

Table 3-6 for responses that were reported in an experimental study to be equivocal, ambiguous, or not

statistically significant.

Several reviews of the PCB ecotoxicological literature (e.g., DOI 1986, 1996; Hansen 1987b; Safe 1994;

WHO 1993) provided much of the information included in this section.  Information contained in the

reviews was supplemented by individual studies that were not otherwise represented, such as more recent

studies.  The number of sources identified for an individual Table 3-6 entry does not necessarily reflect

the number of studies showing that effect for the following reasons: (1) several reviews may have

reported the same results from a single study, or (2) a single source document may report effects in

multiple studies, but the source is represented only once for a given entry.  Information included in

Table 3-6 was limited to effects in fish and birds, and in mammals that had not been bred to reduce

genetic variability (e.g., Table 3-6 includes data on monkeys and minks, but excludes data on laboratory-

bred strains of rats, mice, rabbits, etc.).  No data concerning effects in fungi, invertebrates, microbes, or

terrestrial or aquatic plants were included.  Among the classes of organisms represented in Table 3-6,

mustelids (primarily minks and ferrets), galliform birds (primarily domestic fowl and quail), and

freshwater fish were the most frequently studied (see Table 3-6).  End points that received the most

attention in the wildlife toxicology literature on PCBs were mortality, reproductive, developmental, and

endocrine effects, and enzyme induction.  Additional categories of end points that were relatively

frequently addressed were immunological, neurological/behavioral, and hepatic effects.  Most of the

toxicological information represented in Table 3-6 was derived from experimental studies, but the focus

of some experiments was influenced by observations in earlier field studies of correlations between levels

of environmental PCBs and the occurrence and/or severity of toxicological effects in wildlife.
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Table 3-6.  PCB Hazard Identification in Wildlife

Wild mammals Birds Reptiles Amphibians Fish

Adverse biological
effect Primate Mustelid

Cetacean,
pinniped Other Piscivore Galliform Other Turtle Frog Toad Freshwater Marine

Mortality OE1
5 OE1

4,5,26,32

OE3
4,25,28,32

OE4
4

OE3
4 OE3

4 OE1
5

OE3
4,7,32

OE3
4,32 OE1

27

OE3
32

OE1
9

OE3
9,32

OE1
5,28

OE2
5

OE3
4,32

OE3
4

Systemic effects

Respiratory OE4
13 OE3

32 OE3
32

Cardiovascular OE3
32

OE4
24

OC4
2 OE3

32

Gastrointestinal OE1
5

OE3
4

OE1
5 OC4

2 OE3
28

Hematological OE4
13 OE3

4,32

Musculo-skeletal OE3
32 OE3

4,32

Hepatic OE3
4,28 OE1

5

OE3
19,28

OE4
13,24

OE5
4,5

OE3
4 OE1

5

OE2
5

OE3
10,28,32

OE5
4

OE1
5

OE3
4

OE3
4,32 OE3

32

Renal OE4
24 OC4

2 OE3
28 OE3

32

Endocrine OE3
28 OE3

32

OE4
19,24,30

OE5
5

OE3
10

OE4
3,32

OC4
2,23

OE3
28,32

OC4
3

OE3
32 OE1

4,5,7,32

OE3
28,32

OE3
4,10 OE3

3,32

Dermal/
    ocular

OE1
5

OE3
4,5,28

OE3
32 OC4

2 OE3
32

Body weight OE1
5

OE3
5,28

OE1
5,32

OE3
5,28,32

OE2
5 OE1

5 OE3
10 OE3

4,32

Metabolic OE5
5 OE1

4,32 OE3
9 OE3

4,32
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Table 3-6.  PCB Hazard Identification in Wildlife (continued)

Wild mammals Birds Reptiles Amphibians Fish

Adverse biological
effect Primate Mustelid

Cetacean,
pinniped Other Piscivore Galliform Other Turtle Frog Toad Freshwater Marine

Enzyme induction OE1
5

OE3
28

OE4
29

OE5
5

OE1
5,13,28,32

OE2
5,32

OE3
5,10,28,32

OE1
5

OE2
5

OE3
4

OE1
5

OE3
5

OC4
10

Blood chemistry OE1
5 OE5

5 OE3
28 OE1

4 OE3
4,32

Immunological/
lymphoreticular

OE1
5

OE3
28

OE4
13,24 OE4

16

OC4
3,10,20

OC4
31 OE1

5

OE3
32

OE1
5

OE3
32

OE3
18,32 OE3

10

Neurological/
behavioral

OE2
7

OE3
5,7,10,16,28

OE2
10

OE4
13,24

OE3
4 OE3

7,32 OE3
4,10,32 OE2

5

OE3
4

OE3
32

Reproductive OE3
4,5,10,28 OE1

4

OE3
1,4,5,10,25,27,32

OE4
4,12,17,24,26,32

OE5
32

OC4
7,11

OC4
2,3,10,32

OE4
3,32

OE3
10,32 OC4

3,21 OE3
4,28,32 OE1

5

OE3
4,10,28

OC4
3 OE3

10,32

OC4
4

OE3
28,32

OC4
4

Developmental OE3
4,5,7,10 OE3

6,25,32,34

OE4
12,24

OE3
10 OE1

5

OC1
7

OC4
10,32

OE1
4,5,10

OE3
10,32

OE4
3 OE1

27

OE3
9

OE1
9

OE3
9

OE3
32

OC4
32

Egg shell Not relevant for wild mammals OC4
4 OE3

32 OE3
5

OC4
4

Not relevant for amphibians or fish

Genotoxic OE3
4

Cancer No cancer data



Entry: Effect Code 
O = effect was observed, as reported in the source document.
Blank = effect was either not evaluated, or evaluated but not observed (including equivocal, ambiguous, or not statistically significant responses)

Subscript:  Observation Type
E = experimental observation
C = correlational field observation

PCB Exposure
1 = dioxin-like PCB congener (AhR binder; planar; chlorine para-substituted and non- or mono-ortho-substituted)
2 = non-dioxin-like PCB congener (poorly binds to AhR; non-planar; chlorine di-, tri-, or quatro-ortho-substituted)
3 = commercial PCB mixture (e.g., Aroclor 1016)
4 = “weathered” (i.e., environmentally degraded and/or metabolized) PCB mixture, usually in combination with other chemicals (e.g., PCBs in wild-caught fish)
5 = unspecified PCB

Superscript: Source Documents (including reviews of PCB toxicity in wildlife and experimental studies not otherwise represented)
1 = Backlin et al. 1998b
2 = Bergman and Olsson 1985
3 = Crisp et al. 1998
4 = DOI 1986
5 = DOI 1996
6 = EPA 1980f
7 = Giesy and Kannon 1998
8 = Geisy et al. 1994
9 = Gutleb et al. 1999
10 = Hansen 1987b
11 = Harding et al. 1999
12 = Heaton et al. 1995a
13 = Heaton et al. 1995b
14 = Hornung et al. 1998
15 = Jarman et al. 1996
16 = Johnson et al. 1998
17 = Johnson et al. 1999

18 = Jones et al. 1979
19 = Käkelä et al. 1999
20 = Kannan et al. 1993
21 = Murk et al. 1996
22 = Nisbet et al. 1996
23 = Olsson et al. 1994
24 = Restum et al. 1998
25 = Ringer et al. 1991
26 = Risebrough 1999
27 = Rosenshield et al. 1999
28 = Safe 1994
29 = Shipp et al. 1998a
30 = Shipp et al. 1998b
31 = van der Schalie et al. 1999
32 = WHO 1993
33 = Wren et al. 1987a
34 = Wren et al. 1987b
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There is some question as to the relevance of experimental studies in wildlife using single congeners or

well-described commercial mixtures to situations involving environmental exposures of free-ranging

wildlife to weathered PCBs (i.e., PCB mixtures in environmental media, such as the water column or

animal tissues, that have undergone selective environmental degradation, bioaccumulation, and/or

metabolism of component PCB congeners).  Reviews (Giesy et al. 1994; WHO 1993) identified the

following difficulties in extrapolating from toxicity observed in wildlife experimental studies to effects

expected in wildlife in the environment: (1) most of the experimental studies in fish and wildlife tested

the effects of commercial mixtures of PCBs, so the identity of the particular components (or interactive

sets of components) that caused the effects is not generally known; (2) tests were generally conducted in

environmentally unrealistic conditions; (3) because of differences between congeners in environmental

fate, bioaccumulative potential, and species-specific degree of metabolism, weathered mixtures of PCBs

in various environmental compartments (e.g., the water column and animal tissues) frequently bear little

resemblance to the original commercial mixture that was released into the environment; (4) PCB exposure

in the environment invariably involves co-exposure to other pollutants that may interact to produce

effects that were not observed under experimental conditions.  For example, among mink studies,

weathered total PCBs in fish were found to be more potent than commercial PCB mixtures, possibly

because the weathering process selectively removed the less toxic congeners or possibly because of

interactions with other contaminants (Giesy and Kannan 1998; Giesy et al. 1994).

3.3.2 Health Effects in Wildlife

Biological responses in wildlife to exposures to individual PCB congeners and commercial PCB mixtures

varied widely, possibly reflecting not only variability in susceptibility among species, but also differences

in mechanism of action or selective metabolism of individual congeners (DOI 1986, 1996; WHO 1993). 

More highly chlorinated congeners tend to bioaccumulate most readily, and PCBs tend to biomagnify in

the food chain, reaching relatively high, toxic concentrations at higher trophic levels, such as in

piscivorous birds (e.g., gulls, terns, and cormorants) and mammals (e.g., minks, otters, seals, and sea

lions) (EPA 1978c; WHO 1993).  It is generally accepted that dioxin-like PCB congeners (i.e., those that

can assume a planar configuration and exhibit high affinity for the Ah receptor) are more potent toxicants

than other congeners (i.e., those with multiple chlorine substitution in ring positions 2 and 6) (DOI 1996;

Giesy and Kannon 1998; Giesy et al. 1994).  Of interest is the observation that the patterns of toxicities in

seals may be changing with apparent decreasing global burdens; certain pathological changes are now

more closely associated with methyl sulfonyl metabolites of DDE and PCBs than with parent coplanar

PCBs (Olsson et al. 1994).  Reproductive effects in birds and piscivorous mammals appear to be Ah
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receptor-mediated, since planar, dioxin-like PCB congeners are more effective in inducing these effects

than non-dioxin-like congeners (Giesy and Kannan 1998).  In a comprehensive review of the literature

concerning the ecotoxicology of planar PCBs, DOI (1996) concluded that the chinook salmon, domestic

chicken, mink, and Rhesus macaque were among the most sensitive species to effects from planar PCB

exposure. 

In aquatic organisms including fish, PCB toxicity was enhanced by flow-through experimental conditions

as compared to static exposure conditions, and commercial Aroclor mixtures with moderate chlorine

content were generally more toxic than commercial mixtures with low or high percentage chlorination

(WHO 1993).  Fish in early life stages were more vulnerable than adults to PCB toxicity (WHO 1993).  In

birds, acute toxicity in experiments was generally positively related to degree of chlorination of the

commercial mixture (WHO 1993).  Avian reproduction was impaired primarily due to decreased egg

hatchability and increased embryotoxicity (WHO 1993).  Available evidence indicates that PCBs do not

directly affect egg shell thickness in birds, but may indirectly affect egg shells by decreasing food

consumption and thereby reducing body weight (WHO 1993).  PCBs are ubiquitous and continuously

circulating in the global environment, and appear to be gradually redistributing toward the marine

environment (WHO 1993).  For this reason, and because marine mammals are near the top of the food

chain, piscivorous marine mammals are regarded as potentially the most sensitive wildlife receptors to

PCB exposure (DOI 1996; WHO 1993).  Field studies suggested, and subsequent experimental studies

confirmed, that accumulated PCBs impair pinniped (e.g., seals and sea lions) reproduction by preventing

implantation of the embryo; whether this effect is caused by endocrine disruption remains unresolved

(WHO 1993).  The endocrine disruptive potential of PCBs and other persistent and bioaccumulative

pollutants has been critically reviewed in the literature (e.g., Crisp et al. 1998; DeRosa et al. 1998;

Risebrough 1999); the wildlife toxicology database summarized in Table 3-6 indicates that PCBs have

induced endocrine-related effects in a variety of taxa.

Of particular interest are PCB-induced effects in wildlife that contribute to the weight of evidence

supporting the oral MRL derivations, including neurological/behavioral, immunological, and dermal

effects.  The intermediate-duration MRL is based on neurodevelopmental alterations in infant Rhesus

monkeys that were postnatally fed a constituted mixture of PCB congeners analogous to those found in

human breast milk.  The chronic-duration MRL is based on immunological and dermal/ocular effects in

Rhesus monkeys resulting from long-term oral exposure to Aroclor 1254 (see Section 2.3, Relevance to

Public Health and Appendix A for further details concerning MRL rationale and derivations).  Effects that
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occurred in monkeys at doses proximate to the LOAELs used to derive the MRLs included decreased

conception and fetal mortality. 

Effects in wildlife that are potentially related to neurological impairment included alterations in central

nervous system neurotransmitter levels, retarded learning, increased activity, and behavioral changes. 

Significantly reduced dopamine levels were observed in certain regions of the brain in adult pigtailed

macaques provided Aroclor 1016 or Aroclor 1260 orally at 0.8, 1.6, or 3.2 mg/kg/day for 20 weeks;

reduced dopamine levels persisted after termination of exposure (Geisy and Kannon 1998; Safe 1994). 

Offspring of Rhesus monkeys provided Aroclor 1248 in the diet at 0.5–2.5 mg/kg before and during

gestation showed hyperactivity and other behavioral deficits (Geisy and Kannon 1998; Hansen 1987). 

“Long-term neurobehavioral changes” were seen in monkeys provided an unspecified PCB mixture (DOI

1996).  Two-and-a-half and 5-year-old monkeys exhibited retarded learning and inefficient response

behavior following a 20-week oral exposure to a PCB mixture immediately after birth (Johnson et al.

1998).  Similarly, retarded learning, increased locomotor activity, impaired discrimination reversal

learning, and increased hyperactivity were observed in monkeys provided Aroclor 1248 for an

unspecified duration (Safe 1994).  Brain catecholamine levels were altered in minks exposed (by an

unreported route and duration) to PCB 136 (Hansen 1987).  Minks provided diets of carp containing

weathered PCBs for up to 182 days showed listlessness and nervousness, as well as anorexia, hindlimb

paralysis, and sporadic seizures prior to death (Heaton et al. 1995b).  Brain weight was significantly

reduced in F1 adult female minks exposed to weathered PCBs (in carp) in utero, during lactation, and

through the diet until 1.5–14 months postpartum (Restum et al. 1998).  Significantly reduced sleeping

times were observed in white-footed mice and raccoons provided diets containing 25–100 ppm

Aroclor 1254 for up to 3 weeks (DOI 1986). 

Suppressed avoidance response was observed in Japanese quail fed a diet containing 200 µg

Aroclor 1254/g diet for 8 days (Geisy and Kannon 1998).  Doves provided an unspecified Aroclor

mixture showed altered brain catecholamine levels (Hansen 1987).  Altered courtship, reproductive, and

nesting behavior were seen in mourning doves at 14–44 days after termination of a 6-week dietary

exposure to up to 40 ppm Aroclor 1254 (DOI 1986; WHO 1993).  Decreased parental attentiveness was

seen in ring doves provided Aroclor 1254 at 10 mg/kg diet (WHO 1993).  Nest-building activity was

reduced in pigeons orally dosed with 15 mg Aroclor 1254/day by gelatin capsule throughout a courtship

cycle (WHO 1993).  Avoidance response was significantly reduced in Japanese quail following dietary

exposure to 200 ppm Aroclor 1254 (unspecified duration), compared to pre-exposure response levels, and

persisted for 6 days after exposure (WHO 1993).  Increased migratory restlessness was observed in
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European robins and redstarts provided diets of mealworms containing Clophen A50 for 11–13 days

(WHO 1993).

Guppies appeared sluggish and uncoordinated after consuming diets containing up to 150 mg PCB 133 or

PCB 197/kg diet for up to 247 days, or 550–1,400 mg/kg diet for 65 days (DOI 1996).  Poor muscle

coordination, tetany, and lateral or ventral caudal flexion were observed in salmon and trout after 1 week

of dietary exposure to unspecified PCB mixtures (DOI 1986).  Whole-brain noradrenalin amd dopamine

levels were significantly reduced and swimming activity was increased in Gulf killifish exposed to 4 mg

Aroclor 1242/L for 24 hours; increased swimming activity persisted for 2 days after exposure (WHO

1993).  

Positive findings in wild mammals, birds, or fish that contribute to the weight of evidence for

immunological effects included morphological changes in organs related to the immune system, as well as

functional impairment of humoral- and cell-mediated immune responses.  Reduced antibody production

in response to SRBC erythrocyte challenge was observed in monkeys exposed to Aroclor 1254 and

Kanechlor 400 (Safe 1994).  Absolute and relative spleen weights were increased in female minks fed

diets containing 1 ppm total weathered PCBs (in carp) for approximately 6 months compared to a control

group; no such changes were observed in males (Restum et al. 1998).  Increased disease susceptibility in

California sea lions has been positively associated with tissue PCB residue (Hansen 1987b).  Impaired

natural killer cell activity and T-lymphocyte function were observed in harbor seals fed diets of Baltic Sea

herring containing relatively high levels of organochlorine-compounds, including PCBs, compared to

seals fed diets of fish with lower levels of contamination (Johnson et al. 1998).  High blubber PCB levels

(94 to 670 µg/g) were observed in a population of western Mediterranean striped dolphins affected by a

mobillivirus epizootic (Kannan et al. 1993).

In a survey of herring gulls and Caspian terns (piscivorous birds) in the Great Lakes region, suppression

of T-cell-mediated immunity was associated with level of prenatal exposure to unspecified PCBs (van der

Schalie et al. 1999).  Splenic atrophy was observed in groups of cockerels fed diets containing 400 mg/kg

Phenochlor DP6, Clophen A60, or Aroclor 1260 for 60 days (WHO 1993).  PCB-induced atrophy of

lymphoid tissues in chickens and pheasants and increased susceptibility of ducklings to hepatitis virus

have been associated with the immunosuppressive effect of PCBs (WHO 1993).  Thymic involution and

edema were observed in 1-day-old domestic chickens fed diets containing 400 mg/kg PCB 169 for

21 days (DOI 1996).  A lymphoid depletion of the spleen was observed in nestling American kestrels

administered daily oral doses of 50 µg/kg PCB 126 for 10 days (DOI 1996).
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In channel catfish, 100% mortality was observed in an immunized group that was intraperitoneally

injected with 70 mg/kg Aroclor 1232 and then challenged with the virulent bacterium Aeromonas

hydrophila, while an immunized control group had no mortality.  The PCB-treated group also showed

significantly decreased serum β-globulin levels, slightly elevated serum α-globulin levels, and decreased

peritoneal macrophage activity compared to the control group (Jones et al. 1979).  Rainbow trout showed

a reduction in the lymphatic elements of the spleen after dietary exposure to 10 or 100 mg/kg

Aroclor 1254 for 330 days (WHO 1993).  Increased disease susceptibility was observed in pinfish and

spot fish (marine/estuarine species) exposed to Aroclor 1254 at concentrations as low as 0.005 ppm

(Hansen 1987b).

Wildlife findings that contribute to the weight of evidence for dermal/ocular effects include dermal

changes in several taxa.  Dose- and time-dependent increases in chloracne and histological changes in the

sebaceous glands were observed in Rhesus macaques fed diets containing 0.3 to 3.0 ppm PCB 77 for 1 to

6 months (DOI 1996).  Scaly skin, hair loss, and abnormal nail growth were observed in cotton top

marmoset monkeys orally administered 0.1 to 3.0 mg PCB 77/kg body weight twice/week for

18–28 weeks (DOI 1996).  Enlarged, thickened, and deformed toe nails, hyperkeratosis at the junction of

the skin and sponchium, and dysplasia of the root and matrix of the nail were observed in ferrets fed a diet

containing 20 ppm Aroclor 1242 for 8 months; Aroclor 1016 similarly administered did not cause these

effects (WHO 1993).  Bilateral epidermal thinning, hyperkeratosis, cystic dilations of hair follicles, and

deformations and fractures of the claws were observed in grey seals of the Baltic Sea suspected of having

significant exposure to weathered PCBs (Bergman and Olsson 1985).  Flagfish (Jordanella floridae)

exposed to water concentrations of 5.1 and 18 µg Aroclor 1248/L “almost completely lost their fins and

tails”, while sheepshead minnow fry exposed to 0.1–10 µg/L showed increased fin rot (WHO 1993).

Regarding the weight of evidence for reproductive and developmental toxicity, embryo/fetal loss is one

effect among a suite of developmental effects observed repeatedly in Great Lakes wildlife that have been

characterized as the Great Lakes embryo mortality, edema, and deformity syndrome (GLEMEDs

syndrome) (Giesy et al. 1994; Hansen 1987b).  The wildlife database outlined in Table 3-6 includes

observations of increased postimplantation embryo/fetal loss in several taxa (e.g., nonhuman primates and

mustelids), as well as additional effects that may be indicative of PCB-induced embryo/fetal death (e.g.,

reduced egg hatchability in bird and fish eggs, and reduced numbers of live births in mammals).

In summary, the wildlife toxicity database for PCBs summarized in Table 3-6 contributes to the weight of

evidence supporting the critical health effects used in the MRL derivations (i.e., neurological/behavioral,
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immunological, and dermal/ocular effects), as well as other PCB-induced effects that are particularly

relevant to human health (e.g., reproductive and developmental toxicity).

3.4 TOXICOKINETICS

Although most toxicological data reviewed in this profile have been obtained from studies in which PCB

mixtures were used, Section 3.4.3 (Metabolism) in particular, contains descriptions of studies in which

individual PCB congeners were used.  This supplemental information is considered necessary since most

of the current knowledge regarding biotransformation of chlorinated biphenyls in experimental animals

has been derived from such studies.  Table 4-2 lists the IUPAC number of the congeners and the

corresponding chlorine substitution.

Data regarding toxicokinetics of PCBs in humans are limited to information derived from cases of

ingestion of food contaminated with PCBs and cases of occupational exposure by the inhalation and

dermal routes.  Humans can absorb PCBs by the inhalation, oral, and dermal routes of exposure.  PCBs,

when administered orally, are well absorbed by experimental animals, but they are absorbed less

efficiently when administered by the dermal route.  Inhalation absorption data are insufficient for

estimating absorption rates.  In the gastrointestinal tract, PCBs are absorbed on a congener specific basis

by passive diffusion.  A high diffusion gradient and nearly complete absorption occurs when the PCB

level in the gut contents (lipid basis) is much greater than the concentration in serum lipids.  The

predominant PCB carriers in human plasma are in the lipoprotein fraction.  Due to their lipophilic nature,

PCBs, especially the highly chlorinated congeners, tend to accumulate in lipid-rich tissues.  Greater

relative amounts of PCBs are usually found in the liver, adipose, skin, and breast milk.  PCBs are

metabolized by the microsomal monooxygenase system catalyzed by cytochrome P-450 to polar

metabolites that can undergo conjugation with glutathione and glucuronic acid.  State of the art PCB

exposure assessment utilizing human serum, milk, and/or tissues should not only include congener

specific PCB analysis, but also analyze persistent PCB metabolites.  Since certain hydroxylated and

methylsulfonyl (MeSO2) PCB metabolites are present in some cases at levels higher than their respective

parent compounds, it is necessary to further investigate the potential biological and/or toxicological

activities of these persistent metabolites.  The major routes of excretion of PCBs are fecal and, especially

for metabolites, urinary.  Mainly metabolites are found in urine and bile, although small amounts of

parent compound may appear in the feces.  Some PCB congeners are relatively poorly metabolized and

thus can remain in the body for long periods of time (months to years).  A flow-limited pharmacokinetic

model was constructed to describe disposition of some PCB congeners in adults of various animal
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species.  In general, the model predicted the experimental data well, although some deviations were

apparent.  Knowledge of the metabolic rates for PCBs is crucial for meaningful interpretation of data. 

Enzyme induction over long-term occupational and/or environmental exposure can render some PCBs

less persistent in exposed humans than in the general population. 

3.4.1 Absorption

3.4.1.1 Inhalation Exposure

Inhalation exposure is considered to be a major route of occupational exposure to PCBs (Wolff 1985). 

Indirect evidence of absorption of PCBs by this route in humans is based on the fact that individual

congeners have been detected in tissues and body fluids of subjects exposed in occupational settings

where air concentrations have also been measured.  From data summarized by Wolff (1985), a maximum

of 80% of the levels commonly seen in adipose tissue of exposed capacitor workers may have been

absorbed by the inhalation route.  A maximum of 20% would have been derived from dermal or oral

exposure.  Exposure to PCBs in air was positively related to mean serum PCB levels in subjects involved

in clean-up operations following a PCB transformer fire (Fitzgerald et al. 1986); the relative contribution

of the dermal route was not determined.  Duarte-Davidson and Jones (1994) estimated that the average

total background PCB exposure for the contemporary UK population was 0.53 µg/person/day, with food

consumption accounting for 97% of the total PCB exposure, air contributing 3.4%, and water only 0.04%. 

2,4,4'-TriCB (PCB 28) was the most abundant congener detected in air samples and accounted for 3.7%

of the total exposure to this congener.  More highly chlorinated congeners, such as PCB 180 were

detected at lower levels in air, with air borne exposure accounting for only 1.7% of the total daily

exposure to this congener.  Further information regarding tissue levels in occupationally-exposed subjects

can be found in Section 3.4.2.

Information regarding absorption of PCBs in animals following inhalation exposure is limited.  Male rats

were exposed (whole body) to an aerosol of a PCB mixture, Pydraul A200 (42% chlorine), at a

concentration of 30 g/m3 (0.5–3 µm particle diameter) for #2 hours (Benthe et al. 1972).  After a

15-minute exposure, the PCB concentration in the liver was .40 µg/g tissue, and reached a maximum of

70 µg/g after 2 hours of exposure.  These results provide qualitative information regarding absorption of

this specific PCB mixture, but the data were not sufficient for estimating the amount or rate of absorption. 

It must be also mentioned that since exposure was not nose-only, the dermal route may have contributed

to absorption.
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A recent study in ferrets by Apfelbach et al. (1998) reported for the first time that the olfactory system

may be a potentially significant portal for the entry of airborne PCBs.  Ferrets were exposed for 5 years to

low levels of PCBs (total PCBs, 260 ng/m3 air) in the ambient air of an animal care room which had PCB

containing sealants.  Tetra-chlorinated PCBs dominated the congener profile of ambient air, with PCB 52

being found at the highest concentration.  The PCB congener pattern in the olfactory bulbs resembled that

found in the ambient air, with the less chlorinated, more volatile PCBs (52) being retained at the higher

levels.  In contrast, the congener profile in adipose tissue resembles that of most exposed or unexposed

animals, with hexa- and hepta-substituted congeners being the major congeners present.  The olfactory

bulbs of the exposed animals had the highest total PCB concentration (642 ng/g lipids), while the liver,

adipose tissue, and brain had levels of 202, 303, and 170 ng/g lipids, respectively.  The data suggest that

inhaled PCBs pass into the dentrites of olfactory sensory neurons and are transported via olfactory axons

directly to the bulbs where they accumulate.  While the olfactory system appears to be a significant site

for the disposition of airborne PCBs, further studies are needed to confirm this observation and assess

whether greater disposition in the brain is associated with inhalation exposure.

3.4.1.2 Oral Exposure

Oral exposure through consumption of contaminated food is presumed to be the major route of exposure

to PCB mixtures for the general population (Duarte-Davidson and Jones 1994; Hansen 1999).   

Furthermore, oral exposure through ingestion of contaminated water or soil represents a possible

additional source of exposure for populations in the vicinity of hazardous waste sites.  Duarte-Davidson

and Jones (1994) estimated that the average total PCB exposure for the contemporary UK population was

0.53 µg/person/day, with food consumption accounting for 97% of the total PCB exposure, air

contributing 3.4%, and water only 0.04%.  PCB contaminated fish, milk and dairy products, vegetables,

and meat and animal fat were estimated to account for 32, 26, 18, and 16% of the respective exposure. 

The congener pattern for different food products varied, with vegetables accounting for a major part of

the intake of lower chlorinated PCB congeners, while fatty foods, such as fish, dairy products, and meat,

played a greater role with exposure to higher chlorinated congeners.  For example, vegetables accounted

for 78% of the total dietary exposure to PCB 28 and only 0.2% of the exposure to PCB 180.  In contrast,

freshwater fish account for 1.2 and 27% of the total dietary exposure to PCBs 28 and 180, respectively.

Direct evidence of absorption of PCBs in humans after oral exposure was provided in a study in which a

volunteer ingested 329 µg of a 13C-PCB mixture/kg body weight in a single dose dissolved in edible oil

(Buhler et al. 1988).  The PCB mixture, which was prepared by the investigators, contained 54% chlorine
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(mainly penta-, hexa-, and heptachlorobiphenyls).  Use of 13C-PCBs allowed the investigators to

distinguish between the administered PCBs and 12C-PCBs already present in the body from diet or other

exposure.  Blood samples obtained during a period of 260 days after dosing revealed the presence of

mostly penta- and hexachlorobiphenyls and smaller amounts of heptachlorobiphenyls.  From data

presented in the report, it appears that the maximum concentration in blood was reached within 2 days of

dosing (the first time point examined).  Concentrations of PCBs in whole blood declined rapidly, but

strong fluctuations were apparent.  This was attributed to changes in blood lipids, which depended on

factors such as diet, physical activity, and time of day.  Also, additional exposure is also possible since

diet was unrestricted and 12C-PCB was more than the administered 13C-PCB.  The investigators estimated

that an intake of 26 µg/kg of PCB 153 would lead to a total concentration in whole blood of 0.5 ppb

1 month later.

A more recent study in a 19-week-old nursing infant provided quantitative data on absorption

(McLachlan 1993).  Absorption was estimated as the difference between ingestion and the amount of

PCBs found in the feces over a period of 12 days.  The mother was 32 years old and nursing for the first

time.  Several PCB congeners were determined in the milk: 2,2N,4,4N,5-pentaCB (PCB 99),

2,2N,4,4N,5,5N-hexaCB (PCB 153), 2,2N,3,4,4N,5N-hexaCB (PCB 138), and 2,2N,3,4,4N,5,5N-heptaCB

(PCB 180).  The percentage of dose absorbed was estimated at 96–98% after corrections were made for

background levels in the diapers.  Similar results were observed in a group of four nursing infants where

absorption of 56 PCB congeners in milk was measured over two 48-hour periods, 1–3 months apart (Dahl

et al. 1995).  Absorption of the coplanar congeners 126 and 169 was estimated to be from 93 to 100%,

while the absorption of PCB 77 ranged from 71 to 98%.  Absorption of non-coplanar tetra- and higher

chlorinated congeners was from 90–100%, while absorption of trichlorinated congeners was 60–98%.

However, the authors noted that it was difficult to draw conclusions on the absorption of trichlorinated

PCBs due to their low levels and the analytical methodology.  The primipara mother’s milk had the

highest levels of generally all PCBs, and the level in milk generally decreased with months of nursing. 

Absorption of PCBs was unaffected by the age of the infant (1–6 months).

Indirect evidence of absorption results from studies regarding ingestion of contaminated food by the

general population.  Elevated levels of PCBs were found in the serum and breast milk of women who ate

PCB-contaminated fish from Lake Michigan (Schwartz et al. 1983).  Blood levels of PCBs were

positively correlated with the amount of fish consumed.  Two volunteers who consumed a total of

0.181 and 0.128 mg, respectively, of PCBs (mixture of 42, 48, 54, and 60% chlorine content) in

contaminated fish showed a maximum 52–60% increase (2.5–4.0 and 2.3–3.5 ppb) in blood levels of total
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PCBs .5 hours after ingesting the meal (Kuwabara et al. 1979).  The concentration of PCBs in blood

returned to premeal levels 17 hours later.  Levels of PCBs in adipose tissues were not determined.

Schlummer et al. (1998), used a mass balance approach to assess the gastrointestinal absorption of PCBs

from food in seven individuals, 24–81 years of age, with different contaminant body burdens (Table 3-7).  

The net absorption is calculated as the difference between contaminant input with food and contaminant

output with feces, normalized to the contaminant intake.  Positive values in Table 3-7 indicate net

absorption and negative values indicate net excretion, with absorption or excretion expressed as a

percentage of daily intake.  Nearly complete net absorption was observed for PCBs 28, 52, 77, 101, and

126.  Incomplete net absorption and/or net excretion (in older subjects) was observed for PCBs 105, 138,

153, 180, and 202.   In the case of the coplanar PCBs, 77 and 126, the congener specific levels in blood

lipids of the subjects (given in parentheses) were very low and absorption was nearly complete (90% or

greater for PCB 126 in all but two subjects).  In the 76- and 81-year-old subjects, PCB 126 was found at

higher levels in the blood lipids and the estimated net absorption of this congener was 77 and 53%,

respectively.  Net excretion or limited absorption was observed for PCBs 138, 153, and 180 in the three

older subjects which had the highest levels of these congeners in their blood lipids.  Thus, the

gastrointestinal absorption or excretion of PCBs from food in humans is not only congener dependent, but

is directly related to the concentration of a given PCB in blood, or the congener specific body burden.  In

most cases of background dietary exposures to PCBs, the PCB blood level or body burden increases with

the age of the individual.

Table 3-7 illustrates that compounds showing nearly complete net absorption had low levels in the serum

lipids, and for other congeners, there was a trend for decreasing net absorption/increasing net excretion

with increasing congener concentration in serum lipids.  Together, the data support the passive diffusion

model for gastrointestinal absorption, where the concentration of the contaminant in the blood is the

major factor determining absorption.   In addition, the results suggest that the ingestion of highly

contaminated food should result in nearly complete absorption due to the high diffusion gradient

associated with high levels of PCBs in the gut contents.  This may also be the case for the ingestion of

PCB contaminated soil and water near hazardous waste sites.  It should not be assumed that PCB

absorption involves intestinal transfer to the hepatic portal system.  As with fats and other fat-soluble

chemicals, PCBs are most likely absorbed from the gut via lymphatic circulation and consequently avoid

first-pass metabolism in the liver (Hansen 1999).
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Table 3-7.  Net Gastrointestinal Absorption or Excretion of PCBs in Humans
and Dependence on Congener-Specific Blood Lipid Levelsa,b

Gender (age in years)c F(24) M (25) M (28) M (36) M (53) F (76) F (81)

PCB 28d 65 84 85 87 64 89 84
(5.0) (2.8) (1.9) (1.9) (4.5) (7.8) (6.6)

PCB 52 73 82 90 89 69 93 92
(1.52) (1.09) (0.89) (<0.46) (0.75) (1.84) (<0.69)

PCB 77 >91e 83 >90 >90 >82 >93 92
(n.d.)f (n.d.) (n.d.) (n.d.) (0.007) (0.064) (<0.02)

PCB 101 56 81 91 90 48 92 82
(1.50) (1.11) (1.22) (0.78) (1.38) (2.3) (1.43)

PCB 105 78 87 99 90 63 3 61
(2.2) (1.21) (1.65) (0.86) (2.9) (3.2) (5.7)

PCB 126 90 93 95 96 92 77 53
(0.066) (0.068) (0.042) (0.029) (0.082) (0.174) (0.39)

PCB 138 80 72 70 87 6 33 6
(55) (63) (131) (50) (174) (133) (270)

PCB 153 74 60 65 85 -54 31 -42
(89) (135) (230) (84) (410) (250) (600)

PCB 180 83 70 59 82 -41 34 -75
(51) (115) (171) (67) (330) (175) (380)

PCB 202 51 36 2 19 -324 -63 -123
(0.69) (0.97) (2.3) (1.59) (3.4) (1.53) (3.3)

aFrom Schlummer et al. 1998
bNet absorption is calculated as the difference between contaminant input with food and contaminant output with feces, normalized to the contaminant intake
and is expressed as a percentage of the daily intake.  Positive values indicate net absorption and negative values indicate net excretion with absorption or
excretion expressed as a percentage of daily intake.  Congener-specific levels in blood lipids are given in parentheses.  
cM or F = sex of volunteer with age in parentheses
dPCB blood levels: nanograms per gram of blood lipids, shown in parentheses.
e< = values did not exceed three times blank values.
fn.d. = not determined due to detection problems.
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In a related, but much older study, Price et al. (1972) estimated the gastrointestinal absorption efficiency

by monitoring the daily PCB intake through food, and the excretion through feces and urine in 7–9 year

old girls.  They found that 88% of the ingested PCBs were not excreted, and were therefore assumed to be

retained in the body.  This estimate of PCB absorption in young girls is supported by the more

comprehensive, congener specific mass balance study of Schlummer et al. (1998) discussed above.

In experimental animals, the absorption of PCBs by the gastrointestinal tract is well documented;

however, few studies provided quantitative estimates.  In rats, individual congeners (mono- to hexa-

chlorobiphenyls) were readily absorbed when administered by gavage (vehicle not reported) in doses

between 5 and 100 mg/kg (Albro and Fishbein 1972).  Retention was >90% of the administered dose over

a 4-day period, and was apparently dose independent.  No relationship between substitution pattern and

degree of absorption could be established due to the low levels of excretion, although a later study

reported that absorption efficiency decreased in rats as the number of chlorine atoms increased such that

dichlorobiphenyls were absorbed with a 95% efficiency, whereas octachlorobiphenyls had an absorption

efficiency of only 75% (Tanabe et al. 1981).  Results similar to those obtained in rats were reported in

monkeys administered a single dose of 1.5 or 3.0 g Aroclor 1248/kg by gavage (Allen et al. 1974b) and in

ferrets given 0.05 mg 14C-labeled Aroclor 1254 in the food on days 14 and 35 of gestation (Bleavins et al.

1984).  Retention was estimated to be >90% and 85.4% of the administered dose in the monkeys and

ferrets, respectively.  Over 90% of a single dose of 10 mg PCB 105 was absorbed by minks (Klasson-

Wehler et al. 1993).  In mice, absorption of a gavage dose of 8 mg/kg of PCB 52 or 100 mg/kg of PCB 77

was rapid, with serum concentrations increasing 4–7-fold in 30–60 minutes; peak serum concentrations

were achieved .2 hours after dosing (Clevenger et al. 1989).  

Following a single oral dose of 15 mg/kg Aroclor 1254 to 55-kg growing swine, total PCBs reached

maximum blood concentrations (9.8% of dose) in 5 hours (Borchard et al. 1975).  The 11 packed-column

peaks containing multiple congeners were also calculated individually, reaching maximum levels of

8–20% of the dose in 4–8 hours.  In mature ewes receiving 30 mg/kg of the same Aroclor in a single oral

dose, absorption was slower and maximum blood levels of 2.2% of the total PCB dose were achieved in

12 hours (Borchard et al. 1975).  The absorption half-life for total PCBs was 1.13 hours in swine and

3.83 hours in the ruminants.  Maximum blood levels of individual peaks were 3–6 times higher in swine

than in sheep; however, sheep readily eliminated the peak containing mainly 2,3,3N,4N,6-pentaCB so that

maximum blood levels were 11-fold lower in sheep than in swine for this peak (Borchard et al. 1975). 
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In weanling swine administered 15 mg/kg Aroclor 1254 in 7 daily oral doses of 2.14 mg/kg, whole blood

concentrations peaked near 0.3 ppm between 7 and 28 days (Hansen and Welborn 1977).  The

concentration in dissectable backfat was about 15 ppm on day 7 and 10 ppm on day 14; however, the

body composition was determined by noninvasive means so that the actual amount in body fat was

estimated at 70 mg on day 7 and 60 mg on day 14.  The slower decline in amount than in concentration

was due to disproportionate expansion of the fat compartment in these rapidly growing animals (Hansen

and Welborn 1977).  The initial decline of total PCBs in fat was due to rapid clearance of lower

chlorinated peaks and slower distribution of higher chlorinated peaks from centralized fat to the more

peripheral backfat.  Simultaneous studies with individual PCBs demonstrated greater amounts of PCB 52

on days 7 and 14 than of PCB 153 if fat PCB content was calculated on the basis of backfat PCB

concentration.  The total amount of tetrachlorobiphenyl declined linearly through 118 days, but the

amount of hexachlorobiphenyl estimated in total fat based on backfat concentration increased gradually

so that the 118-day amount was only slightly lower than the 7-day amount (Hansen and Welborn 1977). 

Further evidence, although indirect, regarding absorption of PCBs after oral exposure in several species

can be found in studies on tissue distribution of these chemicals, which are presented in Section 3.4.2.2.

3.4.1.3 Dermal Exposure

The dermal route of exposure has been recognized as a significant contributor to the accumulation of

PCBs in adipose tissue of workers in the capacitor manufacturing industry (Maroni et al. 1981a, 1981b;

Smith et al. 1982; Wolff 1985).  For example, it was reported that the concentration of PCBs in wipe

samples from the face and hands of two employees at a private utility company varied from 0.05 to

5 µg/cm2 (Smith et al. 1982).  Assuming 100% dermal absorption into the main body reservoir (10 kg

adipose), Wolff  (1985) estimated that the figure of 5 µg/cm2 would represent 0.2–20% of a 50-µg/g

adipose level, which is commonly seen among capacitor workers.  

In addition to contributing to exposure in occupational settings, the dermal route, through skin contact

with contaminated water or soil, represents a potential route of exposure to PCB mixtures for populations

in the vicinity of hazardous waste sites.

Experimental data on the percutaneous absorption of PCBs in humans is limited to in vitro studies

thatused human cadaver skin (Wester et al. 1990, 1993).  These studies utilized 14C-labeled Aroclor 1242

and 1254 (mixtures containing 42 or 54% chlorine by mass) in soil, mineral oil, and water.  Over a

24-hour period, 2.6, 10, and 43% of the dose was retained in human skin when the Aroclor 1242 was
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formulated in soil, mineral oil, or water, respectively.  Similar results were observed with Aroclor 1254,

with 1.6, 6.4, and 44.3% of the dose retained in human skin, following PCB exposure in a soil, mineral

oil, or water vehicle, respectively.  The in vitro data indicate that PCBs readily enter human skin and are

available for systemic absorption, and that the dosing vehicle has a major role in regulating the relative

retention of PCBs in human skin. 

In a related study, Wester et al. (1990, 1993) assessed the in vivo percutaneous absorption of PCBs in

adult female Rhesus monkeys.  14C-Labeled Aroclor 1242 and 1254 were separately administered iv and

topically to Rhesus monkeys and urinary and fecal excretion of radioactivity was measured for the next

30 days.  Following iv administration, the 30-day cumulative excretion was 55% of the administered dose

(39% urine, 16% feces) for Aroclor 1242 and 27% (7% urine, 20% feces) for Aroclor 1254.  The

percentage of the dose absorbed following topical administration to abdominal skin (after light clipping of

hair) was estimated from the ratio of the total urinary and fecal excretion following topical and iv

administration. Topical administration of Aroclor 1242 in soil, mineral oil, trichlorobenzene, or acetone

resulted in 14, 20, 18, and 21% absorption of the administered dose, respectively.   In contrast to the

above in vitro results with human skin, the vehicle had little effect on the systemic absorption of the PCBs

applied to the skin of monkeys.  This may be due to the uncertain viability of the human skin used in the

in vitro studies and the fact that the in vitro study primarily assessed retention of PCBs in human skin and

could not estimate systemic absorption.

The effectiveness of methods for decontaminating or removing Aroclor 1242 from Rhesus monkey skin

was also investigated by Wester et al. (1990).  Use of soap and water was similar in effectiveness to

washing with trichlorobenzene, mineral oil, or ethanol.  At 15 minutes following dermal exposure, 93%

of the applied dose was removed from skin by washing with soap and water.  At 24 hours following

dermal exposure, only 26% of the dose was removed from skin by washing with soap and water,

suggesting that with time, most of the PCB dose undergoes systemic absorption and/or retention in the

skin.  Thus, washing with soap and water is an effective method for removing PCBs from skin,

particularly when washing immediately following a known dermal exposure.   

Dermal absorption of PCBs has been measured in monkeys and guinea pigs by comparing excretion

following topical administration to excretion following parenteral administration.  Single doses of
14C-labeled PCBs (42% chlorine content) in benzene/hexane were applied to the abdominal skin of four

Rhesus monkeys and to the lightly clipped skin behind the ear of three guinea pigs (Wester et al. 1983). 

To an additional group of three guinea pigs, PCB with 54% chlorine content was applied.  The
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application amount ranged between 4.1 and 19.3 µg/cm2 skin.  The application sites were washed with

water and acetone after 24 hours, and radioactivity was monitored in the urine for several weeks

postdosing.  Absorption efficiency ranged from .15 to 34% of the applied radioactivity in the monkeys

and averaged .33% (42% chlorine) and 56% (54% chlorine) of the applied radioactivity in the guinea

pigs.  Washing the skin immediately after PCB application removed 59% of the applied dose.  However,

only 1% of the applied label from the PCB containing 42% chlorine and 20% of the label from the PCB

containing 54% chlorine could be recovered from the application site when the skin was washed 24 hours

after dosing.  Dermal absorption of PCBs (48% chlorine) has also been demonstrated in rats (Nishizumi

1976); however, quantitative data were not provided.

Dermal penetration rate constants have been measured in male Fischer 344 rats after single 0.4 mg/kg

dermal doses of 14C mono-, di-, tetra-, and hexachlorobiphenyls applied for 48 hours to shaved back skin

(Garner and Matthews 1998).  Congeners used were 4-chlorobiphenyl (PCB 3), 4,4’-dichlorobiphenyl

(PCB 15), 2,2’,4,4’-tetraCB (PCB 47), and 2,2’,4,4’,6,6’-hexaCB (PCB 155).  Penetration rate and degree

of penetration (defined as penetration through the stratum corneum into the viable epidermis) were

inversely related to degree of chlorination.  Rate constants for penetration were 0.14, 0.074, 0.028, and

0.0058 hour-1 for the mono-, di-, tetra-, and hexachlorinated forms, respectively.  Rate constants

correlated strongly with the logarithm of the octanol-water partition coefficient.  Jackson et al. (1993) also

reported a strong inverse correlation between octanol-water partition coefficient estimates and the dermal

absorption of several halogenated aromatic hydrocarbons, including 3,3',4,4'-tetraCB (PCB 77). 

Cumulative penetration at 48 hours was near 100% for the mono-, 95% for the di-, 75% for the tetra-, and

30% for the hexachlorinated forms.  Absorption of the tetra- and hexachlorinated forms continued after

washing the site with acetone at 48 hours, indicating that the viable epidermis served as a reservoir for

these higher chlorinated forms.  The rate of systemic absorption of radioactivity was kinetically complex

and not a first-order process like penetration into the skin.  This may be due to metabolism and

partitioning within the skin. 

The dermal absorption of 14C-3,3',4,4'-tetraCB (PCB 77) and 2,2',4,4',5,5'-tetraCB (PCB 153) in female

F344 rats was assessed under conditions where the PCB was applied as either a solid, aqueous paste,

aqueous suspension, or dissolved in ethanol (Hughes et al. 1992).  The chemicals were applied to the

clipped mid-dorsal region of the rat.  The treatment area was then occluded, and urine and feces were

collected and analyzed for radioactivity.  At 24-hours postexposure, the treatment area was washed with

soap and water, recovering 61–91% of PCB 77 and 81–92% of PCB 153.  The percentage of the dose

absorbed ranged from 6 to 8% for PCB 77 and from 5 to 8% for PCB 153, while the treated skin retained
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from 3 to 31% of the PCB 77 and from 3 to 12% of the PCB 153.  Although significantly greater

absorption of PCB 153 was observed when administered as a solid, compared to using the ethanol

vehicle, the remainder of the results indicate that the dermal absorption of PCBs 77 and 153 was similar

even when the PCBs were applied in four different physical forms.   

3.4.2 Distribution

Quantitative data regarding distribution of PCBs to specific organs or tissues of humans after route-

specific exposure were not located.  However, relevant information regarding the distribution of PCBs in

humans following environmental, dietary, and/or occupational exposures are presented below. 

Data regarding distribution of PCBs in human tissues and body fluids are derived mainly from the study

of populations exposed in occupational settings or from those who have consumed contaminated food.  It

is generally agreed that the inhalation and dermal routes are the main exposure routes to PCBs in

occupational settings (Wolff 1985).  For the general population, the oral route is the major route for PCB

exposure (Humphrey 1983).

In humans, PCBs are found in highest concentration in adipose tissue.  Due to its high fat content, human

milk can accumulate a large amount of PCBs, which can then transferred to children through breast-

feeding (Ando et al. 1985; Jacobson et al. 1984b; McLachlan 1993).  The PCB congener composition in

milk differs from that of the commercially produced PCB formulations (Safe et al. 1985b) (see

Section 3.8.1).  Offspring can be also exposed to PCBs through transplacental transfer.  In a sample of

313 women and their newborn infants, placental passage of PCBs was evidenced by a significant maternal

to cord serum correlation (Jacobson et al. 1984b).  Additional information on the prenatal and postnatal

exposure to PCBs are included in Section 3.7.

Average measured concentrations of 0.5–4 ppm total PCBs have been reported for human milk fat,

<5 ppb for blood plasma, and 0.5–10 ppm for adipose tissue (Jensen 1987).  However, as pointed out by

Jensen (1987), due to the heterogeneity of the study populations, the differences in sampling, and the

analytical techniques used, the PCB levels reported by different studies may not be comparable.  The

levels of several di-ortho-substituted congeners in human milk (on a lipid basis) ranged from not detected

to >300 ppb (Schecter et al. 1994).  For comparable exposure levels, PCB levels in plasma and adipose

tissue are generally higher in males than in females (Jensen 1987; Wolff et al. 1982a).  PCBs have also

been detected in ovarian follicular fluid in concentrations ranging from 0.5 to 24.2 µg/kg, in sperm fluid
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ranging from 1.8 to 58.6 µg/kg (Schlebusch et al. 1989), and in bone marrow ranging from 2 to 4 mg/kg

based on dry lipid weight (Scheele et al. 1994).  Analytical techniques for determining PCBs in biological

materials are presented in Chapter 7.

The major components in plasma and adipose tissue (subcutaneous) of occupationally exposed

individuals were PCB congeners with chlorine atoms in the 4 and 4N positions (Wolff et al. 1982b, 1992),

whereas PCBs with unsubstituted 3,4 positions on at least one ring were observed at lower concentrations. 

On a wet weight basis, the adipose/plasma partition ratio for Aroclor 1248 residues was 185/1; the

partition ratio for Aroclor 1254 residues was 190/1.  In a study of 173 workers of the same population,

adipose/plasma partition ratios of 210/1, 190/1, and 200/1 were determined for residues of Aroclors 1242,

1254, and 1260, respectively (Brown and Lawton 1984).  The partition ratios were significantly

dependent on the levels of lipids in the serum, but not on albumin content.  A 1989 study determined the

concentration of individual PCB congeners in both serum and adipose tissue of 35 currently exposed

workers, 17 former workers, and 56 control individuals who were never occupationally exposed to PCB

mixtures (Fait et al. 1989).  Among all exposure categories, the homolog groups present in the highest

concentrations were the hexa- and heptachlorobiphenyls, both in sera and adipose tissue, as expected

from the highly chlorinated Aroclor 1260.  Mono-, di-, tri-, and nonachlorobiphenyls were found at very

low levels in adipose tissue, as expected, and no differences were observed among the exposure

categories.  Currently exposed workers had significantly higher levels of penta-, hepta-, and

octachlorobiphenyls than those in both formerly exposed and control groups.  The concentration of

tetrachlorobiphenyls was significantly higher among currently exposed individuals than among the other

groups.  No significant differences were seen in serum for tetra- and nonachlorobiphenyls.  Mono-, tri-,

penta-, hexa-, hepta-, and octachlorobiphenyls were found at significantly higher concentrations

(p<0.0167) in currently exposed workers than in comparison groups.  Hepta- and octa-concentrations

were significantly higher (p<0.0167) in serum of formerly exposed subjects than in the serum of the other

comparison groups.  The relative distribution of individual congeners was similar in the three groups, but

the amounts varied.  The seven major peaks in serum and adipose tissue were mainly penta-, hexa-,

hepta-, and octachlorobiphenyls.  More standards became available after the study was published and

some congener (but not homolog) identifications were corrected (see Hansen 1999).

Mean PCB concentrations of 5.1, 3.2, and 0.76 mg/kg of extractable fat were determined in samples of

abdominal fat, liver, and brain, respectively, obtained from autopsies performed in Denmark (Kraul and

Karlog 1976).  None of the 82 subjects were occupationally exposed to PCBs.  The PCB values in liver

could be best correlated with those in adipose tissue.  A more recent study described 14 different PCB
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isomers in tissues and organs obtained at autopsy of three individuals in North America (Schecter et al.

1989).  The large differences observed in isomer distribution within a given tissue and between the

various tissues of the donors do not allow generalizations to be made on general population isomer

distribution.  When expressed as the sum of the 14 isomers on a lipid basis, PCB concentrations ranged

from 101–573 ng/g (ppb) of fat in adipose, 89–517 ppb in liver, 30–409 ppb in kidney, 83–354 ppb in

muscle, 80–42 ppb in adrenal (two patients), 131–193 (ppb) in lung (two patients), 102–341 ppb in spleen

(two patients), 103 ppb in bone marrow (one patient), and 102 ppb in testis (one patient).

The existing information regarding distribution of PCBs in humans is limited.  Nevertheless, based on

experimental data obtained in animals (see Section 3.4.2.2) and the known physicochemical properties of

PCBs, it is reasonable to assume that the lipid soluble PCBs, once cleared from the bloodstream, will

accumulate in highest concentration in fatty tissues.  Initially, however, PCBs could accumulate in the

liver due to its high blood perfusion rate.  The availability of PCBs for retention in fatty tissues is

intimately linked to metabolism (see Section 3.4.3); therefore, it would be expected that the higher

chlorinated PCBs would persist for longer periods of time solubilized in fatty tissues.

As with other organisms, PCB residue levels in humans reflects multiple exposure pathways, and

congener-specific elimination.  PCB profiles in human serum immediately following exposures reflect the

profiles in the exposure sources, however, selective metabolism, excretion, and deposition begin to alter

the congener profile within 4–24 hours (Hansen 1999).  Thus, in most cases, the PCB profile in adults

represents a steady state body burden which does not match the profile of commercial PCB formulations

(Aroclors, etc.).  For example, neither the PCB profile of human adipose nor of a composite human milk

sample resemble the pattern of any commercial PCB formulation (Jensen and Sundstrom 1974; Safe et al.

1985).  Abbreviated PCB residue analysis indicates that humans, aquatic mammals, birds, fish and other

biota retain a similar profiles of the 4–6 more dominant PCBs, but more complete analyses demonstrate

unique patterns among the remaining congeners.

Consumption of PCB contaminated freshwater fish is an example of an excess dietary exposure, which

can elevate and/or modify serum PCB profiles.  Non-coplanar, ortho-substituted, PCB congeners were

measured in the serum (collected in 1993–1995) from a group of Lake Michigan residents over 50 years

of age who eat fish (fisheaters) and an age- and region-matched comparison group that did not eat fish

(nonfisheater) (Humphrey et al. 2000).   The same general PCB profile was observed in both groups, with

the fisheaters having a mean total PCB level in serum of 14.26 ng/g (n=101), and the nonfisheaters having

a mean serum level of 4.56 ng/g (n=78).  Four congeners, 138/163 (2,2',3,4,4',5/2,3,3',4',5,6),
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180 (2,2',3,4,4',5,5') and 153 (2,2',4,4',5,5'), accounted for 55–64% of the total PCB load.  Although

90 congener peaks were quantitated, the analysis found that 22 peaks representing 25 PCB congeners

comprised 99% of the total PCBs in both the fisheater and nonfisheater groups.  

Anderson et al. (1998) assessed serum levels of coplanar and noncoplanar  PCBs in 32 anglers that

consumed an average of 49 Great Lakes sportfish meals per year for a mean of 33 years.  Highly

persistent coplanar PCB 126 (3,3',4,4',5) and PCB 169 (3,3'4,4',5,5') were elevated 8- and 5-fold above

the respective levels of these congeners in the control unexposed comparison group from Jacksonville,

Arkansas.  The less persistent coplanar PCB 77 (3,3',4,4') was found at similar levels in the Great Lakes

fish consumer and control groups.  The highly persistent, most abundant  noncoplanar PCB 138 and

PCB 153 were 2- and 3-fold higher in the fish consumers, relative to the respective control group.  Thus,

the long-term consumption of Great Lakes fish results in an increase in the serum levels of persistent

PCBs, and particularly the coplanar PCBs 126 and 169.  In subsequent studies from these investigators,

Falk et al. (1999) found that consumption of lake trout and salmon significantly predicted serum log (total

coplanar PCB) levels, and Hanrahan et al. (1999) found that PCB levels were significantly correlated to

age, body mass index, and sportfish and Great Lakes sportfish consumption histories.  Regression

analysis identified years of consuming sport caught fish as the most robust predictor of serum PCB levels. 

The above PCB residue data in humans and other animals suggests that tissue or body burdens of PCBs

should be based on individual congeners or groups of congeners and not based on profiles of commercial

PCB formulations.  The simplest approach involves using one congener as a marker of total PCBs in a

biological specimen.  Levels of PCB 153 (2,2',4,4',5,5'), a very stable and often the most abundant

congener, have been shown to correlate with the total amount of PCBs in human breast milk (Johansen et

al. 1994) and human plasma, with a correlation coefficient of r=0.99 (Grimvall et al. 1997).  PCB 153 was

highly correlated (r=0.95) with total PCBs in 460 serum samples from Swedish men and women (Atuma

and Aune 1999).  PCB 153 was also highly correlated with total PCBs in serum (r=0.99) and follicular

fluid (r=0.99) (Pauwels et al. 1999).  In addition, PCB 153 levels correlated (r=0.91) with the total PCB-

TEQs in human plasma (Grimvall et al. 1997).  However, if a more complete profile of congeners is

considered, the correlations are lower (Bachour et al. 1998; Hansen 1998, 1999).  Total PCBs or PCB 153

as a marker of the total could be a misleading indicator of the differential exposure to other individual or

groups of congeners of toxicological significance.  

Another important issue related to exposure assessment is whether analysis of PCBs in serum and adipose

tissue provide comparable information on body burden.  Stellman et al. (1998) measured 14 PCB
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congeners in adipose tissue and serum from 293 women with nonoccupational exposure.  The relative

patterns of the 14 PCB congeners were similar to those reported in other human studies.  Significant

positive serum to adipose correlation coefficients were obtained for PCBs 74, 99, 118, 138, 146, 153,

156, 167, 170, 180, 183, and 187, while PCBs 172 and 178 did not reach statistical significance.  Thus,

this study supports the conclusion that either serum or adipose tissue PCB levels may serve as useful

biomarkers of body burden and/or exposure.

Recently, Dewailly et al. (1999) measured the concentration of 14 PCB congeners in subcutaneous fat,

omental fat, brain, and liver from autopsy tissue samples collected from Greenlanders between 1992 and

1994 (Table 3-8).  The PCB body burden of the Inuit population of Greenland is presently among the

highest resulting from environmental exposure.  The levels of PCB 138, 153, and 180 were 19, 21, and

16-fold higher than the respective congeners measured by the same analytical method in Canadians from

Quebec City.  The sum of the three most abundant PCB congeners (138, 153, 180) represents 63–68% of

the total PCBs in the Greenlander tissue samples.  Since PCBs primarily distribute with the tissue lipids,

the tissue PCB concentrations were expressed relative to the lipid content (ng/g lipid) of each tissue. 

Mean lipid contents were 62% in subcutaneous fat, 59.6% in omental fat, 8.3% in brain, and 4.5% in

liver.  Table 3-8 summarizes the mean concentration (µg/kg lipid) for the 14 PCBs in the four tissues. 

PCB concentrations (lipid basis) were similar in omental fat and subcutaneous abdominal fat, while the

hepatic concentrations were generally about 20% lower than fat.  PCB levels in brain (lipid basis) were

about 10–20% of the levels found in subcutaneous fat.  The lower concentration in brain cannot be

explained by the presence of the blood-brain barrier because PCBs are highly lipophilic and are therefore

expected to freely diffuse across this barrier.  The difference in accumulation may be due to the nature of

more polar brain lipids, which are mainly phospholipids.  PCBs may partition to a greater extent into the

triglycerides found in adipose tissue.

In support of the above observations, Weistrand and Noren (1998) found that the concentration of PCB

congeners (ng/g lipid basis) were similar in paired human intra-abdominal adipose tissue and liver 

autopsy samples from seven Swedish subjects.  The ratio of the sum of PCBs in liver to that in adipose

tissue ranged from 0.8 to 1.0 (median 0.8), which was very similar to that reported in more highly

exposed human samples from Greenland (Dewailly et al. 1999).

The concentration of PCBs (ng/g lipid) was measured in brain, liver, muscle, and lung tissue from

25 deceased male and female individuals with environmental exposure to PCBs (Bachour et al. 1998).  
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Table 3-8.  Mean PCB Concentrations (Microgram Per Kilogram Lipid Basis) 
in Autopsy Tissue Samples from Greenlanders 

PCB
Congeners
(IUPAC no.)

Subcutaneous fat (n=26) Omental fat (n=41) Brain (n=17) Liver (n=26)

Meana Range
Per-
centb Mean Range

Per-
cent Mean Range

Per-
cent Mean Range

Per-
cent

28 10 (0.2–185) 100 8 (2.3–156) 96 2.4 (0.5–33) 41 4 (0.5–79) 57

52 10 (2–150) 100 13 (1.9–200) 100 1.8 (0.3–19) 29 8c (0.5–92) 65

99 238 (32–857) 100 215 (33–620) 100 31 (15–74) 100 154 (21–486) 100

101 26 (7–100) 100 18 (4–90) 100 8 (2–24) 94 19 (3–92) 92

105 47 (10–152) 100 50 (7–140) 100 3 (0.5–29) 53 18 (0.9–124) 77

118 257 (41–811) 100 267 (46–764) 100 38 (8–127) 100 209 (32–478) 100

128 9 (0.8–70) 85 3 (0.1–27) 100 1.0 (0.5–2.4) 6 2.1 (0.6–15) 15

138 1,103 (273–3,870) 100 1,098 (190–2,450) 100 134 (34–296) 100 855 (161–2,120) 100

153 1,689 (531–5,580) 100 1,582 (280–3,800) 100 198 (53–397) 100 1,177 (242–3,770) 100

156 173 (57–625) 100 195 (27–497) 100 30 (5–88) 100 143 (51–270) 100

170 385 (112–1,550) 100 422 (61–1,100) 100 46 (7–154) 100 327 (105–886) 100

180 1,147 (239–4,420) 100 1,136 (170–3,000) 100 145 (27–378) 100 791 (234–2,310) 100

183 92 (14–413) 100 93 (19–318) 100 10 (0.5–29) 88 69 (11–241) 100

187 499 (113–2,200) 100 507 (99–1,330) 100 82 (14–175) 100 445 (110–1,030) 100

Source: Dewailly et al. 1999

aGeometric mean; in calculating mean values, results not detected were attributed a value equal to half of the detection limit.  
bPercentage of analyzed samples in which the substance was detected.
cMean lipid content of tissues were 62.0% in subcutaneous fat, 59.6% in omental fate, 8.3% in brain, and 4.5% in liver.
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Liver and muscle lipids generally contained similar levels of each of the PCB congeners, while the brain

contained consistently lower levels.  The lung generally had the highest concentration of the lower

chlorinated congeners, including PCBs 28, 31, 49, 52, and 101.  The levels in the lung were greater than

brain and less than muscle or liver for PCBs 138, 153, 156, 170, 180, and 183.  The higher levels of the

lower chlorinated congeners in the lung may be related to the greater volatility and greater direct

pulmonary exposure to these congeners.  It is also possible that PCB binding proteins in the lung

contribute to the enhanced pulmonary disposition of these congeners (Brandt et al. 1981).       

3.4.2.1 Inhalation Exposure

No studies were located regarding distribution in humans following controlled inhalation exposure to

PCBs.  Occupational data are presented in the preceding section.

Information regarding PCB distribution in animals after inhalation exposure is limited.  Rats exposed to

30 g/m3 of an aerosol of a PCB mixture (Pydraul A 200, 42% chlorine) had 52, 14, and 9 µg PCB/g tissue

in the liver, adipose, and brain, respectively, after 30 minutes of exposure (Benthe et al. 1972).  The

concentration of total PCBs attained in the liver after 2 hours of exposure was 70 µg/g.  PCB levels in the

liver reached a maximum 2 hours after exposure and slowly declined to less than half of the maximum

12 hours after exposure.  Analysis of retroperitoneal adipose tissue revealed only trace amounts of PCBs

immediately after exposure; only a slight increase in concentration was detected after 12 hours. 

Maximum concentration in adipose tissue was attained 36 hours after exposure.  In contrast to adipose

tissue, PCBs were detected in the brain immediately after exposure, reached a maximum 24 hours after

exposure, and slowly declined thereafter.

A recent study in ferrets by Apfelbach et al. (1998) reported for the first time that the olfactory system

may be a potentially significant portal for the entry of airborne PCBs.  Ferrets were exposed for 5 years to

low levels of PCBs (total PCBs, 260 ng/m3 air) in the ambient air of an animal care room that had PCB-

containing sealants.  Tetra-chlorinated PCBs dominated the congener profile of ambient air, with PCB 52

being found at the highest concentration.  The PCB congener pattern in the olfactory bulbs resembled that

found in the ambient air, with the less chlorinated, more volatile PCBs (52) being retained at the higher

levels.  In contrast, the congener profile in adipose tissue resembles that of most exposed or unexposed

animals, with PCBs 153, 138, and 180 being the major congeners present.  The olfactory bulbs of the

exposed animals had the highest total PCB concentration (642 ng/g lipids), while the liver, adipose tissue,

and brain had levels of 202, 303, and 170 ng/g lipids, respectively.  The data suggest that inhaled PCBs
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pass into the dentrites of olfactory sensory neurons and are transported via olfactory axons directly to the

bulbs where they accumulate.  While the olfactory system appears to be a significant site for the

disposition of airborne PCBs, further studies are needed to confirm this observation and assess whether

greater disposition in the brain is associated with inhalation exposure.

3.4.2.2 Oral Exposure

Retention of individual PCB components from commercial mixtures depends upon species and organ,

degree of chlorination, and substitution pattern (Hansen 1979, 1987b).  The metabolism of specific PCB

congeners by different species is influenced by existing residues and can result in considerable variations

in metabolite distribution (Hansen 1987b; Safe 1989a) (see Section 3.4.3, Metabolism).  Representative

examples in various animal species are described below.

In adult mice, repeated administration of 100 mg/kg 2,2N,5,5N-tetraCB or 8 mg/kg 3,3N,4,4N-tetraCB

achieved apparent steady-state levels in 8–10 days (Clevenger et al. 1989).  Steady-state concentrations in

adipose tissue were much higher than in liver and thymus.  Liver concentrations increased from steady-

state levels for 2 hours after the final dose before beginning to decline.  The distribution ratio of the

3,3N,4,4N-isomer for adipose tissue was 2-fold higher than that of the 2,2N,5,5N-isomer, and the ratios for

thymus and liver were 3- and 10-fold higher, respectively.  The decline in concentration of both isomers

in the three tissues followed first-order kinetics.  Tissue elimination half-lives for adipose tissue, thymus,

and liver ranged from 1.07 to 2.9 days.  Similar values were reported in mice for six other tetra-

substituted PCBs (Mizutani et al. 1977).  No apparent relationship between a substitution pattern and

biological half-life could be observed.  Preferential accumulation in mice of 3,3N,4,4N-tetraCB in liver and

adipose tissue relative to kidney and lung was also observed (Klasson-Wehler et al. 1989a).  Results from

whole-body autoradiography experiments showed high concentration of radioactivity in adipose tissue of

mice administered 14C-2,3,3N,4,4N-pentaCB (Klasson-Wehler et al. 1993); lower, but significant amounts

were detected in the liver.  No selective tissue retention was observed over a 30-day period that followed

dosing.  Physical exercise has been shown to increase the PCB levels by a factor of 10 in mice livers due

to mobilization of fat deposits from adipose tissue (Kurachi and Mio 1983a).

In monkeys, a single dose of 1.5 or 3.0 g/kg Aroclor 1248 resulted in a dose-dependent liver

concentration of Aroclor 1248 (25 or 53 µg/g) 2 times higher than that found in the kidney (12 or

27 µg/g) and brain (17 or 28 µg/g) 4 days after dosing (Allen et al. 1974b).  This difference was greatly

increased 14 days after treatment due to both a reduction in kidney and brain concentration and an
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increase in liver concentration.  The blood levels of Aroclor 1254 increased rapidly in monkeys during

10 months of treatment (from approximately 1.2 µg/g at time zero to about 100 µg/g in the high-dose

group) with doses between 20 and 80 µg/kg/day (Mes et al. 1989), but this increase leveled off during the

remaining 27 months of treatment.  A dose of 5 µg/kg/day induced only a slight increase in blood PCB

levels during the total treatment period of 37 months.  When the data were expressed as relative

concentration, it appeared that absorption and bioaccumulation were dose-dependent.  However, the

concentration/dose levels were, to some extent, affected by background PCB levels of the control group,

which would have a greater impact on the relative concentrations of the lowest dose groups rather than on

the higher dose groups.

Information regarding distribution of PCB residues in monkeys after long-term feeding of Aroclor 1254 is

available.  In that study (Mes et al. 1995b), female monkeys were dosed with Aroclor 1254 (0.005, 0.02,

0.04, or 0.08 mg/kg/day) for over 6 years.  Throughout the treatment period the monkeys were bred to

untreated males and the resulting offspring were nursed by their mother.  In dams, PCB residues in blood

and tissues (on a lipid basis) increased with dose.  On a wet tissue basis and at all dose levels, adipose

tissue contained the most PCBs (10 times that found in the liver).  At the highest dose, blood had

274 µg/g, followed by the liver (190 µg/g), adipose (171 µg/g), kidney (156 µg/g), and brain (22 µg/g)

based on the lipid content in each tissue.  Monkeys that were sacrificed before termination of treatment

because of poor health had higher PCB levels in their tissues than monkeys killed at termination. 

Following a 7-day total dose of 15 mg/kg Aroclor 1254 to growing pigs, lower chlorinated congeners

reached peripheral fat (dissectable backfat) more rapidly than did higher chlorinated congeners; however,

redistribution (from more central fat) between 35 and 80 days resulted in total estimated amounts of

higher chlorinated congeners (Hansen and Welborn 1977).  Total PCBs in noninvasively determined total

fat were estimated by multiplying body weight times percent body fat times the concentration of PCBs in

backfat.  Long-term declines in fat concentrations for higher chlorinated PCBs were due mainly to

dilution by growth and expansion of the fat compartment. 

Administration of a total dose of .7 mg/kg of PCBs (tetra- and hexachlorobiphenyls) to rats over

#50 weeks resulted in the highest PCB concentration being detected in adipose tissue regardless of the

treatment duration (Hashimoto et al. 1976).  Intermediate concentrations were detected in the skin,

adrenal gland, aorta, and sciatic nerve; all other major organs and tissues had lower PCB concentrations. 

In each tissue, PCBs were preferentially distributed to the lipid fraction.  Similar results were observed in

rats following administration of a single dose of hexachlorobiphenyl followed by a long-term observation
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period (Mühlebach and Bickel 1981).  The highest concentration of chlorinated hydrocarbon residues

24 hours following administration by gavage of a single dose of 1,600 mg/kg Aroclor 1254 or

3,200 mg/kg Aroclor 1260 to female Sherman rats was found in fat tissue, followed by kidney, liver, and

brain; plasma and muscle contained the least (Curley et al. 1971).  Despite the difference in administered

doses, the concentration of residues in tissues, derived from both Aroclors, were comparable.  When male

and female rats were given an oral dose of 73 mg/kg/day Aroclor 1254 for 98 days, fat tissue again had

the highest concentration, followed by muscle and liver (Curley et al. 1971).  No significant differences

were observed between adult male and female rats.

A number of animal studies have demonstrated that PCB mixtures and specific congeners and isomers can

cross the placental barrier and enter the fetus.  High levels of lipid soluble PCBs accumulate in the fat

portion of the milk, also resulting in high exposure of suckling animals.  Significantly increased PCB

residues were detected in blastocytes (day 6 postcoitum) from female rabbits administered Aroclor 1260

before insemination (Seiler et al. 1994), but no residues could be detected in cleavage stage embryos

(day 1 postcoitum).  In pregnant mice fed PCBs through the first 18 days of gestation, the highest levels

of serum PCBs were found in 1–2-week-old offspring compared with 18-day fetuses or with older

offspring (Masuda et al. 1979).  In studies that exposed monkeys prior to and during gestation, signs of

PCB-induced intoxication were observed in suckling offspring, but not in neonates (Allen and Barsotti

1976; Iatropoulus et al. 1978).  PCB blood levels in the offspring continuously increased during lactation,

but decreased just before or immediately upon weaning (Mes et al. 1994, 1995c).  In rats administered

PCBs before gestation, 0.003% of the PCBs accumulated in the dams was transferred to the fetus through

the placenta; however, the amount transferred to sucklings increased to 5% of the maternal PCB (Takagi

et al. 1986).  Similar results have been reported in ferrets administered single doses of PCBs early or late

during gestation (Bleavins et al. 1984).  Results such as these have led to the conclusion that suckling

may account for higher exposure of young offspring than does placental transfer; the fetus, however, may

be more sensitive.

Experiments in monkeys have suggested that fetal tissue may be unable to metabolize and excrete certain

PCB congeners that are more readily metabolized and eliminated by adults and older infants (Barsotti and

Van Miller 1984; Mes et al. 1995b, 1995c). 
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3.4.2.3 Dermal Exposure

No studies were located regarding distribution in humans following dermal exposure to PCBs.  However,

there is no evidence suggesting that distribution is route-dependent.  Because of the lipophilic nature of

these compounds, it would be reasonable to assume that once they are absorbed, PCBs will distribute to

various tissues in proportion to their lipid contents.  However, data from humans at autopsy suggest that

the disposition of PCBs is congener and tissue specific and not based exclusively on the lipid content of

tissues  (Bachour et al. 1998; Dewailly et al. 1999; Schecter et al. 1994).  Data regarding occupational

exposure are discussed in Section 3.4.2.

Total tissue radioactivity has been measured in male Fischer 344 rats after single 0.4 mg/kg dermal doses

of 14C mono-, di-, tetra-, and hexachlorobiphenyls applied for 48 hours to shaved back skin (Garner and

Matthews 1998).  Congeners used were 4-CB, 4,4’-diCB, 2,2’,4,4’-tetraCB, and 2,2’,4,4’,6,6’-hexaCB. 

Peak total radioactivity in the tissues (excised dose site, samples of blood, adipose tissue, muscle, skin

[ears], and the entire liver and kidney) occurred at progressively later times depending on the degree of

chlorination.  For example, the monochlorinated form reached maximal concentrations (37% of the

absorbed dose) in blood and other tissues at 4 hours postadministration and was almost absent (0.2%) at

2 weeks.  In contrast, peak tissue concentrations of the tetrachlorinated form (80% of the absorbed dose)

occurred at 72 hours and approximately 45% remained in the tissues after 2 weeks.  Absorption of the

tetra- and hexachlorinated forms continued after washing the site with acetone at 48 hours, indicating that

the viable epidermis retained these forms and served as a reservoir.  This may be due to partitioning into

lipophilic sites in the skin or adsorption to epithelial proteins.

3.4.2.4 Other Routes of Exposure

In general, the results reported by studies in which PCBs were administered to experimental animals by

parenteral routes are consistent with those derived from oral administration.

In adult rats with a constant adipose tissue mass, 2,2N,4,4N,5,5N-hexaCB (PCB 153) administered

intravenously distributed preferentially to adipose tissue (about 5 µg/g), followed by the skin, lung, and

liver (all about 0.3 µg/g) (Wyss et al. 1986).  Four days after dosing, only adipose tissue, skin, and muscle

contained significant amounts of the PCBs (.75% of the dose).  Between 2 and 4 weeks later, PCB levels

in adipose tissue and skin reached a maximum, corresponding to 68 and 15% of the administered dose,

respectively, which indicates a slow redistribution process of the chemical.  In rats given 3,3N,5,5N-tetra-
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CB intravenously, 20–40% of the administered dose was found in adipose tissue over 42 days; the blood,

liver, muscle, and skin had <20% (Tuey and Matthews 1977).  

In pregnant mice injected intravenously with 14C-labeled 3,3N,4,4N-tetraCB (PCB 77), most of the

radioactivity was localized in the fetus and consisted mainly of a hydroxylated metabolite (Klasson-

Wehler et al. 1989b).  However, after a dose of 3,3N,4,4N,5-pentaCB (PCB 126), no radioactivity was

found in the fetus, except for traces in the liver.  This differential distribution is probably due to

differences in maternal metabolism for the tetra- and pentachlorobiphenyls (see Section 3.4.3,

Metabolism).  

3.4.3 Metabolism

The metabolism of PCBs has been extensively reviewed (Hansen 1999; Hu and Bunce 1999; Safe 1989a,

1993).  Differential accumulation and retention of PCBs is related to exposure and the relative biological

stability (rate of biotransformation) of each congener.  Limited excretion of parent PCBs does occur (see

Table 3-7), but biotransformation is necessary for the majority of PCB excretion.    

The initial step in the biotransformation of PCBs involves CYP enzyme (cytochrome P-450) (CYP1A1,

1A2, and CYP2B1/2B2) mediated oxidation of arene oxides, which readily undergo further metabolism

(Matthews 1982; Preston et al. 1984).  CYPs of the 3A family are also very likely to participate and,

perhaps, are more important than CYPs of the 2B family (see Hansen 1998, 1999).  Coplanar (nonortho)

PCBs are dioxin-like inducers of CYP1A and PCB 77 is preferentially oxidized by these isozymes.  Many

ortho-substituted, nonplanar, PCBs are inducers of CYP 2B isozymes and are also metabolized by these

enzymes (Brown 1994).  Mono-ortho PCBs are often mixed inducers of CYP1A and CYP2B isozymes

(Safe et al. 1985a).  Some congeners induce P-450s from the 3A and 4A families, but the structure-

activity relationships are incomplete (Huang and Gibson 1992; Schuetz et al. 1986).  Arene oxides are

mainly transformed to hydroxylated aromatic compounds but also to sulfur-containing metabolites via the

mercapturic acid pathway (Haraguchi et al. 1999b; Matthews 1982).  Depending on the number and

position of the chlorine-substitutions, one or more arene oxide intermediate may be formed from a given

PCB.  Unsubstituted meta and para carbon atoms are the preferred site for oxidation (Borlakoglu and

Wilkins 1993b).  Hydroxylation of coplanar PCBs usually predominates at the para position in the least

chlorinated phenyl ring, and the rate of metabolism generally decreases with increasing chlorine

substitution (Hu and Bunce 1999).  Nonplanar PCBs are generally hydroxylated at an open meta position. 

The presence of vicinyl hydrogens (adjacent unchlorinated carbons) favors the metabolism of higher
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chlorinated PCBs.  Comparison of the molecular structures of the biologically persistent congeners

reveals different molecular weights, substitution patterns, feasibility to rotate on the phenyl-phenyl bond,

and intramolecular distances determined by nonelectrostatic forces (Borlakoglu and Walker 1989). 

Despite these physicochemical differences, it appears that higher chlorinated PCBs and congeners that

lack unsubstituted meta-para-vicinal positions are better candidates for bioaccumulation.

Information regarding the metabolism of PCBs in humans is limited.  Chromatographic analysis of

adipose tissue samples of volunteers revealed almost 60 individual PCB components (Jensen and

Sundström 1974).  Examination of these results showed that <12 congeners accounted for .80% of the

total PCBs.  For example, 2,2N,4,4N,5,5N-hexaCB (PCB 153) was the congener found in the highest

concentration, whereas 2,2N,4,4N,6,6N-hexaCB (PCB 155) was not detected.  PCB 155 is neither in

commercial PCB mixtures nor in the environment at appreciable levels (Table 4-5).  As PCB 153 is found

in commercial PCB mixtures and in the environment, the presence of this congener in adipose tissue

appears to be related to biologic persistence and/or to metabolism.  The results of in vitro metabolism

with human liver microsomes entirely support the conclusions drawn above.  Human liver microsomes

did not metabolize PCB 153 under various conditions, but did metabolize PCB 136 (Schnellmann et al.

1983).  The major metabolites identified, 2,2N,3,3N,6,6N-hexachloro-4-biphenylol, and

2,2N,3,3N,6,6N-hexachloro-5-biphenylol, suggest that this congener is metabolized through an arene oxide. 

PCB 153 is often the most prevalent PCB detected in humans, due to exposure and the slow rate of

biotransformation of this congener.  More recently, 3-hydroxy-2,4,5,2',4',5'-hexaCB was identified as the

major metabolite of PCB 153 formed by human CYP2B6 (Ariyoshi et al. 1995).  CYP2B6 is

constitutively expressed in humans, but only accounts for a maximum of 1–2% of the total CYPs in

human liver.  Approximately 75% of the subjects examined had no detectable level of CYP2B6 protein

by immunoblotting (Mimura et al. 1993).  This may be the reason why no metabolite of PCB 153 was

detected in an earlier in vitro study using human liver microsomes (Schnellmann et al. 1983).  The in vitro

metabolism of 4,4N-diCB by human liver microsomes produced six metabolites, with 4,4N-dichloro-2-bi-

phenylol being the most abundant (Schnellmann et al. 1984).  These data also suggested that 4,4N-diCB is

metabolized through an arene oxide and that migration of substituents from the site of hydroxylation to

the adjacent carbon atom (NIH shift) occurs (Gardner et al. 1973; Safe et al. 1975).  The major

hydroxylated PCB metabolite in human plasma from unexposed people is 4-hydroxy-

2,2N,3,4N,5,5N,6-heptaCB, originating from either 2,2N,3,4N,5,5N,6-hepta- and/or 2,2N,3,4,4N,5N,6-heptaCB

(Bergman et al. 1994).  All major 1-ortho-PCBs are transformed to 4-hydroxy-chlorobiphenyl

metabolites, retained in plasma or blood.  Changes in residue patterns, including actual increases over
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time, indicating possible dechlorination products were observed by Wolff et al. (1992).  Brown (1994)

further suggested that humans were capable of very slow PCB dechlorination.

Most hydroxylated PCB metabolites are excreted in feces and/or in urine, or are conjugated to glucuronic

acid or sulfate.  However, several hydroxylated PCB metabolites are retained in the body, either due to

their high lipophilicity or reversible binding to proteins.  Although several of the OH-PCBs are present in

rat plasma and seal blood, the spectrum of OH-PCBs is different in human plasma, compared to that in

rats or seals (Bergman et al. 1994).  For example, 4-OH-2,3,5,6,2',4',5'-hepta PCB, the major OH-PCB in

human plasma (Bergman et al. 1994; Sandau et al. 1998), was found in seal blood but was not detected in

rat plasma.  This major metabolite may originate from 2,3,5,6,2',4',5'-heptaCB (PCB 187) and/or

2,3,4,6,2',4',5'-heptaCB (PCB 183), which are present in human milk.  The 4-OH-2,3,5,3',4'-pentachloro-

biphenylol, the major hydroxy PCB metabolite detected in rat plasma, is also a major contributor to

hydroxy-PCBs in seal blood and in human plasma (Bergman et al. 1994).  This metabolite is formed after

a 1,2-shift of a chlorine in the para position in the 2,3,4-trichlorinated phenyl ring of PCB 105.  In

addition to PCB 105 and 118, this metabolite could arise from the PCB 156 3,4- or 4,5-arene oxide with

the loss of a chlorine.  A similar rearrangement is also observed to occur in the 3,4-dichloro-substituted

phenyl rings of PCBs 77, 105, 118, and 156 (Klasson-Wehler et al. 1993).  Thus, all of the major 1-ortho-

PCBs can be biotransformed to 4-OH PCB metabolites that are retained in plasma or blood. 

Hydroxylated PCBs are retained in lung, liver and kidney tissue, which may be explained by the blood

residues in these tissues.  It is important to note that the concentration of the 4-OH metabolite of PCB 105

in rat liver or lung is similar to that of PCB 153, one of the most persistent and abundant PCB congeners.

Persistent 3-OH PCB metabolites have also been identified at lower levels.  In general, the persistent OH-

PCBs have chlorine atoms on the adjacent carbons to the OH-group and contain five or more chlorine

atoms. 

Methylsulfonyl (MeSO2) metabolites of PCBs have been widely detected in the tissues of marine

mammals (Bergman et al. 1994; Letcher et al. 1995) and of humans (Haraguchi et al. 1986; Noren et al.

1996; Weistrand and Noren 1997).  The MeSO2-PCBs are formed via P-450 dependent epoxidation (Safe

1989a, 1989b) and subsequently via the mercapturic acid pathway (Preston et al. 1984).  The most

abundant MeSO2 metabolites in wildlife and humans are originated from 2,2',4,5,5'-pentaCB (PCB 101)

or 2,2',3,4',5',6-hexa (PCB 149) (Bergman et al. 1994; Haraguchi et al. 1992; Noren et al. 1996).  Human

milk in Sweden was analyzed for methylsulfonyl metabolites of PCBs, which decreased from

approximately 9 to 2 ng/g milk lipid from 1972 to 1992 (Noren et al. 1996).  The levels of these

metabolites also correlated with the levels of total PCBs.  The major MeSO2-PCBs in the milk were
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4-MeSO2-2,5,2',3',4'-PCB (87) and 4-MeSO2-2,3,6,2',4',5'-PCB (149).  Methylsulfonyl metabolites of

PCBs were also analyzed in autopsy tissues from seven Swedish individuals (Weistrand and Noren 1997). 

Twenty MeSO2-PCBs were detected in liver and adipose tissues, with 4-MeSO2-2,5,2',3',4'-PCB (87) and

4-MeSO2-2,3,6,2',4',5'- PCB (149) also being found at the highest levels in these tissues.  3-MeSO2

metabolites were detected in adipose tissue, but at lower levels.  However, in the liver, the 3-MeSO2

metabolites were most abundant, with 3-MeSO2-2,2',3',4',5,6-PCB (132) contributing 61–82% of the sum

of all  MeSO2-PCBs in the liver.   The methylsulfonyl metabolite profile in one lung sample was similar

to that observed in adipose tissue, with 4-MeSO2 metabolites dominating the profile.  The ratios of the

sum of all methylsulfonyl metabolites to total PCB levels were 1/250 and 1/28 in adipose tissue and liver,

respectively, calculated for the median values.  Thus, methylsulfonyl metabolites of PCBs are selectively

retained in different human tissues and therefore require further study regarding their biological and/or

toxicological activity.

The metabolism of PCBs in experimental animals has been extensively reviewed (Safe 1980, 1989a;

Sipes and Schnellmann 1987; Sundstrum et al. 1976a, 1976b).  Many substrates have been tested, and the

PCBs were usually administered by the oral or parenteral routes.  In general, these studies showed that the

metabolism rate of PCBs depends on the number and position of chlorine atoms on the phenyl ring and on

the animal species.  In rats, the elimination half-lives of four PCBs with one, two, five, or six chlorines

increased as the number of chlorines increased (Matthews and Anderson 1975).  The decreased excretion

rate with increasing chlorination was directly related to the decreased rate of metabolism of the more

highly chlorinated congeners.  Sheep liver microsomes converted 2,2N,5-triCB to at least 5 more polar

metabolites within 1 minute and at least 10 metabolites by 15 minutes; however, within the homologous

series, 2,2N,5,5N-tetraCB and 2,2N,4,5,5N-pentaCB were oxidized to only 3 metabolites at rates 7- and

14-fold slower, respectively (Hansen 1987b; Hansen et al. 1977).  Not only does the number of chlorines

affect the rate of biotransformation, but the position of the chlorines on the phenyl rings is also critical. 

This was demonstrated in rats, which excreted four symmetrical hexachlorobiphenyls at different rates

depending on the chlorine positions (Kato et al. 1980).  As the number of unsubstituted meta positions or

adjacent unsubstituted carbon atoms increases, the percentage of the dose excreted increases.  The major

hydroxylated PCB metabolite in rat plasma after administration of 25 mg/kg Aroclor 1254 in peanut oil

by gavage is 4-hydroxy-2,3,3N,4N,5-pentaCB.  From days 1 to 14 after exposure, this metabolite is found

at concentrations 7–10 times the concentration of the major PCB 153 (Bergman et al. 1994).

The following generalizations based mostly on data obtained from experimental animals can be made

(Safe 1980):
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1. Hydroxylation is favored at the para position in the least chlorinated phenyl ring unless this site
is sterically hindered (i.e., 3,5-dichloro substitution).

2. In the lower chlorinated biphenyls, the para position of both biphenyl rings and carbon atoms
that are para to the chloro substituent are all readily hydroxylated.

3. The availability of two vicinal (adjacent) unsubstituted carbons atoms (particularly C5 and C4)
also facilitates oxidative metabolism of the PCB substrate, but it is not a necessary requirement
for metabolism.

4. As the degree of chlorination increases on both phenyl rings, the rate of metabolism decreases.

5. The metabolism of specific PCB isomers by different species can result in considerable
variations in metabolite distribution.

The major PCB metabolites are phenolic products; however, sulphur-containing metabolites (Klasson-

Wehler et al. 1987), trans-dihydrodiols (Norback et al. 1976), polyhydroxylated congeners, and methyl

ether derivatives (Koga et al. 1989) have also been identified.  The occurrence of trans-dihydrodiol

metabolites suggests that the metabolism of PCB congeners proceeds through formation of arene oxide

intermediates (Gardner et al. 1973).  Due to their high reactivity, arene oxide intermediates are difficult to

detect.  They hydrate to give trans-dihydrodiols and spontaneously rearrange to phenols with the

concomitant 1,2-migration of substituents from the site of hydroxylation to the adjacent carbon atom

(NIH shift) (Daly et al. 1972).  Arene oxides are potential electrophiles, and have been implicated in

cellular necrosis, mutagenicity, and carcinogenicity (Safe 1989b).  Experimental evidence using P32-

postlabeling supports the hypothesis that lower chlorinated biphenyls are metabolically activated to

electrophilic species which bind to DNA (McLean et al. 1996; Oakley et al. 1996).  The incubation of

2-chloro-, 4-chloro-, 3-chloro-, 3,4-dichloro-, and 3,4,5-trichlorobiphenyl with calf thymus DNA and rat

liver microsomes followed by oxidation with a peroxidase, produced 1–3 major DNA adducts.  The

reactive metabolites may result for arene oxides and/or catechol and p-hydroquinone species, which are

oxidized to semiquinones and/or quinones.  The results raise the possibility that lower chlorinated

biphenyls may be genotoxic and may explain the fact that commercial PCB mixtures are complete rodent

carcinogens.  

The formation of 3-hydroxy-2,2N5,5N-tetraCB as a metabolic product of 2,2N,5,5N-tetraCB suggested that a

nonarene oxide direct hydroxylation mechanism is an alternative metabolic route for some chlorinated

biphenyl congeners (Billings and McMahon 1978; Preston et al. 1983).  Sipes and Schnellmann (1987)

review and confirm additional routes for PCB oxidative metabolism.
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Methylsulphonyl metabolites of PCBs have received considerable attention since these compounds are

possibly etiologically connected to the respiratory toxicity described in Yusho victims (Brandt and

Bergman 1987; Haraguchi et al. 1986).  PCB methyl sulfones are formed as follows:  products of the

reaction between arene oxides and glutathione are degraded and excreted in the bile into the large

intestine where they undergo cleavage by a microbial C-S lyase.  The thiols formed are methylated,

reabsorbed, and further oxidized on the sulfur to the corresponding methyl sulfones, which are distributed

by the blood (Brandt et al. 1985).  The methylsulphonyl-PCBs are initially bound to a uteroglobin-like

protein found in high concentrations in rat and mouse lung cytosol (Lund et al. 1985) of the Clara and

goblet cells.  This protein-sulfone complex is subsequently secreted into the airway lumen and spread

over the surface lining.  It has also been suggested that this complex is transported by the mucociliary

system to the pharynx and swallowed (Brandt and Bergman 1987).  In the gastrointestinal tract, the

complex may be released, reabsorbed, and recirculated to the lung, which could contribute to the long

retention times for methylsulphonyl-PCBs in rodents (Brandt and Bergman 1987).  Methylsulphonyl-

PCBs have also been localized in rodent kidney cortex (Brandt et al. 1985), but the mechanism of

accumulation in the proximal tubules appears to be different than that operating in respiratory airways

since only trace amounts of the lung binding protein are present in rodent kidney (Lund et al. 1985). 

Methylsulphonyl metabolites of PCBs are also retained in the fat of seals (Jensen et al. 1979) and in liver

and muscle of minks (Bergman et al. 1992).

It has also been shown that the 3-MeSO2 metabolites from PCBs with 2,5-chlorine substitution were

selectively retained in the liver of marine mammals (Bergman et al. 1994), whereas the isomeric 4-MeSO2

metabolites were localized in the lung of mice (Bergman et al. 1979; Klasson-Wehler et al. 1996). 

Although the binding mechanism for 3-MeSO2 metabolites is not clear, the binding protein for 4-MeSO2

metabolites has been identified as a uteroglobulin-like protein present in the nonciliated bronchiolar

(Clara) cells of the lung, also referred to as Clara cell secretary protein (CCSP) (Hard et al. 1995; Stripp et

al. 1996).  Exposure to 4-MeSO2-2,2',4',5,5'-PCB demonstrated that CCSP-deficient mice no longer

accumulate this metabolite within lung or kidney tissue (Stripp et al. 1996).  These data demonstrate that

CCSP is the 4-MeSO2-PCB binding protein in mice and suggests that 4-MeSO2-PCBs will accumulate at

sites of CCSP localization, such as the respiratory and reproductive tracts of humans. 

Haraguchi et al. (1999a) recently investigated the tissue distribution of methylsulfonyl metabolites

derived from PCB 101 and 149 in male Wistar rats.  Both congeners are metabolized primarily by

hydroxylation at the 3-position and methylthiolation at the 4-position.  The 3-/4-MeSO2 metabolite ratios

in liver and adipose tissue for both congeners were 0.41–0.61 at day 4, increasing to 0.85–1.00 for up to
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42 days.  In contrast, the ratios in lung were 0.03–0.04, and then decreased to 0.01 at 42 days.  The ratio

of metabolite to parent compound in tissues provides an estimate of the relative persistence or abundance

of the methylsulfonyl metabolites.  In the liver, the ratio of 3-MeSO2 to PCB 101 was 0.46 and the ratio

of 3-MeSO2 to PCB 149 was 0.21.  4-MeSO2 metabolites were highly retained in the lung, with

metabolite to parent compound ratios of 9.5 and 4.0 for PCBs 101 and 149, respectively.   

Persistent MeSO2-PCBs also have been reported to induce hepatic P-450s in rats.  3-MeSO2-PCBs

identified in mammals were strong phenobarbital type inducers of CYP2B protiens, while the 4-MeSO2

metabolites were inactive (Kato et al. 1995, 1997).  Specifically, the inducing ability of 3-MeSO2-

PCB 101 was more than 500 times greater than the parent PCB101.

A summary of the structures of PCB metabolites that have been identified using various substrates and

biosystems is presented in Figure 3-3.

3.4.4 Elimination and Excretion

3.4.4.1 Inhalation Exposure

No studies were located regarding excretion in humans or animals following controlled inhalation

exposure to PCBs.  However, there is no reason to believe that once absorbed by inhalation, the excretion

pattern of PCBs will differ from that observed after oral absorption.  Much greater amounts of PCBs are

excreted in the feces than in the urine following oral absorption.

3.4.4.2 Oral Exposure

Human Studies.  Estimates for the half-lives for elimination of PCBs from humans have been based on

body burden measurements at two or more time points form the same individual.  A simple mass balance

approach is commonly employed to characterize the elimination of PCBs from humans.  In general, a

simplified single compartment model is used where only intake and first order elimination are assumed to

occur.  In most cases, the intake is assumed to be negligible and the following equation is used to estimate

k, the first order loss or rate constant (day -1), where Co and Ct are the initial and final tissue

concentrations, respectively, and t is the time between sampling.

         (1)Ct ' C0@e
&kt
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This relationship assumes that the mass of the adipose tissue compartment and daily intake remaining

constant over the observed time period and that daily intake is negligible.  If these conditions are not met

or are unknown, the k in the above equation represents an apparent rate constant (k’).  The apparent half-

life from the above equation can then be expressed as follows:

        (2)t1/2 '
&ln2@t

ln
Ct

C0

Equation (2) was used to calculate apparent half-lives when human body burden data, such as blood,

serum, plasma, or adipose tissue concentrations of PCBs are available at two or more time points.

It is often useful for the purposes of risk assessment to estimate the daily intake of PCBs needed to

maintain a steady state body burden or tissue level of PCBs.  The daily intake, I, required to produce a

steady state body burden of C@Mfat is as follows:

       (3a)I ' k @ (C@M)fat

      (3b)I ' ln2
t1/2

@ (C@M)fat

Tables 3-9 and 3-10 summarize data from multiple studies on the apparent half-lives (years) of PCB

congeners and PCB mixtures in humans.  Although analysis of human blood, serum, plasma, adipose

tissue, or other tissues does not match the specific profile of commercially produced PCB mixtures

(Aroclors, etc.), the studies in Table 3-10 did not use congener specific analysis and estimated apparent

half lives for PCB profiles with varying degrees of chlorination.  Most of the studies cited in Table 3-9

utilized congener specific analysis; however, this was not the case for several studies.  The studies report

apparent half-life estimates as low as 0.02 years and as long as infinity, with no apparent loss in body

burden despite removal of a known source of exposure.  Thus, it is important to evaluate the variability

between studies and use caution in interpreting results from a given study.  Absolute values for PCB

congeners and mixtures must also be interpreted with caution, since methods for analysis have improved

in recent years.  However, even with high resolution gas chromatography and electron capture detection

(congener specific analysis), a given peak may represent more than one chemical (see Table 3-9). 
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Extensive sample preparation followed by gas chromatography/mass spectrometry (GC/MS) analysis is

necessary to validate that a given peak is a PCB.  This is the method of choice for the quantitation of very

low levels of coplanar PCBs.  However, for comparison of half-life estimates, it is not necessary to

compare absolute PCB concentrations in different studies.  Half-life estimates for a given study do depend

on a consistent analytical method used to quantify PCB levels in biological samples obtained at two or

more time points.  The studies cited in Tables 3-9 and 3-10 are often limited by small sample size, short

sampling intervals, and low initial body burdens.

Half-life estimates of less than one year have been reported by several studies in Tables 3-9 and 3-10. 

Buhler (1989) reported elimination in a single volunteer that ingested a single dose of a uniformly
13C-labeled PCB mixture similar to Aroclor 1254 (329 µg/kg).  Blood samples were taken during a

260 day period and analyzed for the concentration of 13C- and 12C-PCB using GC/electron capture

detection (ECD) and GC/MS.  Elimination of congeners followed first order kinetics and resulted in half

lives of <1 year in this individual.  These short apparent half-life estimates may be measuring a 

redistribution of the PCBs among body compartments during this relatively short sampling time rather

than actual elimination from the body.  Luotamo et al. (1991) estimated very short apparent PCB half-

lives of 0.02–0.13 years in 12 individuals involved in a capacitor accident at a pulp mill.  Apparent half-

life estimates were based on blood and adipose tissue taken 1 and 30 days following the accident.  Since

the first sample was taken only 1 day following the accident, it is likely that equilibrium had not yet been

reached and that absorption and/or distribution of the PCB exposure/dose was still occurring at that early

time point.  The sampling interval (29 days) was also very short in this study, particularly for highly

persistent PCB congeners.  These limitations must be considered in interpreting the half-life data from

this study, which is much shorter than other studies.  

Wolff and Schecter (1991) investigated an accident where four children (2–6 years of age) were exposed

to PCBs while playing with parts of a capacitor.  The excess exposure resulted in a serum PCB

concentration of lower chlorinated congeners, similar to Aroclor 1242, that was about 4-fold above the

reference group.  Half-life estimates in Table 3-9 were based on serum samples obtained on 1–4 children

at 5 and/or 11 months following the accident.  Packed column GC of the serum samples resulted in

detected peaks that often contained more than one PCB congener.  Infinite half-lives were reported for

seven congeners in Table 3-9, based on the fact that the levels of these congeners did not decline over

time.  One explanation for this observation was that the accidental exposure did not markedly increase the

levels of these congeners, which appear to be at steady state.  Furthermore, there was no correction for the

growth of the children, which would dilute the PCB concentration over time.  The remaining four 
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Table 3-9.  Apparent Half-lives (Years) of PCB Congeners from Multiple Studies

Congener

Brown 
et al.
1989

Buhler 
et al.
1988

Chen 
et al.
1982a,b

Chen 
et al.
1982a,c

Luotamo
et al.
1991d

Luotamo
et al.
1991e

Ryan 
et al.
1993f

Wolff
and
Schecter
1991g

Wolff 
et al.
1992h

Yakushiji
et al. 1984

18 0.02 0.03

31 0.5i

28 1.4 0.05 0.12 0.5i 4.8 3.0

33 0.02 0.02

52 0.3j 5.5k

47 0.2 0.3j 5.5k

44 4 1.6

72 4 1.2

74 3.2 4 4 4l 4m 8.4

70 4l

66 0.03 2.5 4l 4m

95 0.4n 3n

60 3n

56 4 3n

101 0.02 0.04 4o 5.7o

99 3.3 4o 5.7o

108 0.3–0.8p

118 5.8 0.3–0.8p 0.83 0.77 1.2 9.6

Table 3-9.  Apparent Half-lives (Years) of PCB Congeners from Multiple Studies (continued)



Congener

Brown 
et al.
1989

Buhler 
et al. 
1988

Chen 
et al.
1982a,b

Chen 
et al.
1982a,c

Luotamo
et al.
1991d

Luotamo
et al.
1991e

Ryan 
et al.
1993f

Wolff
and
Schecter
1991g

Wolff 
et al.
1992h

Yakushiji
et al. 
1984

153 12.4 0.93 47 26 4 3.8 4q 27.5

105 3.9 0.58 0.51 4q

138 6–7 0.88 32 20 3.4 16.7 16.3

163 >20

183 0.13 7.9r

128 5.2 5.4 7.9r

171 0.08 24

156 4 4 4.0

180 0.34 4 4 4.3 9.9

169 10.4

170 47 71 3.9

n 39 1 17s 7s 12 12 1, 3 1–4 18–165 8

Datat Geomean nr Median Median Mean Mean Median Mean Geomean Mean

Source: Modified from Shirai and Kissel (1996)

aRecalculated using median concentration ratios
bFirst and second samples
cFirst and third samples
dSerum
eAdipose
fHalf-life of congener 169 was not recalculated
due to inadequate data.
gDoes not include adjustment for growth
hBased on a 46-month interval
iCo-eluting 28/31
jCo-eluting 47/48/52
kCo-eluting 47/49/52
lCo-eluting 74/66/70
mCo-eluting 74/66
nCo-eluting 95/56/60

oCo-eluting 99/101
pCo-eluting 108/118
qCo-eluting 153/105
rCo-eluting 183–128
sFor congener 105, the
n's were 14 and 6
tMean = arithmetic mean;
geomean = geometric
mean; nr - not reported
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Table 3-10.  Apparent Half-lives (Years) of PCB Mixtures from Multiple Studies

Mixture

Elo 
et al.
1985

Hara
1985

Phillips 
et al.
1989

Steele 
et al.
1986a

Taylor and
Lawrence
1992

Wolff and
Schecter
1991b

Wolff 
et al.
1992c

Yakushiji 
et al.
1984

Yakushiji 
et al. 1984

Clophen A30 0.02

Kanechlors

300 5.1

300/500 >15 0.67 7.1, 2.8d

Aroclors

1242 2.6 2.0 1.8 0.9, 4e

1248 8.6

1254 4.8 3.3 65

1260 27.6 4.1 1.2, 0.5e

n 12 20, 14 58 5 148, 148, 121 4–5 18–165 1 8, 18

Dataf nr Mean Median Median Geomean Mean Geomean Mean Mean

Source: Modified from Shirai and Kissel (1996)

aRecalculated using median concentration ratio
bNot adjusted for growth rate
cBased on a 46- month interval
dMothers and children, respectively
eDirect and indirect exposure groups, respectively
fMean = arithmetic mean; geomean = geometric mean; nr = not reported
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reported congeners had apparent half-lives of 0.3–0.5 years, and due to lack of chromatographic

resolution, represent at least eight PCB congeners.  Thus, there are serious limitations of the apparent

half-life estimates from the congener data of Wolff and Schecter (1991) (Table 3-9).  Apparent half-life

estimates for PCB mixtures (Aroclor 1242 and 1260) are presented in Table 3-10 for these four children

and five adults and teenagers that had an opportunity for indirect exposure, since they lived in the same

households as the children (Wolff and Schecter 1991).  Half-lives of 0.9 and 1.2 years were reported in

the children for lower and higher chlorinated congeners, respectively.  The PCB levels in the five

teenagers and adults were not different from unexposed individuals, and were likely to be at steady state. 

Thus, although apparent half-lives were reported for the five teenagers and adults, the lack of excess

exposure in this group makes half-life estimates of limited value. 

Chen et al. (1982) measured blood PCB levels in 17 subjects from Taiwan that consumed PCB

contaminated rice-bran oil in March and April of 1979 (Yu-Cheng episode).  Blood was sampled for PCB

analysis in 1980 and 1981.   The authors estimated apparent half-lives of 0.83 and 0.58 years for PCB 118

and 105, respectively.  The authors stated that half-lives of other congeners in blood were not calculated

because they were either too long or too short to calculate or because the concentrations of these PCBs in

blood were too small to accurately measure.  Shirai and Kissel (1996) estimated the apparent half-lives

for the other congeners reported by Chen et al. (1982), which ranged from 5.2 years to infinity.  PCB

exposures in this study were relatively low (0.7–4.7 ppb initially) and thus, the long half-lives may reflect

near steady state conditions over this relatively short sampling period and, should be interpreted

cautiously.

Wolff et al. (1992) estimated the apparent half-lives of PCBs in up to 165 capacitor manufacturing

workers with initial serum total PCB levels of 1.2–24 ppb.  Blood samples were taken in March of 1976

and in December of 1979 and the serum PCB levels were measured by packed column GC, which often

results in two or more PCBs co-eluting in the same peak.  Apparent half-lives in Table 3-9 range from

1.2 years to infinity.  One explanation for the longer half-lives of certain congeners is that excess

exposure to PCBs occurred in some individuals during the interval between 1976 and 1979.  Excess

occupational exposure could have occurred from 1976 to 1977, when all PCB use stopped.  Although

PCBs may not have been in use in the manufacturing facilities from 1977 to 1979, residual contamination

at and around the work site could have contributed to additional occupational exposure.  Secondary

exposures from nonoccupational sources such as high fish consumption rates, and/or exposure in homes

may also impact on loss rates.  The  apparent half-life estimates in Table 3-9 do not consider excess

exposure to PCBs during the sampling interval and thus may be an over estimate of the relative
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persistence of particularly the congeners with half-lives in excess of 10 years.  The above factors also

contribute to the long apparent half-lives reported by Wolff et al. (1992) for the low and particularly the

highly chlorinated PCBs (Table 3-10).

Brown et al. (1989) investigated a subgroup of 39 individuals, originally from the study of Lawton et al.

(1985a, 1985b), who had occupational exposure to PCBs from two capacitor plants. Inhalation and

dermal contact were considered the main routes of occupational exposure.  PCBs were measured in serum

from blood samples obtained in 1976 and 1983.  Apparent half-lives ranged from 1.4 years for PCB 28 to

>20 years for PCB 163.  Once again, excess occupational exposure to PCBs was possible over the

sampling period, particularly from 1976 to 1977, which would increase the apparent half-life estimates. 

However, strengths of the study include the 7-year sampling period and the 39 subjects.  Brown et al.

(1989) made an interesting comparison between this population and that reported for a Taiwan population

(Yu-Cheng) which was accidentally exposed via ingestion of contaminated rice oil (Chen et al. 1982).  It

was found that the mono-ortho congeners (PCBs 74, 118, 105) were cleared 3–7 times faster in the

Yu-Cheng population than the capacitor workers, while the di-ortho congeners (PCBs 99, 153, 138) were

eliminated 3–7 times more slowly in the Yu-Cheng population.  Brown et al. (1989) speculated that these

differences may have been related to alterations in the cytochrome P-450 mediated metabolism of PCBs

in the Yu-Cheng population that was exposed to PCBs and PCDFs.  Specifically, they speculated that

PCDF exposure in the Yu-Cheng population may have produced an increase in CYP1A and depression of

CYP2 forms.

Ryan et al. (1993) estimated the apparent half-lives of the seven most abundant PCBs in three individuals

who ingested PCB contaminated rice oil in Taiwan (Yu-Cheng) in 1979.  Blood samples were obtained

171, 425, 1,049, 2,025, and 3,502 days following the first sampling in May of 1980.  Total PCBs levels in

1980 ranged from 150 to 400 ppb and 9 years later, decreased to about 30–35 ppb.  PCB 180 was the

most persistent, with apparent half-lives ranging from 3.7 to 5.7 years (median of 4.3 years).  PCB 118

was the least persistent of the measured congeners, with apparent half-lives ranging from 1.1 to 1.3 years

(median of 1.2 years).  The apparent half-life for total PCBs ranged from 3.2 to 4.6 years (median of

3.5 years).   This study was not limited by short sampling intervals, low initial body burdens, or the

method for PCB analysis.  Although the results were obtained from only three subjects, this study

provides a good estimate of the apparent half-lives of the most abundant PCB congeners in humans

(Table 3-9).  Half-lives may still have been extended from ambient exposures, though.
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Yakushiji et al. (1984) studied PCB elimination over a 3-year period in eight Japanese women

occupationally exposed to Kanechlor 300 (similar to Aroclor 1242).  Apparent half-lives for this mixture

of 7.1 and 2.8 years were reported for these eight women and their children (1–13 years of age),

respectively (Table 3-10).  Initial whole blood mean PCB concentrations were 42 and 30 ppb for the

women and children, respectively.  The shorter half-life in children may be related to growth over the

3-year sampling period and subsequent dilution of PCB blood levels with increasing mass.  Apparent

half-lives for four PCB congeners in the eight occupationally-exposed women were also reported in

Table 3-9. 

In 1977 and 1985, serum PCB concentrations were determined for 58 workers in a factory that used PCBs

in capacitor manufacturing until 1977 (Phillips et al. 1989a).  This study expanded upon the earlier

investigation in five members of this cohort (Steele et al. 1986).  Less chlorinated PCBs were quantitated

as Aroclor 1242, and more highly chlorinated congeners were quantitated as Aroclor 1254.  The workers

had excess occupational exposure, as documented by serum PCB levels of 2–3,300 and 5–250 ppb in

1977 for Aroclors 1242 and 1254, respectively.  Median apparent half-lives of 2.6 and 4.8 years for

Aroclors 1242 and 1254, respectively (Table 3-10).  The half-lives of the respective mixtures in each

individual varied inversely with the initial (1977) serum concentrations, with more rapid elimination

occurring at higher PCB levels.  This relationship may be a result of continued low level PCB exposure,

variations in the time of exposure, and/or cytochrome P-450 induction, with the resulting increase in PCB

metabolism and elimination at high initial PCB body burdens.  Strengths of the study by Phillips et al.

(1989a) are the population size (n=58) and the 8-year sampling interval.  The study was limited by not

providing congener specific analysis.

Taylor and Lawrence (1992) reported apparent half-lives in another occupational cohort, where serum

PCB levels were available from 1979 and 1983 on 148 workers for Aroclors 1242 and 1254, and

121 workers for Aroclor 1260.  The range of concentrations in serum in 1979 were 0–3,133, 4–639, and

4–377 ppb for Aroclors 1242, 1254, and 1260, respectively.  The apparent half-lives in this study

(Table 3-10) were similar to those reported by Phillips et al. (1989a) for another occupationally exposed

group.   As in the earlier report by Phillips et al. (1989), this study observed more rapid elimination of

PCBs in individuals with higher initial (Phillips et al. 1979) serum PCB levels.  Again, this relationship

may be a result of continued low level PCB exposure, variations in the time of exposure, and/or

cytochrome P-450 induction, with the resulting increase in PCB metabolism and elimination at high

initial PCB body burdens.  
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In summary, the studies by Phillips et al. (1989a) and Taylor and Lawrence (1992) on apparent half-lives

of PCB mixtures (Table 3-10) are in general agreement.  These are well designed studies in two different

occupational cohorts that are not limited by small sample size, short sampling intervals, or low initial

body burdens.  The main limitation of these studies was that congener specific PCB analysis was not

conducted.  Nevertheless, these studies provide the best estimates of the apparent half-lives of PCB

mixtures following occupational exposure.  

Animal Studies.  In experimental animals, the major PCB excretion pathways were the fecal and urinary

routes (Lutz and Dedrick 1987; Sipes and Schnellmann 1987), although trace amounts were reported in

expired air of rats 24 hours after gavage administration of hexa- and tetrachlorobiphenyl (Hashimoto et al.

1976).  Biliary excretion represents a major source of the PCB compounds found in the feces (Allen et al.

1974b; Norback et al. 1976).  Significant amounts of PCBs can also be eliminated through lactation (see

Section 3.7, Children’s Susceptibility).  At equilibrium, chlorobiphenyl congeners are eliminated from

tissues according to individual kinetic parameters.  For example, rats that received six weekly doses of

PCBs showed three general patterns of elimination (Tanabe et al. 1981).  One group of compounds,

primarily di- and trichlorobiphenyls, had elimination half-lives of 1–2 days; a second group, primarily

tetrachlorobiphenyls, had two elimination constants:  one between 2 and 10 days and a second one of

#90 days.  A third group, composed mostly of penta- and hexachlorobiphenyls, had single elimination

half-lives of >90 days.  Thus, highly chlorinated PCBs are preferentially retained, probably because of a

lower metabolism rate.

A 2-phase elimination process was also described in monkeys fed 2,4N,5-triCB for 84 days.  When dosing

was discontinued, the initial rapid phase had a whole body elimination half-life of 30–32 hours and was

followed by a slower process, with a combined urinary and fecal excretion half-life of 4.5–4.8 days (Felt

et al. 1977).

Elimination half-lives from blood between 0.3 and 7.6 years were estimated for a group of mono-ortho-

chlorine-substituted PCB congeners in monkeys dosed with Aroclor 1254 for over 6 years (Mes et al.

1995a).  In these monkeys, steady-state in adipose tissue had apparently been achieved after 37 months of

dosing.  Half-lives were estimated from blood measurements every 2 weeks after treatment ceased and

monthly during the subsequent 2 years.  The half-lives did not seem to be dose-dependent over the dose

range tested (0.005, 0.02, 0.04, or 0.08 mg/kg/day).  The wide range estimates were probably due to the

small sample size (n=3) and the great degree of variation among the individual monkeys.
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The very long half-lives of some PCBs introduces a dilution-by-growth variable that must be considered

in making comparisons.  Weanling pigs were given seven daily oral doses of one of three single-congener

PCBs, or Aroclor 1254 for a total of 15 mg/kg (Hansen and Welborn 1977).  Blood and biopsied backfat

were monitored for up to 118 days, and the increase in total body fat was determined.  If elimination was

based on concentration in the backfat, half-lives of 24, 24, 63, and 42 days were determined for the three

single congeners and Aroclor 1254, respectively.  Half-lives based on estimated total body PCBs

increased to 108, 268, >300, and 284 days, respectively.  Body weights increased 370–560% in these

rapidly growing animals and percent fat increased disproportionally from about 21% body weight to near

28% body weight during the duration of the study.  The long total body half-lives in swine compared to

rats (Anderson et al. 1993; Mühlebach and Bickel 1981) reflect sequestering in a larger and expanding

compartment, making less PCB available for metabolism as well as elimination.  This may be more

relevant to some humans with fluctuating body weight and composition, contributing to the long half-

lives reported by Wolff et al. (1992a, 1992b).

An important factor in the elimination process of PCBs is the location of the chlorine atoms in the phenyl

rings.  This was studied in mice administered a series of PCBs with different molecular configurations

(Gage and Holm 1976).  For the series of PCB congeners tested, the results show that differential

biotransformation results in compounds having at least one pair of unsubstituted ortho-meta vicinal

carbon atoms (positions two and three) being excreted much faster than those with other configurations,

but this was greatly diminished by chlorines in the 2,2'- or 2',2'-positions.

The chemical identity of the PCB metabolites excreted by different species greatly depends on the

structure of the parent compound.  This has been studied by numerous investigators.  In rats, 85% of the

fecal excretion of metabolites derived from a hexachlorobiphenyl was hexane-extractable, indicating the

presence of nonpolar compounds as opposed to urinary metabolites, which are usually polar derivatives

(Mühlebach and Bickel 1981).  Analysis of the feces of rats dosed with 3,3N,4,4N-tetraCB revealed parent

compound (indicative of incomplete absorption), 5-hydroxy-tetraCB, 6-hydroxy-tetraCB, and 4-hydroxy-

3,3N,4N,5-tetraCB, whereas the urine contained mainly conjugated hydroxylated metabolites (Klasson-

Wehler et al. 1989a, 1989b).  Rats treated with 2,3-diCB and 2,4,6,-triCB excreted compounds

hydroxylated in the 4-position in the feces; a dihydroxy metabolite in position 3- and 4- was also

identified (Goto et al. 1974).  The major metabolites found in the urine of monkeys treated with

2,5,4N-triCB were free and conjugated monohydroxy derivatives; the feces were not examined (Felt et al.

1977).  The urine of rabbits administered 2,2N,5,5N-tetraCB revealed 3-hydroxy-2,2N,5,5N-tetraCB,

4-hydroxy-2,2N,5,5N-tetraCB, and a trans 3,4-dihydro-3,4-dihydroxy-2,2N,5,5N-tetraCB (Gardner et al.
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1973).  Excretion of radioactive material in the urine of ferrets treated with 14C-labeled Aroclor 1254

accounted for <10% of the amount excreted in the feces (Bleavins et al. 1984).  During the first week

after dosing, 22.1 and 1.8% of the dose was excreted in the feces and urine, respectively.  Total excretion

diminished considerably during subsequent weeks.

3.4.4.3 Dermal Exposure

Limited data were found regarding the excretion of PCBs in experimental animals following dermal

exposure.  The urinary excretion half-life of an undefined PCB containing 42% chlorine applied to the

abdominal skin was 6.9 days in monkeys (Wester et al. 1983).  In guinea pigs in which the same mixture

was applied to the back of the ear, a 2-phase urinary excretion process was observed.  The first phase was

rapid, with an elimination half-life of 1.9 days, and was followed by a slower phase, with an elimination

half-life of 12.6 days.  However, the elimination half-life of a PCB containing 54% chlorine was 2.9 days

and was linear for the duration (16 days) of the urine collection (Wester et al. 1983).  Wester et al. (1990)

reported that following percutaneous application of 4 µg 14C-labeled Aroclor 1242/cm2 to the abdominal

skin of monkeys (four per group), a maximum of 11% of the dose (as 14C-derived radioactivity) was

excreted over a 30-day period when the solvent was mineral oil, while 10% was excreted when the

solvent was trichlorobenzene (unspecified isomer).  Excretion was virtually complete after the first

10 days.  Urinary excretion of 14C-derived radioactivity was approximately 2 times fecal excretion. 

Following application of 4.8 µg 14C-labeled Aroclor 1254/cm2 in mineral oil or trichlorobenzene, 5.5 and

3.9% of the dose, respectively, was excreted over a 30-day period.  The probability that the authors

measured only excretion for the most readily metabolized components is increased because in the most

recent study, which specified Aroclor mixtures, urinary excretion was 2 times fecal excretion and urinary

excretion was virtually complete after 10 days.

3.4.4.4 Other Routes of Exposure

Excretion of PCBs and metabolites after parenteral administration follows the same general pattern as

after oral administration:  much greater amounts are excreted in the feces than in the urine.  Furthermore,

nonpolar derivatives are found in the feces, whereas polar metabolites are preferentially found in the

urine.

In rats, 80% of an intravenous dose of 14C-labeled 3,3N,5,5N-tetraCB was excreted in the feces over a

42-day period, whereas only 6.1% was excreted in the urine (Tuey and Matthews 1977).  Less than 10%
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of the radioactivity in bile, feces, and urine was parent compound.  The terminal half-life for whole-body

elimination was 9.8 days.  In contrast to the tetrachlorobiphenyl, excretion of 14C-labeled

2,2N,4,4N,5,5N-hexaCB was minimal after intravenous injection in rats.  Only 16% of the dose was

excreted in the feces over 40 weeks, while urinary excretion accounted for 0.8% of the dose (Mühlebach

and Bickel 1981).  It has been suggested that the hexachlorobiphenyl, which is minimally metabolized,

was stored after redistribution (Hansen and Welborn 1977; Mühlebach and Bickel 1981).  The higher

lipid solubility of the hexachlorobiphenyl may have also contributed to the greater retention of this

congener.  The significance of the chlorine substitution in the phenyl rings was examined by Kato et al.

(1980), who injected four symmetrical hexachlorobiphenyls intravenously in rats.  Most of the

administered doses underwent predominantly fecal elimination.  The 2,2N,3,3N,6,6N-hexaCB congener,

which has unsubstituted vicinal carbon atoms, was rapidly and extensively (90%) excreted over a 7-day

period.  For the other isomers, <15% was excreted over the 7-day period.

Following intravenous injection of 32.7 µg Aroclor 1242 to Rhesus monkeys, 39.4% of the administered

dose was excreted in the urine, and 16.1% was excreted in the feces over a 34-day period (Wester et al.

1990); the bulk of the dose (>90%) was excreted within the first 10 days.  For Aroclor 1254, 7% of the

administered dose (47.4 µg) was excreted in the urine and 19.7% in the feces over a 30-day period.  The

duration of the study probably accounted for only the most rapidly metabolized components of the

mixtures (Kato et al. 1980; Lutz and Dedrick 1987).

In rats with ligated bile ducts, unchanged 2,3N,4,4N-tetraCB appeared in the small intestine 1 hour after

intravenous injection suggesting that the wall of the small intestine is an important site of PCB excretion

(Yoshimura and Yamamoto 1975).  Lactation was also shown to be a major route of excretion of PCBs

from postpartum mice administered the compounds before pregnancy (Gallenberg and Vodicnik 1987).

The time-course of elimination of several PCB congeners (mono and di-ortho-substituted penta-, hexa-,

and heptachlorobiphenyls) was examined in the liver, lungs, and carcass of mice over a period of several

weeks after a single intraperitoneal dose of 500 mg Aroclor 1254/kg at 8 days of age (Anderson et al.

1993).  The concentration of total PCBs decreased in the three compartments as a function of time. 

Analyses of elimination half-times for total PCBs from carcass and liver, and of changes in body weight

indicated excretion as well as dilution.  All congeners were efficiently retained in the lung and decreased

only as a function of dilution due to growth.  In general, congeners with pairs of unsubstituted carbons

were eliminated faster than those without unsubstituted carbon pairs.  The changes in liver over time were

complex: there was retention of all congeners during the prepubertal growth phase, with specific
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enrichment of 2,3,3N,4,4N-pentaCB.  This was followed by more rapid elimination of certain congeners at

a later time.  The investigators suggested that changes in the liver may have reflected differences or

changes in amounts or types of lipids, in binding proteins, and/or in metabolizing enzymes.

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and

disposition of chemical substances to quantitatively describe the relationships among critical biological

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to

quantitatively describe the relationship between target tissue dose and toxic end points.  

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to

delineate and characterize the relationships between: (1) the external/exposure concentration and target

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen et al.

1987; Andersen and Krishnan 1994).  These models are biologically and mechanistically based and can

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from

route to route, between species, and between subpopulations within a species.  The biological basis of

PBPK models results in more meaningful extrapolations than those generated with the more conventional

use of uncertainty factors.  

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model

representation, (2) model parametrization, (3) model simulation, and (4) model validation (Krishnan and

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters.  The

numerical estimates of these model parameters are incorporated within a set of differential and algebraic

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations

provides the predictions of tissue dose.  Computers then provide process simulations based on these

solutions.  
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The structure and mathematical expressions used in PBPK models significantly simplify the true

complexities of biological systems.  If the uptake and disposition of the chemical substance(s) is

adequately described, however, this simplification is desirable because data are often unavailable for

many biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty.  The

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of

PBPK models in risk assessment.

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). 

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste

sites) based on the results of studies where doses were higher or were administered in different species. 

Figure 3-4 shows a conceptualized representation of a PBPK model.

3.4.5.1 Summary of the PBPK Model

A flow-limited physiologic pharmacokinetic model was formulated to describe the individual kinetics of

the tissue distribution, metabolism, and excretion of several PCB congeners in the rat, mouse, dog, and

monkey.  In general, the model predicted well the experimental data, but some deviations were apparent. 

Rates of metabolism were species specific, and there was no apparent scaling factor, such as body weight

or surface area, for predicting metabolic rates from species to species.  Meaningful extrapolation of data

among species is dependent on accurate estimates of the rates of PCB congener metabolism. 

The information presented below has been extracted from studies by Lutz et al. (1977), Tuey and

Matthews (1980), and Lutz et al. (1984), and from reviews of those studies by Matthews and Dedrick

(1984) and Lutz and Dedrick (1987).  Models for the prediction of congener-specific PBPK parameters

(tissue:blood partition coefficients, rates of metabolism) from structural information are discussed at the

end of this section.
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Figure 3-4.  Conceptual Representation of a Physiologically Based
 Pharmacokinetic (PBPK) Model for a Hypothetical Chemical Substance

Source: adapted from Krishnan et al. (1994) and Hansen (1999)

Note: This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a hypothetical
chemical substance.  The chemical substance is shown to be absorbed by inhalation, by ingestion, or via the skin;
metabolized in the liver; and excreted in the urine, bile, feces, sweat, or by exhalation.  Lymphatic absorption from the
gastrointestinal tract avoids the first-pass effect of liver metabolism and is very important for lipophilic chemicals (e.g.,
PCBs).  Important first-order rate constants are Ke (elimination) and Km (metabolism).
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3.4.5.2 Description of the Model

The PBPK model for PCBs includes several compartments (Figure 3-4) thought to represent regions of

substantial chemical uptake, regions involved in the clearance process, or regions of interest due to their

toxic response to PCBs.  Transport of the PCBs occurs by the inflow and outflow of blood through the

compartment, by transcapillary transport, and by transport across cell membranes.  The concept of blood

flow-limited uptake was used because experimental data appeared to indicate that PCBs leave the blood

and enter tissues very rapidly.  Therefore, the assumption was made that the uptake is flowlimited.  In

Figure 3-4, dashed lines within compartments represent rapid equilibrium partitioning between blood and

tissue space.  In order to simplify the model, metabolism of PCBs was assumed to occur in the liver

compartment as a single step leading to the formation of one metabolite that is excreted in the urine and

bile as the glucuronide conjugate.  The mathematical model consists of a set of differential equations

describing mass balances on each PCB congener in each compartment.  For example, for a tissue in which

metabolism may occur, such as the liver, the mass balance takes the form

d(VLCL)/dt = QL(CB - CL/RL) - (km x CL/RL)

where t = time, V = tissue volume or mass, C = concentration, Q = blood flow rate, km = metabolic rate

constant, and R = tissue/blood distribution coefficient.  The subscripts L and B refer to liver and blood,

respectively. 

The PCB model was initially constructed to describe the distribution of 4-monoCB, 4,4N-diCB,

2,2N,4,5,5N-pentaCB and 2,2N,4,4N,5,5N-hexaCB in Sprague-Dawley rats following a single intravenous

dose (0.6 mg/kg) of the PCB congeners (Lutz et al. 1977).  The same model was subsequently applied to

these congeners in CD-1 mice administered a single 0.6 mg/kg intravenous dose of the same PCB

congeners (Tuey and Matthews 1980).  In the dog (beagle) and monkey (Cynomolgus), 4,4N-diCB,

2,2N,4,4N,5,5N-hexaCB, and 2,2N,3,3N,6,6N-hexaCB were modeled, also after a single intravenous dose of

0.6 mg/kg (Lutz et al. 1984).  The latter two congeners were chosen since they have the same number of

chlorines, but 2,2N,3,3N,6,6N-hexaCB has two adjacent unsubstituted carbons, which has been shown to

enhance metabolism.  

Many of the parameters used in the model, in particular anatomical parameters and blood flow rates, were

available from the literature.  The skin flow rate used in the model had to be reduced by 10-fold in order

to simulate the behavior of PCBs in the skin.  Use of measured values or literature values resulted in
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overprediction of the skin PCB concentration at early times by a considerable amount.  This may have

reflected a deviation from a flow-limited transport mechanism in the skin.  Distribution coefficients (R)

for both parent and metabolite were estimated for each compartment by taking the respective ratios of the

specific tissue concentration to the blood concentrations at times when the compartments (tissues) were

assumed to be in equilibrium with effluent venous blood.  This implies that elimination is sufficiently

slow so that the venous blood is a fair representation of the effluent venous blood from each tissue. 

Metabolic rate constants (km) for rapidly metabolized PCB congeners were estimated by dividing the

amount of PCB appearing in the urine, feces, and tissue, by area under the blood concentration-time curve

for a given time interval.  For slowly metabolized PCB congeners, km was estimated by dividing the

average rate of excretion of metabolite by the average blood concentration of metabolite.  The rate of

urinary excretion was assumed to be proportional to the blood metabolite concentration.  Urinary

clearance (kK) was estimated by dividing the amount of PCB metabolite collected in the urine by the area

under the metabolite blood curve.  Biliary excretion (kB) was estimated from direct cannulation of the bile

duct or calculated from fecal excretion rates.  Liver equations for the dog and monkeys carried an

additional term that allowed for preferential and rapid removal of a specified fraction (F) of the PCB from

the liver blood pool; this fraction was rapidly and irreversibly transferred to the bile fluid.  Some

metabolism parameters (metabolism rate, kidney clearance rate, biliary clearance rate) for the mouse were

scaled from values reported for the rat. 

3.4.5.3 Discussion of the Model

Anatomical parameters used in the model are listed in Table 3-11.  Metabolism and clearance parameters

are listed in Tables 3-12, 3-13, and 3-14.  Table 3-12 shows that in the animal species examined km

decrease as chlorination increases, but the chlorine position also determines the rate of metabolism.  This

is suggested by the difference in km values between 2,2N,3,3N,6,6N-hexaCB and 2,2N,4,4N,5,5N-hexaCB in

the rat, dog, and monkey.  It appears that the meta and para positions are preferred sites for arene oxide

formation, which would explain why the km for 2,2N,3,3N,6,6N-hexaCB is even larger than for 4,4N-diCB. 

Table 3-12 also shows no apparent interspecies correlation of km with body weight or surface area.  As

body size increased, km increased, but when the parameters are normalized by either body weight or body

surface area, no consistent pattern of km is evident.  On any basis, km values for the dog are greater than

those for the mouse, rat, or monkey.  Based on these data alone, it cannot be ascertained which species, if

any, would predict PCB metabolism in humans; however, the collective data integrated with human

residue data have been developed into what appears to be a reliable model (Brown 1994).
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Table 3-11.  Volumes and Flow Rates in Several Tissues of Four Speciesa

Volumes (mL) Blood flow rates (mL/minute)

Mouse
30 g

Rat 
250 g

Monkey
5 kg

Dog
12 kg

Mouse
30 g

Rat 
250 g

Monkey
5 kg

Dog
12 kg

Blood 2.89 22.5 300 1000 – – – –

Muscle 17.1 125 2068 5530 1.42 7.5 103 275

Liver 2.24 10 118 480 3.1 16 125 342

Skin 5.51 40 470 1680 0.12 0.5 2.7 11.7

Fat 3.72 17.5 389 777 0.1 0.4 10.7 17.9

aValues were used in physiologic pharmacokinetic model.

Source:  Lutz and Dedrick 1987
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Table 3-12.  Metabolism Rate Constant (k) from the Physiologic Modela,b

4-MCB 4,4'-DCB 2,2',4,5,5'-PCB 2,4,5-HCB 2,3,6-HCB

km mL/min

Mouse (30 g) 2.4 0.37 0.095 0.01 –

Rat (250 g) 10 2 0.39 0.045 5

Monkey (5 kg) – 7 – 0.67 15

Dog (12 kg) – 470 – 16 183

km mL/min/kg

Mouse 68.5 9.7 2.5 0.25 –

Rat 40 8 1.56 0.18 20

Monkey – 1.4 – 0.13 3

Dog – 39 – 1.33 15.2

km mL/min/kg0.7

Mouse 25 3.7 0.94 0.1 –

Rat 26.4 5.2 1.02 0.12 13

Monkey – 2.3 – 0.22 5

Dog – 82 – 2.8 32

aSource:  Lutz and Dedrick 1987

bMiddle set of numbers is per-unit animal body weight, mL/min/kg.  Bottom set is mL/min/kg0.7, since body surface
area is approximately proportional to body weight to the 0.7 power.

DCB = dichlorobiphenyl; HCB = hexachlorobiphenyl; MCB = monochlorobiphenyl; PCB = pentachlorobiphenyl
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Table 3-13.  Tissue-to-blood Distribution Coefficients for Parent Polychlorinated Biphenyls (R) 
and Metabolites (R’)

4-Monochlorobiphenyl 4,4N-Dichlorobiphenyl 2,2N4,5,5N-Pentachlorobiphenyl
Mouse Rat Monkey Dog Mouse Rat Monkey Dog Mouse Rat Monkey Dog

Parent, R
Muscle 1 1 – – 2 2 5 4 5 1 – –
Skin 10 10 – – 10 10 50 12 20 7 – –
Fat 30 30 – – 70 70 300 40 200 70 – –
Liver 1 1 – – 5 3 20 6 14 12 – –
Metabolite, RN
Muscle 0.14 0.14 – – 0.4 0.4 0.1 0.1 – –
Skin 0.25 0.25 – – 0.8 0.3 0.1 0.1 – –
Fat 0.4 0.4 – – 1 0.6 0.4 0.4 – –
Liver 2 2 – – 4 5 2 2 – –

2,4,5-Hexachlorobiphenyl 2,3,6-Hexachlorobiphenyl
Mouse Rat Monkey Dog Mouse Rat Monkey Dog

Parent, R
Muscle 5 4 7 6 – – 4 4
Skin 35 30 70 30 – – 40 8
Fat 300 400 500 300 – – 250 30
Liver 10 12 30 10 – – 20 2
Metabolite, RN
Muscle 3 0.3 1 0.2 – – 0.1 0.1
Skin 5 2 3 0.7 – – 0.5 0.2
Fat 1 2 9 2 – – 1 0.25
Liver 10 4 5 10 – – 5 10

Source:  Lutz and Dedrick 1987
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Table 3-14.  Kidney Clearance (kk) and Biliary Clearance (kg) for Selected Polychlorinated Biphenyls 
in Several Speciesa,b

4-MCB 4,4N-DCB 2,2N,4,5,5N-PCB 2,4,5-HCB 2,3,6-HCB

kg kk kg kk kg kk kg kk kg kk

Mouse
  (30 g)

0.05 0.05 0.15 0.069 0.10 0.009 0.074 0.018 – –

Rat
  (250 g)

0.2 0.2 0.35 0.133 0.3 0.033 0.30 0.03 1.0 0.03

Monkey
  (5 kg)

– – 0.083 1.5 – – 0.70 0.041 0.5 0.4

Dog
  (12 kg)

– – 10.2 2.7 – – 1.8 0.15 7.0 2.0

 
aSource:  Lutz and Dedrick 1987
bClearance values are in mL/minute.

DCB = dichlorobiphenyl; HCB = hexachlorobiphenyl; MCB = monochlorobiphenyl; PCB = pentachlorobiphenyl 
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Table 3-13 lists tissue/blood distribution coefficients (R) for parent compounds and metabolites.  In the

four species tested, and for all the PCB congeners modeled, the rank order for R is fat >skin >liver

>muscle >blood.  The large R for parent PCBs in adipose tissue is not unexpected considering the

lipophilic nature of the compounds.  Also, as expected, Rs for metabolites were considerably lower than

those for the parent compounds.  This is likely because glucuronide conjugates of the parent compound

are less lipophilic and more water soluble.  The largest R for metabolites were found in the liver,

reflecting the fact that metabolism of PCBs occurs primarily in the liver.  Clearance parameters for biliary

and urinary elimination listed in Table 3-14 do not show any apparent interspecies scaling correlations.  

3.4.5.4 Validation of the Model

The model used to simulate the data described well the kinetics of distribution, metabolism, and excretion

of the PCB congeners studied in adult animals.  However, some deviations were apparent.  For example,

in the rat the model predicted a faster rate of clearance from blood and tissues for lower chlorinated

biphenyls beyond 48 hours.  This was tentatively attributed to the formation of minor metabolites, which

have different pharmacokinetic behavior than the major metabolites.  Formation of metabolites covalently

bound to tissue macromolecules also was a possibility.  The model overpredicted the concentration of

PCBs in the skin at early times, suggesting that the use of measured or literature values of skin-flow rate

in the flow-limited skin compartment may not have been appropriate.  Among the possibilities offered to

explain this phenomenon were: the existence of an additional barrier in the skin that reduced uptake,

inaccurate measurement of skin blood-flow rates because of shunt flow, and presence of subcutaneous

skin fat serving as reservoir for the diffusion of PCBs from the skin tissue.  Also, in order to obtain a good

simulation of the behavior of the poorly metabolized 2,2N,4,4N,5,5N-hexaCB in rats, a term describing

changes in fat volume of the growing rats had to be incorporated into the model.  Without this term, the

simulations overpredicted the long-term data.  Apparent elimination of the PCB congener from blood or

adipose tissue was in reality a dilution effect due to the increased fat volume.  When the physiological

compartment model for the rat was scaled to the mouse, the disposition of PCBs in the latter was in

reasonable agreement with the experimental data.  An exception was the finding that greater biliary

clearance rates than the corresponding rate scaled from the rat for the di-, penta-, and hexachlorobiphenyl

were observed.  Model simulations of tissue disposition of parent compounds in the monkey were in

reasonably good agreement with the experimental data.  This was not the case for the dog, a species in

which, except for 2,2N,4,4N,5,5N-hexaCB, the simulations underpredicted the experimental data at longer

time points.  The data showed that the dog metabolized the three PCB congeners tested considerably

faster than the monkey.  As with the rat, simulations of blood-flow rate to 
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the skin in the dog and monkey had to be reduced to one-tenth its physiologic value in order to fit the

experimental data.  

The results of these studies show that pharmacokinetic modeling is a valuable tool for predicting PCB

disposition in one animal species by extrapolation of data from other animal species.  However, while

many similarities exist from species to species, some important differences were also apparent.  The most

important parameter in the model appeared to be the km.  Knowledge of this parameter in a species of

interest is crucial if reliable predictions of PCB disposition are to be made.  Lutz et al. (1984) recognized

that “without additional information about metabolism, extrapolation of the present model to simulation

of human disposition would be suspect."  The model constructed by Lutz and co-workers provides kinetic

and metabolic information regarding a very small number of PCB congeners, but not toxicity information

that could eventually be used for developing risk assessment approaches for PCBs.  The most extensively

studied PCB congeners from the point of view of their toxic properties are the dioxin-like congeners. 

These congeners lack chlorine substitution in the ortho position and are isostereomers of 2,3,7,8-TCDD

(dioxin).  The mechanism of toxicity for these congeners is related to the enhancement of gene expression

triggered by initial binding to a cytosol receptor (Ah receptor) (see Section 2.5.2 for further details). 

Although no PBPK model has been constructed for the dioxin-like congeners, information exists for

2,3,7,8-TCDD.  PBPK models for 2,3,7,8-TCDD account not only for determinants of disposition, such

as tissue partitioning, biotransformation rates, and protein-binding constants, but also describe

pharmacodynamic events related to the induction of specific dioxin-binding proteins in the liver (Leung et

al. 1988).  Recent refinements of the model incorporate information on the interactions of the dioxin-Ah

receptor complex with regulatory regions of specific genes (Andersen et al. 1993).  This level of

information is expected to provide a basis for investigating the scaling across species of the PBPK model

for dioxin and chemicals with common-mediated mechanisms of toxicity.

3.4.5.5 Prediction of Congener Specific PBPK Model Parameters.

Since the toxicity of a given PCB mixture is related to its congener composition, congener-specific

information on kinetic parameters is necessary if PBPK models are to be used as part of risk assessment. 

Methods to predict the tissue:blood partition coefficient (Parham et al. 1997) and metabolic rate constants

(Parham and Portier 1998) for all 209 congeners based on structural information are discussed below.

Data from a study of occupationally exposed humans allowed the authors to calculate the adipose:plasma

partition coefficient for 24 PCB congeners (Wolff et al. 1982b).  In an effort to predict these results by 
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modeling (Parham et al. 1997), a total of 27 structural descriptors were identified for PCBs (e.g., total

number of chlorines, number of ortho-chlorines, number of chlorines on most-substituted ring, etc.).  A

stepwise regression method was used to identify a small set of descriptors that would adequately predict

the observed adipose:plasma partition coefficients for each congener.  It was found that the three most

important structural descriptors for the prediction of the adipose:plasma coefficient were (1) whether the

congener had a ring with unsubstituted adjacent meta and para carbons, (2) the congeners nonplanarity,

and (3) the polarity of the congener.  The adipose:blood partition coefficient can be derived from the

adipose:plasma partition coefficient if the ratio between plasma and whole blood is known for the

congener.  Stepwise regression was similarly used to predict a data set for the distribution between plasma

and the cellular component of blood of eight PCB congeners and biphenyl in the rat (Matthews et al.

1984).  In this case, a good fit with the experimental data was obtained with the use of only one structural

descriptor, the number of adjacent unsubstituted meta and para carbons.  Conversion from rat blood to

human blood was accomplished by adjusting for the higher proportionate volume of the cellular

component in rat blood and assuming that all PCBs in plasma are bound to protein in both species.  A

factor was derived for conversion of the predicted adipose:plasma partition coefficient to the

adipose:blood partition in humans; this factor depends on the number of unsubstituted meta-para carbon

pairs (0-4) in the specific congener.  Adjustment factors for partition coefficients for other tissues (liver,

muscle, and skin) were developed based on lipid fraction in the tissue, percent nonneutral lipid, and

percent neutral lipid.

A similar stepwise regression process has been applied to the prediction of metabolic rate constants for

specific PCB congeners from structural descriptors (Parham and Portier 1998).  The metabolic rates used

as the input for the stepwise regression were derived from in vitro rates of formation of metabolites for

25 congeners in rat liver microsomes (Borlakoglu and Wilkins 1993a, 1993b) and from a modification of

the Lutz et al. (1977) PBPK model using data from four intravenous injection studies in rats employing

nine congeners (Abdel-Hamid et al. 1977; Matthews and Anderson 1975; Tuey and Matthews 1977,

1980).  The in vitro data included 14 congeners tested with microsomes from Aroclor 1254-induced rats

and 11 congeners from noninduced rats.  The stepwise regression resulted in seven descriptors included in

the model.  Five were structural descriptors (degree of chlorination, noncoplanarity, and three that

described the presence of adjacent unsubstituted carbon atoms) and two were nonstructural (whether the

data was from [1] induced or noninduced rats and [2] in vitro or in vivo experiments).  The final model

was used to predict the blood radioactivity data from intravenous injection studies and appeared to fit the

experimental data well.  Some individual misfits could be attributed to the fact that Borlakoglu and

Wilkins (1993a, 1993b) measured only primary metabolites but used prolonged incubation times.
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3.5 MECHANISMS OF ACTION

PCBs are lipophilic compounds that are readily absorbed from the gastrointestinal tract.  While PCBs in

many cases entered the environment as commercial formulations containing a relatively defined mixture

of specific PCB congeners, the accumulation and retention of specific PCB congeners in various

environmental matrices, wildlife, and humans does not directly reflect the PCB profile of the commercial

mixtures.  Therefore, it is important to consider the biological fate and activity of individual PCB

congeners when assessing the risk that PCBs pose to human health.  Although PCBs are found in all

tissues analyzed to date, they are stored in high concentration in adipose tissue since they are lipophilic. 

PCB congeners are metabolized in the liver by microsomal cytochromes P-450 to less lipophilic

metabolites that can undergo conjugation with glutathione or glucuronic acid.  The rate of congener

metabolism is highly dependent on the chlorine substitution pattern in the biphenyl ring.  Strong evidence

suggests that the mechanism of toxicity for dioxin-like congeners is related to the enhancement of gene

expression triggered by initial binding to the same cytosol receptor (Ah) involved in 2,3,7,8-TCDD

toxicity.  The mechanism(s) of toxicities for other groups of PCB congeners, such as those showing

estrogenic or neurotoxic activity, and the mechanism of PCB carcinogenicity, has not been elucidated. 

Similarly, disruption of neutrophil function and calcium homeostasis appear to be mediated by

mechanisms other than the Ah receptor.  Disruption in thyroid hormone homeostasis occurs through

mechanisms that transcend all congener groups of PCBs.

3.5.1 Pharmacokinetic Mechanisms

The mechanism of absorption of PCBs by the inhalation and dermal routes of exposure is not known. 

PCBs are well absorbed from the gastrointestinal tract.  Diet is the main source of background human

exposures to persistent lipophilic organic pollutants, such as PCBs (Duarte-Davidson and Jones 1994;

Hansen 1999).  Because PCBs are lipid soluble, transfer from the aqueous environment of the intestine

across cell membranes is a passive process (Albro and Fischbein 1972; Gage and Holm 1976; Matthews

and Anderson 1975).  The concentration gradient favors partitioning across the cells into blood serum or

lymph.  As with other fat-soluble chemicals, PCBs are most likely absorbed from the gut via lymphatic

circulation rather than by transfer to the hepatic portal system (Hansen 1999).  Absorption efficiency

appears to increase with the degree of ring chlorination up to a certain point.  Schlummer et al. (1998)

calculated the net gastrointestinal absorption of PCBs in humans as the difference between contaminant

input with food and contaminant output with feces, normalized to the contaminant intake.  PCB congeners

showing nearly complete net absorption had very low or nondetectable levels in the serum lipids, while 
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for other congeners, there was a trend for decreasing net absorption and /or increasing net excretion with

increasing congener concentration in serum lipids.  Together, the data support the passive diffusion model

for gastrointestinal absorption, where the concentration of the contaminant in the blood is the major factor

determining absorption.  This suggests that the ingestion of more highly contaminated food should result

in nearly complete absorption due to the high diffusion gradient associated with high levels of PCBs in

the gut contents.  In blood, PCBs are associated with red blood cells, albumin, and lipoproteins (Matthews

et al. 1984).  Distribution in plasma is determined primarily by partition among the various proteins

according to lipid solubility and concentration (Matthews and Dedrick 1984).  As the degree of

halogenation increased, the binding to lipoproteins also increased (Matthews et al. 1984).  Partition of

PCBs between blood and tissues also seems determined primarily by lipid content and concentration

gradient.  The fraction associated with red blood cells is more rapidly removed from the blood by the

tissues than fractions associated with plasma proteins (Matthews et al. 1984).  

Borlakoglu et al. (1990) proposed a model for the transport and cellular uptake of PCBs following oral

exposure.  Following the ingestion of PCBs, the absorbed congeners are secreted into the bloodstream in

association with chylomicrons and then are associated with the VLDLs synthesized in the liver.  As the

congeners come in contact with the lipoprotein lipase located on the surface of the capillary endothelial

cells of adipose tissue, the PCB congeners are transferred into the adipocytes.  Mobilization of PCBs from

adipose tissue will release PCBs into the bloodstream, where they will associate with HDL and plasma

proteins, such as albumin, by non-covalent binding.  Noren et al. (1999) found PCBs mainly associated

with the lipoprotein depleted (LPDP) fractions (containing primarily albumin).  On average, 44% of the

PCBs and 61% of the methylsulfonyl metabolites of PCBs (MeSO2-CBs) were distributed in the LPDP

fraction.  This may be expected due to the more polar character of the  MeSO2-CBs.  Among the

lipoprotein fractions, LDL was the main carrier of PCBs, while MeSO2-CBs were distributed equally

between the LDL and HDL fractions.  When the concentrations of PCBs were calculated in relation to

apolipoprotein B, the levels were about 10 times higher in VLDL than LDL.  

As with other organisms, PCB residue levels in humans reflects multiple exposure pathways, and

congener-specific elimination.  PCB profiles in human serum immediately following exposures reflect the

profiles in the exposure sources; however, selective metabolism and excretion begin to alter the congener

profile within 4–24 hours (Hansen 1999).  Thus, in most cases, the PCB profile in adults represents a

steady state body burden which does not match the profile of commercial PCB formulations (Aroclors,

etc.).  For example, neither the PCB profile of human adipose nor of a composite human milk sample

resemble the pattern of any commercial PCB formulation (Jensen and Sundstrom 1974; Safe et al. 1985).  
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Humans, aquatic mammals, birds, fish, and other biota retain unique profiles of PCB congeners consistent

with exposures and toxicokinetic principles.  Borlakoglu and Walker (1989) reported that fish-eating sea

birds, human fat, American breast milk, and German breast milk have similar PCB congener profiles,

reflecting fish residues, which differ from Aroclor 1260 or Clophen A60.  Hansen (1999) cites several

studies reporting diet-dependent PCB profiles in various birds, and a larger breast milk study shows

regional differences in congener profiles in Canadian breast milk (Newsome et al. 1995).  

PCBs are rapidly (minutes to hours) cleared from the blood of adult animals and accumulated in the liver

and muscle (Matthews and Dedrick 1984; Safe 1980, 1989a).  This appears to be due to the high

perfusion in the liver and the relatively large muscle volume.  Due to their high affinity for lipophilic

tissues, PCBs are subsequently translocated to adipose tissue and skin for storage.  Subcutaneous fat

accumulates PCBs more slowly than central fat stores (Hansen and Welborn 1977).  Stored residues are

less available for elimination or metabolism by the liver.  A dynamic equilibrium of PCB concentrations

is established among all tissues for each PCB homolog (Matthews and Dedrick 1984).  As previously

discussed, mathematical models that incorporate anatomical as well as pharmacokinetic parameters have

been developed to describe distribution and body burden of PCBs in adults of species such as mice, rats,

dogs, and monkeys (Lutz and Dedrick 1987).  Pharmacokinetic modeling of PCB disposition predicts

that, at equilibrium, changes in the PCB concentration or changes in tissue volume of any tissue will lead

to a corresponding change in all tissues (Matthews and Dedrick 1984).  For instance, if the concentration

of a PCB congener in the liver is reduced by metabolism or excretion, then the concentration of that PCB

congener in all tissues will be reduced proportionally.  Congeners that cannot be metabolized or excreted

will concentrate in adipose tissue, but will still circulate to other tissues.  Exposure to other tissues will be

proportional to the respective tissue/blood ratios and the concentration in the main storage tissues.  This

dynamic distribution results in accumulation of persistent congeners in all tissues and depletion from all

tissues of those congeners that can be cleared (Matthews and Dedrick 1984).  Metabolites, however, may

accumulate in specific tissues due to solubility differences as well as tissue binding (Section 3.4.3). 

Relatively little is known regarding the  biological and toxicological activity of these persistent PCB

metabolites.  

A possible explanation for the highly selective retention of the OH-PCBs in blood may be their structural

resemblance with thyroxin.  Both rats and mice metabolize PCB 77 by CYP1A to the 1,2-shift metabolite,

4-OH-3,5,3',4'-PCB, 5-OH 3,3',4,4'-PCB, and 6-OH-3,3',4,4'-PCB (McKinley et al. 1993; Morse et al.

1995).  Only the 4-OH metabolite was selectively retained, with blood containing 4-OH-3,5,3',4'-PCB at a

concentration 15 times higher than the parent compound, 5 days after oral exposure to PCB 77 in mice 
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(Bergman et al. 1994).  This metabolite was found to be bound to a thyroxin-transporting protein

(transthyretin) in the blood (Brouwer et al. 1986).  Competitive binding studies of OH-PCBs relative to T4

and computer modeling showed that OH-PCBs with the substituents in meta or para positions were much

more effective competitors for T4 than if the substituents were bound in an ortho position (Rickenbacher

et al. 1986).

Methylsulfonyl (MeSO2) metabolites of PCBs have been widely detected in the tissues of marine

mammals (Bergman et al. 1994; Letcher et al. 1995) and of humans (Haraguchi et al. 1986; Noren et al.

1996; Weistrand and Noren 1997).  Although the binding mechanism for 3-MeSO2 metabolites is not

clear, the binding protein for 4-MeSO2 metabolites has been identified as a uteroglobulin-like protein

present in the nonciliated bronchiolar (Clara) cells of the lung, also referred to as Clara cell secretary

protein (CCSP) (Hard et al. 1995; Stripp et al. 1996).  Exposure to 4-MeSO2-2,2',4',5,5'-PCB

demonstrated that CCSP-deficient mice no longer accumulate this metabolite within lung or kidney tissue

(Stripp et al. 1996).  These data demonstrate that CCSP is the 4-MeSO2-PCB binding protein in mice and

suggests that 4-MeSO2-PCBs will accumulate at sites of CCSP localization, such as the respiratory and

reproductive tracts of humans. 

Experimental evidence using P32-postlabeling supports the hypothesis that lower chlorinated biphenyls are

metabolically activated to electrophilic species which bind to DNA (McLean et al. 1996; Oakley et al.

1996).  The incubation of 2-chloro-, 4-chloro-, 3-chloro-, 3,4-dichloro-, and 3,4,5-trichlorobiphenyl with

calf thymus DNA and rat liver microsomes followed by oxidation with a peroxidase, produced 1–3 major

DNA adducts.  The reactive metabolites may result for arene oxides and/or catechol and p-hydroquinone

species, which are oxidized to semiquinones and/or quinones.  The results raise the possibility that lower

chlorinated biphenyls may be genotoxic and may explain the fact that commercial PCB mixtures are

complete rodent carcinogens.

The major routes of excretion of PCBs are fecal and urinary.  For higher chlorinated congeners such as

penta- and hexachlorobiphenyls, the predominant route of excretion is via the feces (up to 60% of total

excretion); for lower chlorinated congeners, the situation seems to reverse (Lutz and Dedrick 1987). 

Mainly metabolites are found in urine and bile, although small amounts of parent compound may appear

in the feces, in particular congeners that are poorly metabolized such as 2,2N,4,4N,5,5N-hexaCB. 

Elimination kinetics tend to follow first-order processes with elimination rates directly related to their

metabolic rates (Gage and Holm 1976).  An important route of PCB elimination is milk.  This varies

considerably with the species due to volume and lipid content of the milk, but the basic mechanisms are
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the same for all species.  Because PCBs are in dynamic equilibrium with all tissues, they move passively

from blood to milk at the beginning of lactation to maintain their respective tissue/blood ratios.  

PCBs are metabolized by microsomal cytochrome P-450 to polar metabolites that can undergo

conjugation with glutathione and/or glucuronic acid.  The rate of metabolism of some PCB congeners

depends on (1) the degree of ring chlorination, (2) the chlorine ring substitution pattern, and (3) the

pattern and levels of P-450 isozymes and other enzymes in the target tissue.  PCB congeners of low

chlorine content are transformed into hydroxylated derivatives that are predominately eliminated in the

urine.  Highly chlorinated congeners with nonsusceptible substitution patterns are either retained or

excreted unchanged in the feces.  Extensive information regarding the mechanism of metabolism of PCBs

is provided in Section 3.4.3.

Because of the many factors that may determine the toxic response associated with exposure to PCBs,

caution should be exercised when extrapolating high-dose response to low-dose responses, and/or single-

dose exposures to chronic exposures.  Caution is warranted for two main reasons.  First, the dynamic

mechanism involved in the distribution of PCB congeners, in which lipophilicity plays a crucial role, will

influence the amount of circulating PCBs.  For example, one can predict that because lean individuals

have a smaller fat compartment, all of their body tissues will have higher concentrations of PCBs than

those in fatter individuals of the same exposure.  Also, the dosing schedule (single compared to repeated)

will determine whether steady-state is achieved.  Secondly, because PCBs can induce their own

metabolism, data obtained with exposure levels associated with a significant induction of CYP1A1 and

CYP1A2 may not necessarily reflect toxicokinetic behavior at low exposure levels.  This has been

illustrated in the model proposed by Brown (1994) in comparing high-exposed humans to low-exposed

humans.  In addition, serum residues of 2,2N,4,4N,5,5N-hexaCB are lower in prepubertal rats when the total

of two doses is high enough to induce P-450 2B (Li et al. 1994).  Toxicokinetic data for PCBs do not

suggest route-dependent toxicity.

3.5.2 Mechanisms of Toxicity

Mechanisms by which the broad array of toxic effects observed in animals orally exposed to PCB

mixtures develop are incompletely understood, but there is evidence to suggest that PCB congeners differ

qualitatively and quantitatively in biological activities and that multiple and diverse mechanisms are

involved in responses to PCB mixtures.  Research in the 1970s and 1980s focused on mechanistic

similarities between PCBs and CDDs involving initial mediation of effects by the Ah receptor (Poland 
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and Knutson 1982; Safe 1990, 1994), but research through the 1990s has found increasing evidence for

the involvement of alternative mechanisms for several PCB-induced effects (Chauhan et al. 2000; Cheek

et al. 1999; Fischer et al. 1998; Hansen 1998; Harper et al. 1993a, 1993b; Safe 1994; Tilson and

Kodavanti 1998).  An in-depth and all-inclusive review of the many recent and ongoing research efforts

regarding PCB mechanisms of action is outside of the scope of this profile; rather, an overview of this

large body of research is presented with the intent of providing information relevant to public health

issues.

 

PCB Effects Involving Ah-receptor Dependent Mechanisms    

Induction of Hepatic CYP1A Oxygenases and Phase II Enzymes.  PCBs induce hepatic Phase I enzymes

(CYP oxygenases) and Phase II enzymes (e.g., UDP glucuronyltransferases, epoxide hydrolase, or

glutathione transferase) to varying degrees and specificities (Connor et al. 1995; Hansen 1998; Safe

1994).  The demonstration of relationships between PCB molecular structure and induction of CYP

isozymes has provided a framework within which much mechanistic research has been conducted.  In

general, commercial mixtures of PCBs induce both 3-methylcholanthrene-type (CYP1A1 and 1A2) and

phenobarbital-type (CYP2B1, 2B2, and 3A) CYPs.  Strong structure-activity relationships have been

demonstrated between CYP1A1/1A2 induction in rodents and non-ortho and mono-ortho PCBs, which

can assume a coplanar molecular configuration and bind to the Ah receptor  (Connor et al. 1995; Hansen 

1998; Safe 1994).  In structure-activity studies of CYP1A induction in hepatocytes from Cynomolgus

monkeys by 20 PCBs varying in degree and pattern of chlorine substitution (4–7 chlorines), the most

potent inducers were without ortho chlorines (van der Burght et al. 1999).  Many PCBs with ortho

chlorines (mono-, di-, tri-, and tetra-ortho congeners) displayed no CYP1A induction activity, but a few

mono-ortho and multiple-ortho congeners displayed activities that were about 1,000- and 10,000-fold less

than the most potent non-ortho congeners, respectively (van der Burght et al. 1999).  A working

mechanistic hypothesis involves initial binding of coplanar PCBs to the Ah receptor in the cytosol of

target cells, transport of the ligand-receptor complex to the nucleus, and subsequent changes in gene

expression (e.g., induction of CYP1A1/1A2) leading to toxic responses via subsequent and/or parallel

molecular mechanisms that are largely unexplored.  Support for this hypothesis comes from the similarity

in the array of PCB effects compared with the array produced by 2,3,7,8-TCDD and related halogenated

aromatic hydrocarbons via initial Ah-receptor mediation, results from in vitro binding studies, and results

from congener-specific in vivo studies of specific end points (e.g., enzyme induction and down regulation,

body weight, and immunological responses to SRBC) in mouse strains and rat genders differing in

responsiveness to Ah-receptor mediation (Hori et al. 1997; Safe 1990, 1994).  
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The complexity of Ah-receptor mediated effects on hepatic enzyme levels is illustrated by results from a

study with mouse strains differing in Ah-receptor responsiveness and three PCB congeners (Hori et al.

1997).  Ah responsive (C57BL/6) and Ah nonresponsive (DBA/2) mice were given single intraperitoneal

doses of 3,3',4,4',5-pentaCB (a congener with high Ah receptor affinity), 3,3',4,4'-tetraCB (a congener

with lesser affinity), and 2,2',5,5'-tetraCB (a low-affinity ligand).  Only the high-affinity

3,3',4,4',5-congener produced body weight wasting in the dose range tested (up to 50 mg/kg) in

Ah-responsive C57BL/6 mice, and this effect was accompanied by a decrease in selenium-dependent

glutathione peroxidase and an increase in θ glutathione S-transferase.  The effect on levels of these Phase

II enzymes was not produced by the other congeners in C57BL/6 mice, and did not occur in DBA/2 mice

exposed to any of the congeners, indicating the involvement of Ah-receptor mediation.  These Phase II

enzymes both play protective roles in scavenging intracellularly generated peroxides and the balance of

their activities is likely to influence a cell’s ability to withstand damage from peroxides. 

Body Weight Wasting, Thymic Atrophy, and Porphyria.  In addition to induction of hepatic levels of

CYP1A1/1A2/1B1 and induction or repression of some Phase II enzymes, PCB-induced effects that

appear to predominately involve Ah-receptor initiated mechanisms include body weight wasting and

thymic atrophy from acute exposure (Hori et al. 1997; Safe 1994) and porphyria and porphyria cutanea

tardea (Franklin et al. 1997; Smith et al. 1990a, 1990b).  For example, single intraperitioneal doses of

5 mg/kg 3,3',4,4',5-pentaCB, a potent inducer of CYP1A1 and a high-affinity Ah-receptor agonist

(relative to other PCBs), produced marked body weight wasting in Ah-responsive C57BL/6 mice, but not

in DBA/2 mice that have a low-affinity Ah-receptor (Hori et al. 1997).  Showing a link between

Ah-receptor responsiveness and development of uroporphyria, female F344 rats had significantly higher

hepatic levels of porphyrins and ethoxyresorufin deethylase activity (an indicator of CYP1A1) in

response to exposure to 0.005% Aroclor 1254 in the diet for 15 weeks than did male rats (Smith et al.

1990b).  A similar gender-specific correlation between porphyrinogenic response and CYP1A induction

was observed in iron-loaded F344 rats exposed to single intraperitoneal doses of 63 mg Aroclor 1254/kg

(Franklin et al. 1997).  In mice of the Ah-responsive C57BL/6 strain, a single dose of iron-dextran

(600 mg Fe/kg), followed by feeding of a diet containing 0.01% Aroclor 1254 for up to 12 months,

produced markedly increased hepatic levels of porphyrins and liver enlargement, but this response to iron

and Aroclor 1254 was not observed in similarly treated DBA/2 mice (Smith et al. 1990a).  Exposure to

iron-dextran alone caused a moderate porphyria in C57BL/6 mice, but not in DBA/2 mice, lending

support to a postulate that there are constitutive genetic differences between these strains that influence

porphyria development and do not involve Ah-receptor mediation (Smith et al. 1990a).  One mechanistic

hypothesis proposes that induction of CYP1A2 by the Ah-receptor-PCB complex leads to generation of a
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competitive inhibitor of uroporphyrinogen decarboxylase in the liver and subsequent accumulation of

porphyrins (see Franklin et al. 1997).

Ah Receptor TEF Approach to Health Hazard Assessment.  A TEF approach to evaluating health

hazards from exposure to complex environmental mixtures containing PCBs, CDDs, and CDFs has been

developed and used to some extent to guide public health decisions because humans are exposed to

complex and varying mixtures of these halogenated aromatic hydrocarbons and there are limited

toxicological data for these complex mixtures and many of their components (ATSDR 1998; Safe 1990,

1994; van den Berg et al. 1998).  PCBs were included in this component-based approach because (1) the

spectrum of effects in animals exposed to some PCB mixtures and congeners is similar to the spectrum

produced by 2,3,7,8-TCDD (via Ah receptor initial mediation) and (2) coplanar PCBs display Ah receptor

binding affinities that were related to their potency in producing health effects in rodents such as body

weight wasting and inhibition of immunological responses to SRBC (Safe 1990, 1994).  The TEF

approach compares the relative potency of individual congeners, based on in vitro or acute in vivo data,

with that of 2,3,7,8-TCDD, the best-studied member of this chemical class, so that the TEF for

2,3,7,8-TCDD is 1.  The concentration or dose of each active component in a mixture of concern is

multiplied by its TEF to arrive at a TEQ, and the TEQs are added to give the total toxic equivalency of

the mixture which is compared with reference exposure levels for 2,3,7,8-TCDD expected to be without

significant risk for producing health hazards.  TEFs have recently been recommended by the World

Health Organization for 7 CDD, 10 CDF, and 12 PCB congeners (Van den Berg et al. 1998).  

Limitations in using the TEF approach for assessing health hazards from PCB-containing environmental

media revolve around the inherent assumptions that the components jointly act in an additive manner

through a common Ah-receptor initial mechanism and the evidence that Ah-receptor-binding congeners in

PCB-containing environmental mixtures are minor components (Hansen 1998; Safe 1998a, 1998b) 

Several studies have provided evidence of nonadditive interactions between specific PCB congeners and

between some PCB congeners and 2,3,7,8-TCDD (Safe 1998a, 1998b), and there is evidence, discussed

below, that several Ah-receptor-independent mechanisms may make contributions to toxic effects from

PCB mixtures.

PCB Effects Involving Ah-receptor Independent Mechanisms    

Induction of Hepatic CYP2B Oxygenases.  In contrast to the distinct relationships between

CYP1A1/1A2 induction, PCB molecular structures, and Ah-receptor initiation of toxic effects, 
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relationships between potency in inducing CYPs 2B1/2B2/3A, PCB structural properties, and toxic

effects are less clear (Connor et al. 1995).  For example, some PCBs with two ortho chlorines and lateral

chlorines induce both types of CYPs and display a very small affinity for the Ah receptor, whereas other

di-ortho PCBs with one or two para chlorines predominately induce CYP2B1/2B2/3A and have no

measurable affinity for the Ah receptor (Connor et al. 1995; Hansen 1998).  Some noncoplanar

congeners, such as 2,2',4,4'-tetraCB, also induce CYP3A through the glucocorticoid-sensitive pregnane X

receptor (PXR) (Schuetz et al. 1986, 1998).  It is clear that PCB induction of phenobarbital-type CYPs is

independent of the Ah receptor and that the most potent inducers of CYP have at least two ortho chlorines

and one or two para chlorines.

Other PCB-induced effects involving Ah-receptor independent mechanisms include neurological and

neurodevelopmental effects involving changes in brain dopamine levels (Seegal 1996b, 1998; Seegal et

al. 1989, 1990; Shain et al. 1991); inhibition of dopamine vesicular uptake (Mariussen et al. 1999) and/or

changes in brain cell intracellular calcium homeostasis and related signal transduction processes

(Kodavanti and Tilson 1997; Tilson and Kodavanti 1997, 1998; Tilson et al. 1998; Wong and Pessah

1996, 1997; Wong et al. 1997); tissue injury related to activation of neutrophils (Brown and Ganey 1995;

Ganey et al. 1993; Tithof et al. 1995); thyroid disruptions not involving UDP-GT induction (Chauhan et

al. 2000; Cheek et al. 1999; Darnerud et al.1996a; Li and Hansen 1996; Ness et al. 1993; Van Birgelen

1992); and PXR and ryanodine receptor (RyR) mediated mechanisms (Schuetz et al. 1986, 1998).  

Brain Dopamine Levels and Neurological Effects.  Aroclor 1254 decreased cellular levels of dopamine

in cultured pheochromocytoma cells, which synthesize, store, release, and metabolize dopamine in a

manner similar to the intact mammalian central nervous system (Seegal et al. 1989).  Daily oral exposure

of adult nonhuman primates (Macaca nemestrina) to Aroclor 1016, a commercial mixture of lightly

chlorinated PCB congeners, for 20 weeks, likewise, produced decreased dopamine concentrations in brain

regions including the caudate, putamen, substantia nigra, and hypothalamus (Seegal et al. 1990).  In these

brain regions, only three PCB congeners were detected (2,4,4'-triCB and 2,2',4,4'- and 2,2',5,5'-tetraCB),

suggesting that nonplanar PCBs, which are poor Ah receptor agonists, may have been responsible for the

effect.  Structure-activity studies of 50 PCB congeners in the pheochromocytoma in vitro system found

that the most active congeners had at least two ortho chlorines (e.g., 2,2',4,6-, 2,2',5,5'-, and

2,2',4,5-tetraCB) and that congeners that were relatively strong Ah receptor agonists (e.g.,

3,3',4,4'-tetraCB and 3,3',4,4',5-pentaCB) were inactive or had minimal effects on dopamine levels (Shain

et al. 1991).  However, ortho substitution was not the sole determinant of activity in this system; for

example, a congener with four ortho chlorines (2,2',6,6'-tetraCB) had no effect on dopamine levels in 
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pheochromocytoma cells (Shain et al. 1991).  The effect on dopamine levels has been postulated to

involve decreased dopamine synthesis via direct or indirect PCB inhibition of tyrosine hydroxylase

(Choksi et al. 1997; Seegal et al. 1996b) or L-aromatic amino acid decarboxylase (Angus et al. 1997)

and/or decreased uptake of dopamine into vesicles (Mariussen et al. 1999).  For example, several

congeners that were inactive in causing dopamine level changes in pheochromocytoma cells (e.g.,

2,2',6,6'- and 3,3',4,4'-tetraCB) were much less active in inhibiting vesicular uptake of dopamine than

other more active congeners (e.g., 2,2',4,6- and 2,2',4,5'-tetraCB) (Mariussen et al. 1999). 

Disruption of Ca+2 Homeostasis and Neurological Effects.  Neurological and/or neurodevelopmental

effects from exposure to PCBs also have been hypothesized to involve interference with calcium

homeostatic mechanisms and intracellular second messenger systems by PCB congeners that are not

effective Ah receptor agonists (see reviews by Kodavanti and Tilson 1997; Tilson and Kodavanti 1998;

Tilson et al. 1998).  In agreement with structure-activity relationships observed for PCB effects on

dopamine levels in pheochromocytoma cells (Shain et al. 1991), 2,2'-diCB altered intracellular calcium

homeostasis in cultured rat cerebellar granule cells (increased free calcium levels and inhibited calcium

buffering systems) at noncytotoxic exposure concentrations (higher concentrations were cytotoxic)

(Kodavanti et al. 1993).  In contrast, 3,3',4,4',5'-pentaCB, one of the most effective Ah receptor agonists

among tested PCBs (Safe 1994), was not cytotoxic in the tested concentration range and did not alter

calcium homeostasis to as great an extent as 2,2'-diCB (Kodavanti et al. 1993).  Using phorbol ester

binding in rat cerebellar granule cells as a measure of protein kinase C translocation (which is thought to

play key roles in cellular signal transduction in neurons and be regulated by several intracellular factors

including intracellular levels of free calcium), commercial mixtures of PCBs (Aroclors 1016, 1254, and

1260) were shown to increase protein kinase C translocation in a concentration-dependent manner with

varying potencies  (Kodavanti et al. 1995).  Aroclors 1016 and 1254 were more potent than Aroclor 1260. 

Examination of 24 PCB congeners showed that the most potent congeners (e.g., 2,2'-diCB,

2,2',5,5'-tetraCB, and 2,2',4,6,6'-pentaCB) had multiple ortho chlorines, whereas congeners without ortho

chlorines tended to have either no or lower activities (Kodavanti et al. 1995).  Similar results were found

in structure-activity studies of 24 PCB congeners and their effects on in vitro Ca+2 sequestration by

microsomes and mitochondria from freshly isolated rat cerebellar cells (Kodavanti et al. 1996a). 

Structure activity relationships for PCB congeners and protein kinase C translocation in rat cerebellar

granule cells and Ca+2 sequestration were similar to relationships for PCB congener-induced changes in

dopamine levels in pheochromocytoma cells.  For example, 2,2',5,5'- and 2,2',4,6-tetraCB were among the

most potent congeners and 2,2',6,6'- and 3,3',4,4'-tetraCB were inactive in all three systems (Kodavanti et

al. 1995, 1996a; Shain et al. 1991). 
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One proposed molecular target for PCB disruption of calcium homeostasis that may be involved in

neurological and neurodevelopmental effects is ryanodine-sensitive Ca+2 channels.  Commercial PCB

mixtures with intermediate to high degrees of chlorination (Aroclors 1248, 1254, and 1260) enhanced

ryanodine binding to calcium release channels in sarcoplasmic reticulum membranes from skeletal or

cardiac rabbit muscles, and mixtures with lower (Aroclors 1221, 1232) or higher (Aroclor 1268)

chlorination showed little enhancement (Wong and Pessah 1996).  Examination of selected

pentachlorobiphenyls indicated that ortho substitution favored activity; 2,2',3,5',6-pentaCB induced the

greatest enhancement of ryanodine binding, whereas the 3,3',4,4',5-isomer did not enhance binding

(Wong and Pessah 1996).  The 2,2',4,6,6'-isomer with full substitution at the ortho positions produced

less enhancement than the 2,2',3,5',6-isomer, indicating that some degree of rotation about the biphenyl

bond may be important for full activity.  Results from studies with hippocampal slices from freshly

dissected rat brains indicated that perfusion with a tri-ortho congener (2,2',3,5',6-pentaCB) enhanced

ryanodine binding and inhibited electrophysiological responses to electrical pulse stimulations, but a

mono-ortho congener (2,3',4,4'-tetraCB) showed no enhancement of ryanodine binding and no inhibition

of electrophysiological responses to stimulation (Wong et al. 1997).  Offspring of rats exposed to gavage

doses of 8 or 32 mg/kg/day 2,2',3,5',6-pentaCB on gestation days 10–16 displayed neurobehavioral

changes as adults (depressed open field locomotor activity, faster acquisition on a working memory task,

and no changes in a delayed spatial alternation task) and changes in ryanodine binding to calcium

channels in specific regions of the brain (e.g., decreased in hippocampus and increased in cerebral cortex)

(Schantz et al. 1997).  Although it is not understood how these changes in ryanodine binding are

specifically related to the observed neurobehavioral changes, the results from this series of studies

emphasize the potential importance of Ah receptor independent mechanisms in PCB-induced neurological

and neurodevelopmental effects.

Neutrophil Function and Immunological Effects and Tissue Damage.  PCB-induced functional changes

in neutrophils may be involved in impaired immune defenses against pathogens or enhanced

inflammatory responses (e.g., production of reactive oxygen species and cytolytic enzymes) leading to

tissue injury.  Incubation of quiescent cultured rat peritoneal neutrophils with Aroclor 1242 stimulated

neutrophil production of superoxide anion and induced degranulation in a concentration-dependent

manner without producing cytotoxicity (Ganey et al. 1993).  In neutrophils that were activated for these

functions, Aroclor 1242 produced further increases in superoxide anion production, but inhibited the

activated degranulation process.  Similar effects were observed when neutrophils were incubated with

2,2',4,4'-tetraCB, a congener that has little affinity for the Ah receptor and induces phenobarbital-type

CYPs, but 3,3',4,4'-tetraCB, an Ah receptor agonist and inducer of 3-methylcholanthrene-type CYPs, did 
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not affect neutrophil function (Ganey et al. 1993).  The effects of 2,2',4,4'-tetrachlorbiphenyl on in vitro

production of superoxide anion by neutrophils were inhibited when neutrophils were incubated in the

absence of extracellular calcium or in the presence of TMB-8, an antagonist of the intracellular

mobilization of calcium (Brown and Ganey 1995).  In addition, neutrophil degranulation induced by

2,2',4,4'-tetraCB was enhanced by coexposure with the calcium ionophore A23187 (Brown and Ganey

1995).  A mono-ortho congener, 2,3,4,5-tetraCB, displayed somewhat different effects on neutrophil

functions than those from the 2,2',4,4'-congener: it stimulated degranulation in quiescent and activated

neutrophils, but only increased superoxide anion production in activated neutrophils, not in quiescent

cells.  The results from the neutrophil studies suggest the involvement of an Ah-receptor independent

mechanism that involves PCB-induced increases in intracellular calcium or PCB effects on a signal

transduction pathway that is dependent on calcium availability (Brown and Ganey 1995).  Recent work

suggests activation of phospholipase A2, release of arachidonic acid from triglycerides, and production of

prostaglandins as a probable mechanism (Tithof et al. 1996; Olivero and Ganey 2000).  This mechanism

could also contribute to other pathologies.

PCB Effects Involving Ah-receptor Dependent and Independent Mechanisms    

PCB-induced effects that may involve both Ah-receptor dependent and independent mechanisms include

liver hypertrophy (Hori et al. 1997); neurodevelopmental effects or reproduction effects involving

changes in steroid hormone homeostasis (Arcaro et al. 1999; Connor et al. 1997; Gierthy et al. 1997;

Fischer et al. 1998; Li and Hansen 1997; Nesaretnam and Dabre 1997; Nesaretnam et al. 1996; Seegal et

al. 1997) and/or thyroid hormone disruption (Brouwer et al. 1998b; Hansen 1998; Li and Hansen 1996a,

1996b, 1997); immunological effects (Harper et al. 1993a, 1993b; Silkworth and Grabstein 1982; Stack et

al. 1999); and cancer through nongenotoxic mechanisms involving promotion of oncogenic cells

(Cogliano 1998; Safe 1994) and/or genotoxic mechanisms (Robertson and Gupta 2000).

Liver Hypertrophy.  Liver hypertrophy in animals is produced by oral exposure to commercial PCB

mixtures and appears to involve both Ah-receptor dependent and independent mechanisms.  An

illustration of this phenomenon is the observation that single intraperitoneal doses of any one of three

PCB congeners varying in affinity for the Ah receptor produced liver hypertrophy in Ah responsive

(C57BL/6) and Ah nonresponsive (DBA/2 mice (Hori et al. 1997).  The studied congeners were

3,3',4,4',5-pentaCB, a congener with high Ah receptor affinity, 3,3',4,4'-tetraCB, a congener with lesser

affinity, and 2,2',5,5'-tetraCB, a low-affinity Ah-receptor ligand. 
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Reproductive Effects.  There are several studies examining female reproductive function variables in rats

(Brezner et al. 1984; Hany et al. 1999b; Linder et al. 1974; Sager and Girard 1994), mice (Welsch 1985),

rabbits (Seiler et al. 1994), minks (Aulerich and Ringer 1977; Backlin and Bergman 1995; Kihlstrom et

al. 1992), and monkeys (Arnold et al.1995, 1996; Barsotti et al. 1976) repeatedly exposed orally to

commercial PCB mixtures, predominately Aroclor 1254.  In general, results from these studies identify

minks and monkeys as sensitive species. 

In minks, repeated exposure to low doses of Aroclor 1254 or Clophen A50 (0.4–1.8 mg/kg/day) caused

reproductive failure that has been associated with fetal death following embryo implantation (Aulerich

and Ringer 1977; Backlin and Bergman 1995; Backlin et al. 1997; Kihlstrom et al. 1992).  This effect

may predominately involve Ah-receptor mediation, as evidenced by observations that only 1/10 minks

exposed to 2.5 ppm Aroclor 1254 in the diet from 1 month prior to breeding through parturition produced

offspring, whereas exposure by a similar protocol to 2,2',4,4',5,5'-hexaCB or 2,2',3,3',6,6'-hexaCB at

concentrations up to 5 ppm did not influence reproductive performance (Aulerich et al. 1985).  In

contrast, exposure to dietary concentrations as low as 0.1 ppm 3,3',4,4',5,5'-hexaCB in this study

(Auerlich et al. 1985), and 0.05 ppm in another study (Aulerich et al. 1987), caused mortality and

prevented the minks for reproducing.  Dietary exposure of minks to a fraction of Aroclor 1254, containing

only congeners with no ortho-chlorines or a single ortho-chlorine and representing <20% of the total

weight of Aroclor 1254, reduced litter size and fetal survival, and increased incidence of interrupted

pregnancies to a similar degree as doses of the complete Aroclor 1254 mixture (1.3 mg/kg/day)

containing the same amount of these congeners (Kihlstrom et al. 1992).  These results suggest the

importance of Ah-receptor mediation of PCB-induced reproductive impairment in minks.  

Another mink study comparing reproductive effects from intraperitoneal doses of 2,2',4,4',5,5'- and

3,3',4,4',5,5'-hexaCB reinforces the idea that congeners with high Ah-receptor affinity are more potent

than congeners with low Ah-receptor affinity, but also provides evidence that Ah-receptor independent

mechanisms may be involved (Patnode and Curtis 1994).  Administration of single 20-mg/kg doses of the

2,2',4,4',5,5'-isomer (a poor Ah-receptor agonist that has been detected in wild mink tissues at

concentrations 50-fold greater than the 3,3',4,4',5,5'-isomer) to pregnant minks on the approximate date of

implantation did not affect the number of implantation sites (assayed 14 days after dose administration),

but significantly decreased the number of embryos and embryonic weight, crown-to-rump length, and

head length.  The 3,3',4,4',5,5'-isomer (at lower dose levels of 0.4 or 0.8 mg/kg) also did not affect the

number of implantation sites, but produced more severe effects on embryo survival and the weight,

crown-to-rump length, and head length of surviving embryos (Patnode and Curtis 1994).
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The mechanisms involved in PCB-induced reproductive impairment in minks are unknown, but

examination of mid- to late-gestation placentae from minks exposed to Clophen A50 by light and electron

microscopy revealed degenerative lesions in maternal (endothelial detachment and thrombosis in maternal

vessels) and fetal (trophoblastic disintegration and loss of fetal capillary integrity) tissues (Backlin et al.

1998b).  Jones et al. (1997) postulated that the mechanisms are likely to be multifactorial given the

possibility of direct and/or indirect tissue damaging actions of PCBs and the wide range of reported

effects of PCBs on steroid hormone synthesis and functions including PCB regulation of CYP oxygenases

that activate or deactivate different endogenous steroid hormones, estrogenic and antiestrogenic effects of

PCBs, and PCB regulation of estrogen and progesterone receptor levels (see Battershill 1994; Li and

Hansen 1997; Patnode and Curtis 1994).

Impaired ability to conceive and decreased fetal survival have been observed following repeated exposure

of female Rhesus monkeys to commercial PCB mixtures.  Exposure to dietary levels of 2.5 or 5 ppm

Aroclor 1248 (approximately 0.1 or 0.2 mg/kg/day) for 16–19 months (including a 7-month period before

breeding with nonexposed males) produced resorptions or abortions in 3/8 and 4/6 impregnated female

Rhesus monkeys, compared with 0/12 in a control group (Barsotti et al. 1976).  In this study, 12/12, 8/8,

and 6/8 females became impregnated in the 0-, 2.5-, and 5-ppm groups, respectively.  Another study fed

encapsulated Aroclor 1254 at dose levels of 0, 0.005, 0.02, 0.04, or 0.08 mg/kg/day to female Rhesus

monkeys for 37 months before breeding with nonexposed males and continued dosing through mating

and gestation (Arnold et al. 1995).  Incidences of abortions, resorptions, or stillbirths were 2/11, 5/10, 3/4,

2/6, and 4/5 in impregnated monkeys in the control through high-dose groups, respectively; respective

incidences for impregnation success were 11/16, 10/16, 4/15, 6/14, and 5/15 (Arnold et al. 1995). 

Mechanisms for these effects in monkeys are unknown, but microscopic examination of tissues from

control and exposed monkeys in the second monkey study found no evidence for an association with

endometriosis (Arnold et al. 1996).

The plausibility that PCB effects on reproductive function (and other functions such as neurobehavior and

immunological competence) may involve PCB effects on endocrine functions has led to investigations of

the estrogenic and anti-estrogenic activities of PCB mixtures and individual congeners, and the effects of

PCBs or related halogenated aromatic compounds on steroid hormone metabolism via induction of

Phase I or Phase II enzymes.  How these PCB effects are specifically related to PCB effects on

reproductive function is unknown, but the results of these investigations provide further evidence that

reproductive effects from PCB mixtures may not be restricted to Ah-receptor mediation alone and are 
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likely to involve multiple mechanisms that have yet to be elucidated.  Related information on endocrine

disruption is discussed in Section 3.6.   

The estrogenic and anti-estrogenic activities of some commercial PCB mixtures, PCB congeners, and

hydroxylated derivatives of PCB congeners have been assayed by examining uterine variables in

immature or ovariectomized female rodents, cell proliferation or gene expression variables in cultured

cells including human breast cancer or HeLa cells, and in vitro binding to estrogen receptor preparations

(see Andersson et al. 1999; Arcaro et al. 1999; Battershill 1994; Connor et al. 1997; Gierthy et al. 1997;

Hansen 1998; Kramer et al. 1997; Krishnan and Safe 1993; Li and Hansen 1997; Moore et al. 1997; Safe

1999; Safe et al. 1998b for reviews).  In general, (1) PCB-induced estrogenic activities have been

characterized as weak compared to the endogenous hormone, 17β-estradiol, (2) a wide variability of

responses has been observed across types of PCBs and assays indicating the involvement of multiple

mechanisms (e.g., direct binding to the estrogen receptor is not the only way that estrogenic or anti-

estrogenic physiological effects may be mediated), (3) anti-estrogenic activities have been most strongly

associated with PCBs that are Ah-receptor agonists, and (4) hydroxylated metabolites of PCBs are

postulated to be at least partly responsible for physiological responses to PCBs that may involve changes

in estrogen receptor-dependent physiological processes.  Recent demonstrations that hydroxy PCBs

inhibit hydroxy steroid sulfotransferase suggest that PCB metabolites indirectly exert estrogenic activity

via inhibition of estradiol metabolism (Kester et al. 2000).

Early studies showed that subcutaneous administration of 8 mg of Aroclors 1221, 1232, 1242, or

1248 increased uterine weight and glycogen content in rats, but similar exposure to Aroclors 1254, 1260,

1262, or 1268 did not produce this estrogenic effect (Bitman and Cecil 1970).  More recent studies have

provided further evidence that PCB mixtures can produce estrogenic responses (albeit weak) and that

PCB congeners with multiple ortho chlorines (or their hydroxylated metabolites) may be at least partly

responsible for these responses.  Intraperitoneal doses of Aroclor 1242 (8 mg/rat on day 20 or 0.08 or

0.32 mg/rat on days 20 and 21) significantly increased uterine wet weight in immature female rats to

about 40% of the increase produced by 0.001 mg 17β-estradiol (Jansen et al. 1993).  Similar increases in

uterine wet weight were produced by exposure to di-ortho congeners or hydroxylated derivatives

(0.640 mg 2,2',5,5'-tetraCB or 0.250 mg 2,4,6-trichloro-4'-hydroxy-biphenyl on days 20 and 21), but not

by exposure to a coplanar congener without ortho chlorines (0.160 mg 3,3',4,4'-tetrachlorobiphenyl).  In

another study, the tetra-ortho congener, 2,2',6,6'-tetraCB, displayed similarly weak estrogenic responses

in an in vitro human breast cancer cell assay and an in vivo immature female rat assay (Arcaro et al.

1999).  This congener did not competitively bind in vitro to recombinant human estrogen receptors α and 
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β, but a hydroxylated metabolite, 2,2',6,6'-tetrachloro-4'-hydroxy-biphenyl, competitively bound to

estrogen receptor α and produced proliferative responses in the breast cancer assay at concentrations

about 10-fold lower than effective concentrations of the parent molecule (Arcaro et al. 1999). 

Combined exposure of immature rats to 0.32 mg Aroclor 1242 and 0.001 mg 17β-estradiol produced a

response similar to estradiol alone, indicating no obvious anti-estrogenic activity, but combined exposure

to 0.001 mg estradiol and 0.160 mg 3,3',4,4'-tetraCB markedly diminished the estradiol-induced increase

in uterine wet weight (Jansen et al. 1993).  Anti-estrogenic effects similar to those from 3,3',4,4'-tetraCB

were also observed in rodent uterine tissue (Astroff and Safe 1990) and human breast cancer cells

(Krishnan and Safe 1993) by other congeners with no or single ortho chlorines (e.g., 3,3',4,4',5-pentaCB,

2',3,3',4,4',5-hexaCB), but commercial PCB mixtures were not anti-estrogenic in the breast cancer cell

assay.  Whereas the data collected by Krishnan and Safe (1993) suggest that anti-estrogenic activities of

PCBs may be related to Ah receptor binding affinity of nonmetabolized PCBs, anti-estrogenic activities

of hydroxylated metabolites of PCBs with no ortho chlorines, with single ortho chlorines, or with

multiple ortho chlorines have been observed in in several assay systems (Connor et al. 1997; Moore et al.

1997; Nesaretnam et al. 1996; Safe et al. 1998b).  Thus, whether or not a specific PCB mixture will be

anti-estrogenic appears to be at least partly dependent on the chlorine substitution pattern of the parent

PCBs and on the degree of formation of hydroxylated metabolites.

Structure-activity relationships for estrogenic activities of PCB congeners or their metabolites are less

clear.  Some hydroxylated PCBs (2,4,6-trichloro-4'-hydroxy-biphenyl and 2,3,4,5-tetrachloro-4'-hydroxy-

biphenyl) have been demonstrated to competitively bind to mouse estrogen receptor preparations and to

increase uterine weight and glycogen in immature mice (Korach et al. 1988).  In other estrogenic assays,

2,2',4,4',6-tetraCB, 2,4,4',6-tetrachloro-4-hydroxy-biphenyl, and 2,4,6-trichloro-4'-hydroxy-biphenyl were

equally effective in stimulating proliferation of human breast cancer cells, but only 2,4,6-trichloro-

4'-hydroxy-biphenyl caused significant induction of vitellogenin in cultured brown trout hepatocytes

(Andersson et al. 1999).  A structure-activity study of eight hydroxylated PCBs in a series of in vivo and

in vitro estrogenic assays found that structure activity relationships were complex and differed from one

assay to the next (Connor et al. 1997; Safe et al. 1998b).  For example, all but one of the compounds

displayed competitive binding to rat and mouse cytosolic estrogen receptors (affinities ranged from about

10-3 to 10-5 of 17β-estradiol’s affinity), but no estrogenic activities (wet weight, peroxidase activity,

progesterone receptor level) were produced in the uteri of immature rats and mice exposed to three

consecutive daily doses of the individual hydroxylated PCB congeners at levels of  25, 50, or 100 mg/kg.  
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In contrast, four of the hydroxylated congeners produced estrogenic effects in cultured human breast cells

and HeLa cells (Connor et al. 1997; Safe et al. 1998). 

Complex effects on male reproductive organs and functions have been observed in animals exposed to

commercial PCB mixtures including reduced testes weight in adult male offspring of guinea pigs exposed

during gestation to Clophen A50 (Lundkvist 1990), reduced testes weight in adult male offspring of

female rats exposed from 50 days prior to mating through birth of offspring to 4 mg/kg/day

Aroclor 1254 or a mixture of PCBs reflective of the composition of human milk samples (Hany et al.

1999b), reduced fertility (without changes in reproductive organ weights, sperm production, or sperm

morphology) in adult male offspring of female rats exposed to doses of 8 mg/kg Aroclor 1254 and higher

on lactation days 1, 3, 5, 7, and 9 (Sager et al. 1987, 1991), and elevated testes weight and increased

sperm production in adult rats exposed to subcutaneous doses of Aroclor 1242 or 1254

(10–80 mg/kg/day) on postnatal days 0–25 (Cooke et al. 1996).  Mechanisms involved in these effects on

male reproductive organ development are unknown, but have been postulated to involve developmentally

specific periods of responsiveness such as long-lasting elevation of testosterone-metabolizing enzymes

from in utero exposure leading to reduced testes weight (Hany et al. 1999b) and continued depression of

thyroid hormone levels during the neonatal period leading to Sertoli cell proliferation and increased testes

weight (Cooke et al. 1996).

Disruption of Thyroid Hormone Homeostasis.  Concern that the thyroid hormone system may be

important in PCBs mechanisms of toxicity stems from mainly two important types of observations

(Brouwer et al. 1998b; Porterfield and Hendry 1998): (1)  extensively corroborated findings in

experimental animals that exposure to PCBs in utero and/or during early development (e.g., through

breast milk) can deplete levels of circulating thyroid hormone in the fetus or neonate, which may give rise

to effectively a hyopothyroid state during development (Collins and Capen 1980c; Cooke et al. 1996;

Corey et al. 1996; Darnerud et al. 1996a; Goldey et al. 1995; Juarez de Ku et al. 1994; Li et al. 1998;

Morse et al. 1996c; Rice 1999a; Provost et al. 1999; Schuur et al. 1998a; Seo and Meserve 1995; Zoeller

et al. 2000); and (2) the recognition of the importance of thyroid hormones in normal development of the

brain, as evident from neurodevelopmental disorders and deficits associated with hypothyroidism

(Boyages 2000).  The latter are typified by iodine deficiency (e.g., endemic cretinism), which can produce

a wide range of neurodevelopmental deficits, including auditory, motor, and intellectual deficits.  These

outcomes suggest an importance of thyroid hormones in the normal development of the fetal cochlea,

basal ganglia, and cerebral cortex, which begin to develop in humans during the second trimester of

gestation.  This is also the time in which the fetal thyroid gland becomes functional.
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Evidence for a potential thyroid hormone involvement in PCB toxicity rests largely on observations made

in experimental animals, including rodents and nonhuman primates (see Section 3.2.2.8.3).  Although the

studies differ in design and, in particular, the emerging picture from these studies is that, depending on

dose and duration, PCBs can disrupt the production and disposition of thyroid hormones at a variety of

levels.  The major findings include (1) histological changes in the thyroid gland indicative of both

stimulation of the gland (e.g., similar to that induced by TSH or a hypothyroid state) and a disruption of

the processing of follicular colloid needed for normal production and secretion thyroid hormone (Chu et

al. 1994, 1995, 1996a, 1996b, 1998b; Collins and Capen 1980a; Collins et al. 1977; Hansen et al. 1995;

Tryphonas et al. 1986b); (2) depression of serum T4 and T3 levels, which may effectively create a

hypothyroid state (Byrne et al. 1987; Collins and Capen 1980c; Cooke et al. 1996; Corey et al. 1996;

Darnerud et al. 1996a; Desauliniers et al. 1997; Goldey et al. 1995; Gray et al. 1993; Hansen et al. 1995;

Hood et al. 1999; Juarez de Ku et al. 1994; Kasza et al. 1978; Li et al. 1998; Morse et al. 1996c; Price et

al. 1988; Provost et al. 1999; Rice 1999a; Schuur et al. 1998a; Seo and Meserve 1995; Van Birgelen et al.

1995; Zoeller et al. 2000); (3) increased rates of elimination of T4 and T3 from serum (Goldey and Crofton

1998); (4) increased activities of T4-UDP-GT in liver (Chu et al. 1995; Desauliniers et al. 1997; Morse et

al. 1996c; Schuur et al. 1998a; Van Birgelen et al. 1995), which is an important metabolic elimination

pathway for T4 and T3; (5) decreased activity of iodothyronine sulfotransferases in liver which are also

important in the metabolic elimination of iodothyronines (Schuur et al. 1998a, 1998b, 1999);

(6) decreased activity of iodothyronine deiodinases  including brain Type-2 deiodinase, which provide the

major pathways for the production of the active thyroid hormone, T3 (Morse et al. 1996c; Schuur et al.

1998a); and (7) decreased binding of T4 to transthyretin an important transport protein for both T4 and T3

(Cheek et al. 1999; Darnerud et al.1996a).  

The above observations suggest that PCBs can disrupt the production of thyroid hormones, both in the

thyroid and in peripheral tissues, can interfere with their transport to peripheral tissues, and can accelerate

the metabolic clearance of thyroid hormones.  The most convincing evidence that PCBs can exert toxicity

by disrupting thyroid hormone system derives from two studies in rats.  In one study, neurobehavioral

deficits in pups that experienced exposures to Aroclor 1254 in utero and during nursing, were

significantly attenuated by subcutaneous injections of T4 that increased serum T4 and T3 concentrations

that were otherwise depressed in the PCB-exposed animals (Goldey and Crofton 1998).  While this study

examined relatively high doses of Aroclor 1254 ($1 mg/kg/day), it nevertheless demonstrated

neurodevelopmental effects that are directly relevant to observations made in epidemiological studies and

to neurological sequelae of fetal hypothyroidism, including motor disturbances and hearing.  
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In the second study, increased testes weight and sperm production in rats that were administered

Aroclor 1254 on postnatal days 1–25 were attenuated by injections of T4 on postnatal days 1–25, which

also prevented the depression in serum T4 concentrations (Cooke et al. 1996).  Here again, although

produced by relatively large doses of Aroclor 1254 ($40 mg/kg/day, subcutaneous), similar effects can be

produced by other hypothyroid-inducing agents, including PTU.  Furthermore, the effects observed may

reflect a disruption of the normal sexual maturation process, which is known to be associated with

neonatal hypothyroidism in humans (Longcope 2000).

The effects PCBs on thyroid hormone status appear to involve Ah-receptor mediated or modulated actions

as well as actions that appear to be independent of the Ah receptor.  Depressed levels of serum T4 have

been observed in rats given oral doses of coplanar PCB congeners (Desauliniers et al. 1997; Price et al.

1999; Van Birgelen et al. 1994b) or di-ortho-substituted congeners that have relatively low affinity for the

Ah receptor (Ness et al. 1993; Van Birgelen 1992).  At least one potential Ah-receptor mediated

mechanism for this effect is the induction of UDP-GT, which catalyzes the metabolic elimination of T4 to

the T4-glucuronide conjugate (Desauliniers et al. 1997; Van Birgelen et al. 1995).  However, the UDP-GT

mechanism does not appear to be important in the depression of T4 levels produced by non-coplanar

PCBs.  Li and Hansen (1996) observed depressed serum T4 levels in rats administered a PCB mixture

extracted from soil.  Treatment of the mixture with activated charcoal greatly reduced the content of co-

planar PCBs in the mixture, substantially decreased the potency of the mixture for inducing UDG-GT and

EROD, but had little effect on the potency for depressing T4 levels.  This suggests that an Ah-independent

mechanism may exist that is not related to UDP-GT induction. 

PCBs, including poly-ortho-substituted PCBs, which have a very low affinity for the Ah receptor, inhibit

the binding of T4 to transthyretin, an important transport protein for both T4 and T3 (Chauhan et al. 2000;

Cheek et al. 1999; Darnerud et al. 1996a).  Inhibition of binding of thyroid hormones to transthryetin

could alter hormone delivery to target tissues, including the brain, and could also result in depressed

levels of serum total TT4 or TT3 (Brouwer et al. 1998).

Immunological Effects.  Studies with inbred mice strains differing in Ah-receptor responsiveness

indicate that immunosuppression from PCB mixtures involves Ah-receptor mediation (e.g., Silkworth and

Grabstein 1982; Harper et al. 1993a), but there is evidence that other mechanisms also may contribute to

PCB-induced immunological effects (Harper et al. 1993a, 1993b; Stack et al. 1999).  Illustrating the

importance of Ah-receptor mediation for some PCB congeners, Ah-responsive C57BL/6 mice given

single intraperitoneal doses of 100 mg/kg 3,3',4,4'-tetraCB showed marked decreases in the number of 
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splenic PFCs formed in response to immunization with SRBCs (which are T-cell dependent antigens)

compared with similarly treated Ah-nonresponsive DBA/2 mice (Silkworth and Grabstein 1982).  In

addition, ED50 values for 2,3,7,8-TCDD, three CDFs, and two PCBs without ortho substitution

(3,3',4,4',5-pentaCB and 3,3',4,4',5,5'-hexaCB) in this immunotoxicity assay were lower in C57BL/6 mice

than in DBA/2 mice, and the order of immunotoxic potency of these six compounds was the same as that

for potency in inducing CYP1A1 (Harper et al. 1993a).  In another study, a series of four hexachlorinated

biphenyls with differing chlorine substitution patterns displayed varying ED50 values in the same

immunotoxicity assay as follows: 2, >1,000, 120, and >1,000 µmol/kg for a mono-ortho- (2,3,3',4,4',5'-),

di-ortho- (2,2',4,4',5,5'-), tri-ortho- (2,2',4,4',5',6-), and tetra-ortho (2,2',4,4',6,6'-)-isomer, respectively

(Harper et al. 1993b).  Harper et al. (1993b) concluded that immunotoxic potency decreases (i.e., ED50s

increase) with increasing ortho-chlorine substitution of PCBs, but, as shown above, the decrease was not

monotonic with increasing degree of ortho chlorination.  Furthermore, this relationship did not apply to

more highly chlorinated PCBs with three or four ortho chlorines that are inactive as Ah-receptor agonists

and only minimally induce CYP1A1 (Harper et al. 1993b).  Three nonachlorobiphenyls

(2,2',3,3',4,4',5,5',6-, 2,2’,3,3',4,4',5,6,6'-, and 2,2',3,3',4,5,5',6,6'-nonaCB) and decachlorobiphenyl

displayed ED50s for inhibition of the splenic PFC response to SRBC in C57BL/6 mice that were less than

those for hexachlorobiphenyl isomers with multiple ortho chlorines reported above: 15, 7, 17, and

35 µmol/kg, respectively.  These results are consistent with the hypothesis that some PCBs induce

immunotoxicity via Ah-receptor independent mechanisms.  In an in vitro assay of cell proliferation in

response to lipopolysaccharide (a T-cell independent antigen), Aroclors 1221, 1242, 1254, or

1260 inhibited the proliferative response similarly in splenocytes from either C57BL/6 or DBA/2 mice

(Stack et al. 1999).  Two non-ortho and two mono-ortho PCBs that have been demonstrated to be

effective Ah-receptor agonists and CYP1A1 inducers did not inhibit the in vitro proliferative response to

lipopolysaccharide, but two di-ortho congeners (2,2',3,4,4',5- and 2,2',4,4',5,5'-hexaCB) significantly

inhibited the response.  These in vitro results provide supporting evidence for the existence of

mechanisms of PCB immunotoxic actions that are independent of the Ah receptor.  

Cancer.  Lifetime oral exposure to any one of four commercial PCB mixtures (Aroclors 1016, 1242,

1254, and 1260) has been demonstrated to produce liver tumors in female rats; Aroclor 1260 also induced

liver tumors in male rats (Mayes et al. 1998).  Mixtures with high chlorination content (e.g.,

Aroclor 1254) were generally more potent than mixtures with low chlorine content (e.g., Aroclor 1016)

(Mayes et al. 1998).  Tumor promotion by commercial PCB mixtures following initiation by a variety of

chemical agents also has been investigated in a number of animal systems including rat liver, rat kidney,

mouse skin, and newborn mouse liver and lung (see Silberhorn et al. 1990 for review).  The tumor 
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promoting effect of extended exposure to PCB mixtures was demonstrated principally in the liver of rats;

there is some evidence that PCB mixtures also can promote tumors in mouse lung and mouse skin, but not

in rat kidneys.  The mechanism of PCB-induced cancer is poorly understood, but there is evidence to

suggest that both Ah-receptor dependent and independent mechanisms may be involved.

PCB promotion of tumors does not appear to be solely an Ah-receptor mediated process, since individual

congeners that are not Ah receptor agonists have tumor promotion capabilities in animal systems.  For

example, 2,2',5,5'-tetraCB, 2,2',4,4'-tetraCB, and 2,2',4,4',5,5'-hexaCB were shown to promote liver

tumors in female Sprague-Dawley rats (Hemming et al. 1993; Preston et al. 1985).  In addition,

2,2',5,5'-tetraCB, 2,2',3,3',4,4'-hexaCB, and 2,2',4,4',5,5'-hexaCB were potent inhibitors of in vitro gap

junctional cellular communication, an assay that is indicative of tumor promotion capacity (Bager et al.

1997; De Haan et al. 1996).  A general working mechanistic hypothesis for PCB promotion of liver

tumors involves indirect stimulation of cell proliferation following cell or tissue injury by reactive

metabolites of PCBs (Silberhorn et al. 1990).  Alternatively, the cell injury could be caused by increased

intracellular concentrations of other reactive species (e.g., superoxide anion or other reactive oxygen

species) caused by an overall imbalance from PCB-induced perturbations of cellular biochemical

processes, including induction of CYP oxygenases and glutathione S-transferases, repression of selenium-

dependent glutathione peroxidases, and/or disruption of calcium homeostatic processes and signal

transduction pathways (Silberhorn et al. 1990).

PCB mixtures have not shown consistent tumor initiating activity in animal initiation-promotion protocols

(Silberhorn et al. 1990), but demonstration that chronic oral exposure to commercial PCB mixtures

induced liver tumors in female rats (Mayes et al. 1998) suggests that PCBs may have both tumor initiating

and promoting activities.  Although PCB mixtures generally have been found to be inactive as mutagens

in S. typhimurium strains and in several other tests of genotoxicity that may be predictive of tumor

initiation capability (see Silberhorn et al. 1990 for review), in vitro studies with rat microsomes have

indicated that metabolism of lower chlorinated PCBs (e.g., 4-CB, 3,4-diCB, and 3,4,5-triCB) can lead to

covalently modified macromolecules including proteins and DNA (see Robertson and Gupta 2000 for

review).  Studies demonstrating the Ah-receptor dependence or independence of this potential genotoxic

effect from PCBs were not located.  The available data indicate that PCBs are not potent genotoxicants,

but the possible involvement of genotoxic mechanisms (involving covalent modification of proteins

and/or DNA) in the development of PCB-induced cancer is not without some experimental support.
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The relative contribution that Ah-receptor dependent and independent mechanisms may make to

carcinogenic responses to PCB mixtures is unknown.  Safe (1994) compared carcinogenic responses of

female rats to 2,3,7,8-TCDD in the diet with responses of female rats of the same strain to

Aroclor 1260 in the diet using the TEF approach.  TCDD at a TEQ feed concentration of 2,100 ppt

induced hepatic adenocarcinomas in 11/50 (22%) rats, whereas a TEQ of only 1,040 ppt from

Aroclor 1260 induced adenocarcinomas in 24/47 (51%) rats.  For this situation, the TEF approach

markedly underestimated the carcinogenic response to Aroclor 1260.  A possible explanation is that PCB

congeners that are not Ah receptor agonists and are abundant in Aroclor 1260 make significant

contributions to the mixture’s carcinogenicity.  Although this comparison suggests that the TEF approach

may underestimate cancer responses to complex PCB mixtures, another study of the tumor promotion

activity of a simpler mixture of two CDDs, one CDF, and three PCBs in female rats found that the TEF

approach overestimated the observed response by a factor of about 2 (van der Plas et al. 1999).  The

mixture contained 2,3,7,8-TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachloro-

dibenzofuran, 3,3',4,4',5- and 2,3',4,4',4-pentaCB, and 2,3,3',4,4',5-hexaCB at relative levels found in

Baltic Sea herring.  The rats were initiated with an injection of diethylnitrosoamine, 24 hours after a

partial hepatectomy and were administered weekly subcutaneous injections of the mixture for 20 weeks

starting 6 weeks after initiation.  The volume and volume fraction of glutathione S-transferase-positive

altered hepatic foci were taken as indicators of tumor promotion activity in this study (van der Plas et al.

1999).  Although the composition of this mixture reflected relative concentrations and accounted for

>90% of total TEQs in Baltic Sea herring, it did not contain PCBs with multiple ortho chlorines, which

comprise the predominant bulk of PCB weight in most commercial and environmental mixtures.  For

example, non-, mono-, and di-ortho congeners accounted for <1, 18, and 82% of PCB weight per gram of

fat in human milk samples from Italy (Larsen et al. 1994).  Another group of rats was similarly treated

with the same synthetic mixture plus a di-ortho PCB congener (2,2',4,4',5,5'-hexaCB), which is one of the

predominant PCB congeners in environmental mixtures and has minimal Ah receptor agonist activity

(van der Plas et al. 1999).  Mean foci volume and foci volume fraction were increased in rats treated with

the supplemented mixture compared with the mixture without the di-ortho congener, but the observed

responses were still less than that predicted by the TEF approach.  Better understanding of the relative

contributions of Ah receptor dependent and independent mechanisms to the carcinogenicity of PCB

mixtures awaits further research.
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3.5.3 Animal-to-Human Extrapolations

As with other organisms, PCB residue levels in humans reflects multiple exposure pathways, and

congener-specific elimination.  PCB profiles in human serum immediately following exposures reflect the

profiles in the exposure sources, however, selective metabolism and excretion begin to alter the congener

profile within 4–24 hours (Hansen 1999).  Thus, in most cases, the PCB profile in adults represents a

steady state body burden which does not match the profile of commercial PCB formulations (Aroclors,

etc.).  For example, the PCB profile of a composite human milk sample does not resemble the pattern of

any commercial PCB formulation (Safe et al. 1985).  Furthermore, PCB residue analysis indicates that

humans, aquatic mammals, birds, fish, and other biota retain a similar profile of PCB congeners. 

Borlakoglu and Walker (1989) reported that fisheating sea birds, human fat, American breast milk, and

German breast milk have similar PCB congener profiles, which are different from that of Aroclor 1260 or

Clophen A60.  The hexachlorinated PCBs, 138 (2,2',3,4,4',5') and 153 (2,2',4,4',5,5'), were major

congeners present in all samples from this study, while PCB 149 (2,2',3',4',5',6) was only found as a major

component of Aroclor 1260 and Clophen A60.  PCB 118 (2,3',4,4',5) was a major congener in biological

samples and only a minor component of the commercial PCB formulations.  McFarland and Clarke

(1989) reported that  PCBs 118, 138, 153, 156, 170, 180, and 187 were PCBs retained at a high relative

abundance in porpoise, carp, duck, oligochaete, seston, shrimp, and human fat and milk.  PCB 153 was

the most abundant congener present in porpoise, carp, duck, oligochaete, and human fat and milk.  In

contrast to PCB residues present in the above populations with normal background exposures, humans

retained PCB 74 as the most abundant PCB in human fat and serum following a case of occupational

exposure (Stellman et al. 1998; Wolff et al. 1982a, 1982b).  Thus, selective high level exposures, such as

an occupational exposure, may result in an altered profile of retained PCB congeners, relative to that

observed in cases of normal background exposure.  However, the above studies generally find similar

PCB congener profiles in different tissues and species, indicating that the biological fate of PCB

congeners is qualitatively similar in various animal species.

Significant interspecies differences in the quantitative metabolism of PCBs contributes directly to the

species differences in the relative persistence (biological half-life) of PCB congeners.  For example,

PCB 153 is often the most prevalent PCB detected in humans, due to exposure and the slow rate of

biotransformation of this congener.  3-Hydroxy-2,4,5,2',4',5'-hexaCB was identified as the major

metabolite of PCB 153 formed by human CYP2B6 (Ariyoshi et al. 1995).  CYP2B6 is constitutively

expressed in humans, but only accounts for a maximum of 1–2% of the total CYPs in human liver. 

Approximately 75% of the subjects examined had no detectable level of CYP2B6 protein by 
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immunoblotting (Mimura et al. 1993).  This may be the reason why no metabolite of PCB 153 was

detected in an earlier in vitro study using human liver microsomes (Schnellmann et al. 1983). 

3-Hydroxy-PCB 153 is also the major metabolite in the feces and bile of monkeys treated with PCB 153

(Norback et al. 1981).  The CYP2B isoform represents about 5% of the total P-450 in monkey liver, and

this may account for the approximately 5-fold more rapid elimination of PCB 153 from monkeys and the

resulting shorter half-life in monkeys, relative to humans (Mes et al. 1995a, 1995b, 1995c; Ohmori et al.

1992).  The dog has a unique ability to more rapidly metabolize and eliminate PCB 153 through the

CYP2B11- mediated 3-hydroxylation of PCB 153 via a 2,3-arene oxide intermediate (Ariyoshi et al.

1992; Duignan et al. 1987; Sipes et al. 1982).  Thus, the high potential for accumulation and persistence

of PCB 153 in humans is due to the very low levels of CYP2B6 and low catalytic activity for

3-hydroxylation of this congener.

PCB congeners that are structurally similar to 2,3,7,8-TCDD exhibit Ah receptor-mediated responses. 

These congeners appear to be the most potent for some PCB-induced effects.  Therefore, it would seem

reasonable to assume that, at least for these specific toxic effects, differences in susceptibility among

animal species could be explained by differences in receptor levels in target tissues or by differences in

the affinity of binding of the specific congeners.  Information on this subject is mainly derived from

studies with 2,3,7,8-TCDD.  Data summarized by Okey et al. (1994) indicate that differences in receptor

level or receptor affinity cannot explain marked differences in susceptibility to halogenated aromatic

hydrocarbon toxicity across species.  It is possible that differences in sensitivity among species may be

determined by some event or events occurring after the initial binding of the ligand to the receptor.  

The Ah receptor has been identified in many human tissues and human cell lines (Okey et al. 1994). 

Several differences between human and animal Ah receptor protein have been described.  Perhaps the

most important difference is that the human Ah receptor has a lower affinity for 2,3,7,8-TCDD than the

Ah receptor from rats or from responsive strains of mice.  This information, although limited, leads to the

conclusion that the biochemical and toxicological responses (those that exhibit a threshold) to dioxin-like

aromatic hydrocarbons in humans would require higher doses or exposures than in animal species

possessing a receptor of higher affinity (Okey et al. 1994).
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3.6 ENDOCRINE DISRUPTION

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine

system because of the ability of these chemicals to mimic or block endogenous hormones, or otherwise

interfere with the normal function of the endocrine system.  Chemicals with this type of activity are most

commonly referred to as endocrine disruptors.  Some scientists believe that chemicals with the ability to

disrupt the endocrine system are a potential threat to the health of humans, aquatic animals, and wildlife. 

Others believe that endocrine disrupting chemicals do not pose a significant health risk, particularly in

light of the fact that hormone mimics exist in the natural environment.  Examples of natural hormone

mimics are the isoflavinoid phytoestrogens (Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These

compounds are derived from plants and are similar in structure and action as endogenous estrogen.  While

there is some concern over the public health significance of endocrine disrupting chemicals, it is agreed

that the potential exists for these compounds to affect the synthesis, secretion, transport, binding, action,

or elimination of natural hormones in the body that are responsible for the  maintenance of homeostasis,

reproduction, development, and/or behavior (EPA 1997).  As a result, endocrine disruptors may play a

role in the disruption of sexual function, immune suppression, and neurobehavioral function.  Endocrine

disruption is also thought to be involved in the induction of breast, testicular, and prostate cancers, as well

as endometriosis (Berger 1994; Giwercman et al. 1993; Hoel et al. 1992).

In recent years, concern has been raised that many industrial chemicals, PCBs among them, are

endocrine-active compounds capable of having widespread effects on humans and wildlife (Crisp et al.

1998; Daston et al. 1997; Safe et al. 1997).  (Effects on wildlife are summarized in Section 3.3.2). 

Particular attention has been paid to the possibility of these compounds mimicking or antagonizing the

action of estrogen.  Estrogen influences the growth, differentiation, and functioning of many target

tissues, including female and male reproductive systems, such as mammary gland, uterus, vagina, ovary,

testes, epididymis, and prostate.  In addition, there is evidence that some of these environmentally-

persistent chemicals alter the thyroid hormone system, which is very a important system in normal

structural and functional development of sexual organs and the brain.  

Several studies in humans have examined possible associations between body burdens of PCBs and other

organochlorines and the incidence of alterations in tissues and systems.  Evaluations of blood samples

from women who aborted, miscarried, or delivered prematurely showed positive associations between

these effects and concentrations of PCBs (Bercovici et al. 1983; Leoni et al. 1989; Wassermann et al.

1980, 1982).  However, other chlorinated chemicals were also increased, and the specific contribution of 
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PCBs, if any, could not be determined.  Similar findings were reported in a more recent study of the

general population (Gerhard et al. 1998).  Another general population study found no association between

endometriosis and concentrations of PCBs in the blood (Lebel et al. 1998).  

Breast Cancer.  The issue of breast cancer has received special attention following reports of high levels

of organochlorine compounds in breast cancer patients.  However, the hypothesis that environmental

exposure to PCBs can cause breast cancer in humans is controversial (Safe and Zacharewski 1997; Wolff

and Toniolo 1995).  Breast adipose levels of total PCBs or individual congeners were increased in women

with breast cancer in some (Dewailly et al. 1994; Falck et al. 1992; Guttes et al. 1998; Wasserman et al.

1976) but not all studies (Aronson et al. 2000; Liljegren et al. 1998; Mussalo-Rauhamaa et al. 1990;

Unger et al. 1984), but methodological limitations such as small numbers of subjects and/or inadequate

control for known breast cancer risk factors could have contributed to the inconsistent findings.  Two of

these studies included analyses that suggested increased risks of breast cancer associated with increased

tissue levels of some congeners in subgroups of women that were postmenopausal or had estrogen

receptor-positive tumors (Aronson et al. 2000; Liljegren et al. 1998).  Other environmental exposure

studies used serum PCB concentrations as the marker of exposure with blood samples taken after the

diagnosis of breast cancer (Moysich et al. 1998, 1999; Wolff et al. 1993; Zheng et al. 2000), or

prospectively collected prior to diagnosis (Dorgan et al. 1999; Helzlsouer et al. 1999; Høyer et al. 1998;

Hunter et al. 1997; Krieger et al. 1994; Wolff et al. 2000).  None of the serum studies found significantly

different mean blood levels of PCBs in breast cancer cases and controls.  Additionally, there were no

significant associations between risk of breast cancer and serum PCBs in most of these studies, although

some data suggest that risk may be increased in some subgroups of postmenopausal women (Moysich et

al. 1998, 1999).  Many of the better designed studies were prospective, and none found that PCBs were

associated with the occurrence of breast cancer (Dorgan et al. 1999; Helzlsouer et al. 1999; Høyer et al.

1998; Hunter et al. 1997; Krieger et al. 1994; Wolff et al. 2000).  However, the prospective studies are

limited by one biomarker of exposure in the distant past, which would not reflect differences over time in

exposure, absorption, enzyme induction, or other factors influencing body burden such as breast-feeding. 

It is still possible that the PCB measurements were too abridged to detect abnormally high proportions of

the more labile congeners, which appear to have greater estrogenic activities (Hansen 1998, 1999). 

Mortality from breast cancer was not increased in studies of workers who were occupationally exposed to

relatively high levels of PCBs (Brown 1987b; Brown and Jones 1981; Kimbrough et al. 1999a), providing

an additional indication that lower level environmental exposures to PCBs are unlikely to contribute

significantly to the disease.  Overall, the evidence for an association between breast cancer and PCBs

remains inconclusive and needs further study.  
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Estrogenic and Anti-Estrogenic Activity.  In early studies of experimental animals, research was focused

on the effects of chemicals administered orally or by parenteral routes.  In recent years, most of the

research has focused on elucidating the mechanisms of action involved using test systems in vitro which,

although not without limitations, are easier to manipulate and can be developed into biomarker assays for

(anti)estrogenic activity.  In general, results from in vivo and in vitro studies indicate that PCBs have

much lower estrogenic potency than the endogenous hormone, 17β-estradiol.  Subcutaneous

administration of 8 mg of Aroclors 1221, 1232, 1242, or 1248 increased uterine weight and glycogen

content in rats, but similar exposure to Aroclors 1254, 1260, 1262, or 1268 did not produce this

estrogenic effect (Bitman and Cecil 1970).  More recent studies have provided further evidence that PCB

mixtures can produce estrogenic responses (albeit weak) and that PCB congeners with multiple ortho

chlorines (or their hydroxylated metabolites) may be at least partly responsible for these responses. 

Intraperitoneal doses of Aroclor 1242 (8 mg/rat on day 20 or 0.08 or 0.32 mg/rat on days 20 and 21)

significantly increased uterine wet weight in immature female rats to about 40% of the increase produced

by 0.001 mg of 17β-estradiol (Jansen et al. 1993).  Similar increases in uterine wet weight were produced

by exposure to di-ortho congeners or hydroxylated derivatives (0.640 mg PCB 52 or 0.250 mg of

2,4,6–trichloro-4'-hydroxy-biphenyl on days 20 and 21), but not by exposure to 0.160 mg of the coplanar

congener PCB 77.  In another study, the tetra-ortho congener, PCB 47, displayed similarly weak

estrogenic responses in an in vitro human breast cancer cell assay and an in vivo immature female rat

assay (Arcaro et al. 1999).  This congener did not competitively bind in vitro to recombinant human

estrogen receptors α and β, but a hydroxylated metabolite, 2,2',6,6'-tetrachloro-4'-hydroxy-biphenyl,

competitively bound to estrogen receptor α and produced proliferative responses in the breast cancer

assay at concentrations about 10-fold lower than effective concentrations of the parent molecule (Arcaro

et al. 1999).  Evaluation of the offspring from rats given a PCB congener mixture simulating the congener

content of human milk from 50 days prior to mating until birth showed significantly increased relative

uterine weight in immature females on PND 21 (Hany et al. 1999b).

Anti-estrogenic properties of PCBs also have been examined in numerous studies.  Combined exposure of

immature rats to 0.32 mg Aroclor 1242 and 0.001 mg 17β-estradiol produced a response similar to

estradiol alone, indicating no obvious anti-estrogenic activity, but combined exposure to 0.001 mg

estradiol and 0.160 mg of PCB 77 markedly diminished the estradiol-induced increase in uterine wet

weight (Jansen et al. 1993).  Anti-estrogenic effects similar to those from PCB 77 were observed in rodent

uterine tissue (Astroff and Safe 1990) and human breast cancer cells (Krishnan and Safe 1993) by other

congeners with no or single ortho chlorines (e.g., 3,3',4,4',5-pentaCB, 2',3,3',4,4',5-hexaCB), but

commercial PCB mixtures were not anti-estrogenic in the breast cancer cell assay.  Whereas the data 
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collected by Krishnan and Safe (1993) suggest that anti-estrogenic activities of PCBs may be related to

Ah receptor binding affinity, anti-estrogenic activities of hydroxylated PCB congeners with multiple

ortho chlorines have been observed in several assay systems (Connor et al. 1997; Moore et al. 1997; Safe

et al. 1998b).   

Structure-activity relationships for estrogenic activities of PCB congeners or their metabolites are less

clear.  Some hydroxylated PCBs (2,4,6-trichloro-4'-hydroxy-biphenyl and 2,3,4,5-tetrachloro-4'-hydroxy-

biphenyl) have been demonstrated to competitively bind to mouse estrogen receptor preparations and to

increase uterine weight and glycogen in immature mice (Korach et al. 1988).  In other estrogenic assays,

PCB 104, 2,4,4',6-tetrachloro-4-hydroxy-biphenyl, and 2,4,6-trichloro-4'-hydroxy-biphenyl were equally

effective in stimulating proliferation of human breast cancer cells, but only 2,4,6-trichloro-4'-hydroxy-

biphenyl caused significant induction of vitellogenin in cultured brown trout hepatocytes (Andersson et

al. 1999).  A structure-activity study of eight hydroxylated PCBs in a series of in vivo and in vitro

estrogenic assays found that structure-activity relationships were complex and differed from one assay to

the next (Connor et al. 1997; Safe et al. 1998b).  For example, all but one of the compounds displayed

competitive binding to rat and mouse cytosolic estrogen receptors (affinities ranged from about 10-3 to

10-5 of 17β-estradiol’s affinity), but there was no evidence of estrogenic activities (wet weight, peroxidase

activity, progesterone receptor level) in the uteri of immature rats and mice exposed to three consecutive

daily doses of the individual hydroxylated PCB congeners at levels of  25, 50, or 100 mg/kg.  In contrast,

four of the hydroxylated congeners produced estrogenic effects in cultured human breast cells and HeLa

cells (Connor et al. 1997; Safe et al. 1998).  These results suggest that PCB-induced estrogenic activities

are weak compared to the endogenous hormone, 17β-estradiol.  Further, the wide variability of responses

observed across types of PCBs and assays indicates: (1) the involvement of multiple mechanisms,

(2) anti-estrogenic activities appear strongly associated with PCBs that are Ah receptor agonists, and

(3) hydroxylated metabolites of PCBs seem to be at least partly responsible for physiological responses to

PCBs that may involve changes in estrogen receptor-dependent physiological processes.

The results of some studies summarized above suggest that PCBs can produce estrogenic and anti-

estrogenic responses by interfering with the binding of natural ligands to their receptors.  The type of

response varied between assays and was dependent of the concentration of the test material.  Reviews of

published data suggest that the amount of naturally occurring estrogens ingested daily through a normal

diet is far greater than the daily intake of estrogenic organochlorine chemicals (Safe 1995).  Moreover,

results from many assays indicate that estrogenic organochlorines have a potency of 0.000001 times that

of 17β-estradiol, compared to 0.001–0.0001 times for naturally-occurring estrogenic substances.  In 
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addition, many naturally-occurring estrogenic substances, such as bioflavonoids, are also antiestrogenic at

some concentrations.  Dietary levels of anti-estrogen equivalents (industrial or natural) are significantly

higher than the estrogen equivalents of organochlorine chemicals (Safe 1995).

Reproductive Effects.  Sager and Girard (1994) have provided evidence of reproductive effects of PCBs

that may be related to PCB-induced endocrine disruption.  After giving birth, adult female rats were

exposed to 0, 8, 32, or 64 mg Aroclor 1254/kg/day by gavage on lactation days 1, 3, 5, 7, and 9.  Young,

mature, and older adult female offspring were examined at 2–4.5, 5–8, and 8.5–13 months of age,

respectively, and mated to untreated males at 112, 200, and 350 days of age, respectively.  Effects

included a dose-related reduction in preweaning weight gain that was statistically significant at

$32 mg/kg/day, delayed puberty as indicated by late vaginal opening and first estrus at $32 mg/kg/day;

reduced mating rate (sperm-positive females) in mature offspring at $8 mg/kg/day; reduced implantation

rate and mean number of embryos in young and mature offspring at 64 mg/kg/day; reduced uterine

weight during proestrus in young, mature, and older offspring at $8 mg/kg/day; and reduced uterine

response to exogenous 17β-estradiol in ovariectomized mature offspring at $8 mg/kg/day.  Average estrus

cycle length was not significantly different in any of the groups, although cycle patterns were altered in

low- and high-dose young offspring and in mid-dose mature rats.  Pregnancy and ovulation rates,

reproductive aging, and ovarian weights were not affected by exposure Aroclor 1254.

Fertility was markedly reduced in male offspring of Holtzman rats that were exposed via lactation to

Aroclor 1254 (Sager 1983; Sager et al. 1987, 1991).  The maternal rats were treated with 8, 16, 32, or

64 mg/kg doses by gavage on lactation days 1, 3, 5, 7, and 9, and male offspring were mated with

untreated females 130–150 days postweaning (Sager 1983; Sager et al. 1987).  Significant decreases in

numbers of implants and embryos were observed at $8 mg/kg/day (21 and 29% lower than controls,

respectively), and there was either a significant decrease or a decline in number and percent of normal

fertilized eggs and eggs at the two- to four-cell blastocyte stages at $16 mg/kg/day.  The reduction in

male fertility appears to be due to impaired ability of sperm to fertilize eggs because sperm production,

morphology, and motility were not affected and plasma FSH and testosterone concentrations were not

reduced (Sager et al. 1987, 1991).  Seminal vesicle and ventral prostate weights were decreased at

$16 mg/kg/day.

Fertility was not impaired in male offspring of Sprague-Dawley rats that were administered 0 or

30 mg/kg/day doses of Aroclor 1221, 1242, or 1260 by gavage on days 12–20 of gestation (Gellert and

Wilson 1979).  There were no exposure-related changes in the percentage of male offspring (F1) siring 
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progeny when they were mated with unexposed females at approximately 6 months of age, or in the sex

ratio of the F2 offspring from this mating.  Measurements of absolute testes and ventral prostate weights

in the F1 males (relative weights were not determined) showed no changes except for increased testes

weight in the Aroclor 1260 group.  Conflicting results regarding fertility in the aforementioned studies

may be related to the difference in exposure periods.  In the experiments by Sager and others, exposure

was postnatal via breast milk, whereas in the Gellert and Wilson (1979) study, the male rats were exposed

in utero.  

Studies that examined reproductive end points in women found indications that exposure to PCBs may be

associated with menstrual disturbances.  Mendola et al. (1997) reported that consumption of Lake Ontario

sportfish was associated with shorter menstrual cycles in women from the New York State Angler cohort. 

This is a preliminary finding that needs to be interpreted cautiously because of limitations in the data

analysis, particularly the lack of information on confounders such as stress, use of contraceptives, body

mass index, and physical exercise.  The decreases in menstrual length were small and were considered not

likely to be clinically relevant.  At the highest exposure levels, the decrease was approximately 0.5 days

for women who reported regular cycles and 1 day for all women who reported cycle length information. 

The effect did not appear to be mediated through irregular cycles since the fish consumption-based

exposure levels were similar for women who reported regular or irregular cycles.  Menstrual cycle

changes (altered intervals, duration, and flow) have also been observed in women exposed to higher doses

of PCBs during the Yusho poisoning incident (Kusuda 1971).  The human populations in which menstrual

changes have been observed differ with respect to the sources of PCBs and exposures to other chemicals

that may affect susceptibility to menstrual disturbances.  Although the studies are insufficient for

determining which specific chemical(s) may be responsible for the observed alterations, the available data

support a possible association between PCBs and menstrual disturbances.

In a study of 89 women (87% German) with repeated ($2) miscarriages, Gerhard et al. (1998) found that

blood concentrations of PCBs were higher than the reference level in 22% of the cases.  The effect cannot

be specifically attributed to PCBs because blood levels of other organochlorine compounds

(pentachlorophenol, DDE, β- and γ-hexachlorocyclohexanes, HCB) were higher than reference ranges in

7–15% of the cases.  No significant differences in PCB levels were found between women with early or

late miscarriages (after #12 or >12 weeks of gestation) and primary or secondary miscarriages (had never

delivered or had delivered at least one baby).  Women with a history of at least four miscarriages (n=25)

had significantly elevated blood levels of PCBs, although other organochlorine compounds

(γ-hexachlorocyclohexane and HCB) were also increased.  Hormonal disorders were identified as the 
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cause of repeated miscarriages in 31% of the women, including hyperprolactinemia in 9%,

hyperandrogenemia in 7%, and luteal insufficiency in 14% of the cases.  Correlations were found between

increasing PCB concentrations and some hormonal parameters (e.g., increasing FSH and LH, decreasing

TSH) and immunological parameters (e.g., increasing IgM, monocytes, and NK cells, decreasing

interleukin 2 receptor-positive cells), but none of the associations were specific for PCBs.  There were no

significant associations between PCB concentrations and further conceptions or the outcome of further

pregnancies.

Thyroid Effects.  Concern that the thyroid hormone system may be important in the mechanism of

toxicity of PCBs stems from mainly two important types of observations (Brouwer et al. 1998b;

Porterfield and Hendry 1998): (1) extensively corroborated findings in experimental animals that

exposure to PCBs in utero and/or during early development (e.g., through breast milk) can deplete levels

of circulating thyroid hormone in the fetus or neonate, which may give rise to effectively a hypothyroid

state during development (Collins and Capen 1980c; Cooke et al. 1996; Corey et al. 1996; Darnerud et al.

1996a; Goldey et al. 1995; Juarez de Ku et al. 1994; Li et al. 1998; Morse et al. 1996c; Rice 1999a;

Provost et al. 1999; Schuur et al. 1998a; Seo and Meserve 1995; Zoeller et al. 2000); and (2) the

recognition of the importance of thyroid hormones in normal development of the brain and sexual organs.

Studies in animals have shown that, depending of dose and duration of exposure, PCBs can disrupt the

production and disposition of thyroid hormones at a variety of levels.  The major findings include

(1) histological changes in the thyroid gland indicative of both stimulation of the gland (e.g., similar to

that induced by TSH or a hypothyroid state) and a disruption of the processing of follicular colloid

needed for normal production and secretion thyroid hormone (Chu et al. 1994, 1995, 1996a, 1996b,

1998b; Collins and Capen 1980a; Collins et al. 1977; Hansen et al. 1995; Tryphonas et al. 1986b);

(2) depression of serum T4 and T3 levels, which may effectively create a hypothyroid state (Byrne et al.

1987; Collins and Capen 1980c; Cooke et al. 1996; Corey et al. 1996; Darnerud et al. 1996a; Desaulniers

et al. 1997; Goldey et al. 1995; Gray et al. 1993; Hansen et al. 1995; Hood et al. 1999; Juarez de Ku et al.

1994; Kasza et al. 1978; Li et al. 1998; Morse et al. 1996c; Rice et al. 1988, 1999a; Provost et al. 1999;

Schuur et al. 1998a; Seo and Meserve 1995; Van Birgelen et al. 1995; Zoeller et al. 2000); (3) increased

rates of elimination of T4 and T3  from serum (Goldey and Crofton 1998); (4) increased activities of

T4-UDP-GT in liver (Chu et al. 1995; Desaulniers et al. 1997; Morse et al. 1996c; Schuur et al. 1998a;

Van Birgelen et al. 1995), which is an important metabolic elimination pathway for T4 and T3;

(5) decreased activity of iodothyronine sulfotransferases in liver which are also important in the metabolic

elimination of iodothyronines (Schuur et al. 1998a, 1998b, 1999); (6) decreased activity of iodothyronine 
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deiodinases including brain Type-2 deiodinase, which provide the major pathways for the production of

the active thyroid hormone, T3 (Morse et al. 1996; Schuur et al. 1998a); and (7) decreased binding of T4

to transthyretin, an important transport protein for both T4 and T3 (Cheek et al. 1999; Darnerud et al.

1996a).   

The above observations suggest that PCBs can disrupt the production of thyroid hormones (in the thyroid

and in peripheral tissues), can interfere with their transport to peripheral tissues, and can accelerate the

metabolic clearance of thyroid hormones.  The most convincing evidence that PCBs can exert toxicity by

disrupting thyroid hormone system derives from two studies in rats.  In one study, neurobehavioral

deficits in pups that experienced exposures to Aroclor 1254 in utero and during nursing were significantly

attenuated by subcutaneous injections of T4 that increased serum T4 and T3 concentrations which were

otherwise depressed in the PCB-exposed animals (Goldey and Crofton 1998).  While this study examined

relatively high doses of Aroclor 1254 ($1 mg/kg/day), it nevertheless demonstrated neurodevelopmental

effects that are directly relevant to observations made in epidemiological studies and to neurological

sequelae of fetal hypothyroidism, including motor disturbances and hearing.  

In the second study, increased testis weight and sperm production in rats that were administered

Aroclor 1254 on postnatal days 1–25 were attenuated by injections of T4 on postnatal days 1–25, which

also prevented the depression in serum T4 concentrations (Cooke et al. 1996).  Here again, although

produced by relatively large doses of Aroclor 1254 ($1.6 mg/kg/day, subcutaneous), similar effects can

be produced by other hypothyroid-inducing agents, including PTU.  Cooke and coworkers have proposed

that the increased testis weight and sperm production is the result of PCBs extending the proliferative

period of Sertoli cells, thus increasing their number.  A prolonged period of cell division in turn results in

a greater total number of germ cells per testis, creating an enlarged testis that produces more sperm than

normal (see Chapin et al. 1996 for review).  Neonatal hypothyroidism in humans also is known to be

associated with disruption of the normal sexual maturation process (Longcope 2000).

In summary, PCBs can affect a wide variety of endocrine systems by directly affecting the components of

the endocrine system such as hormones, metabolic enzymes, carrier proteins, receptors, endocrine glands,

and feedback regulation systems.  Effects on these components can lead to alterations in

neurodevelopment, reproduction, and in induction of endocrine-sensitive tumors.    



3.  HEALTH EFFECTS - Children’s Susceptibility

PCBs 380

3.7 CHILDREN’S SUSCEPTIBILITY

This section discusses potential health effects from exposures during the period from conception to

maturity at 18 years of age in humans, when all biological systems will have fully developed.  Potential

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation. 

Relevant animal and in vitro models are also discussed.

Children are not small adults.  They differ from adults in their exposures and may differ in their

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the

extent of their exposure.  Exposures of children are discussed in Section 6.6 Exposures of Children.

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less

susceptible than adults to health effects, and the relationship may change with developmental age

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are

critical periods of structural and functional development during both prenatal and postnatal life and a

particular structure or function will be most sensitive to disruption during its critical period(s).  Damage

may not be evident until a later stage of development.  There are often differences in pharmacokinetics

and metabolism between children and adults.  For example, absorption may be different in neonates

because of the immaturity of their gastrointestinal tract and their larger skin surface area in proportion to

body weight (Morselli et al. 1980; NRC 1993); the gastrointestinal absorption of lead is greatest in infants

and young children (Ziegler et al. 1978).  Distribution of xenobiotics may be different; for example,

infants have a larger proportion of their bodies as extracellular water and their brains and livers are

proportionately larger (Altman and Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek

1966; Widdowson and Dickerson 1964).  The infant also has an immature blood-brain barrier (Adinolfi

1985; Johanson 1980) and probably an immature blood-testis barrier (Setchell and Waites 1975).  Many

xenobiotic metabolizing enzymes have distinctive developmental patterns.  At various stages of growth

and development, levels of particular enzymes may be higher or lower than those of adults, and

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion,

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 
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tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948). 

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly

relevant to cancer.

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their

alveoli being less developed, which results in a disproportionately smaller surface area for alveolar

absorption (NRC 1993).

Children are exposed to PCBs in the same manner as the general population, primarily via consumption

of contaminated foods, particularly meat, fish, and poultry (Gunderson 1988).  Exposure also may occur

by transfer of PCBs that have accumulated in women’s bodies to the fetus across the placenta.  Because

PCBs are lipophilic substances, they can accumulate in breast milk and be transferred to nursing infants. 

Transfer across the placenta, although it may be limited in absolute amounts, is of great concern because

of the effects of PCBs on sensitive immature tissues, organs, and systems, with potentially serious long-

lasting consequences.  Transfer of PCBs via breast milk can be considerable and, like prenatal exposure,

has the potential to contribute to altered development.

Although embryos, fetuses, and nursing infants may be exposed to relatively high amounts of PCBs

during sensitive periods of development, it is not known if the susceptibility of children to the health

effects of PCBs differs from that of adults.  Younger children may be particularly vulnerable to PCBs

because, compared to adults, they are growing more rapidly and generally have lower and distinct profiles

of biotransforamtion enzymes, as well as much smaller fat depots for sequestering the lipophilic PCBs.

The best documented effect of exposure to high concentrations of PCBs in adults is the induction of skin

alterations, in particular, chloracne.  This has been observed in individuals occupationally exposed to

PCBs (Bertazzi et al. 1987; Fischbein et al. 1979, 1982; Maroni et al. 1981a, 1981b; Meigs et al. 1954)

and in Yusho and Yu-Cheng victims, who consumed rice oil contaminated with high concentrations of

PCBs and other dioxin-like chemicals (Hsu et al. 1994; Masuda 1994).  Children born to Yusho and

Yu-Cheng victims also exhibited acneform eruptions.  It is reasonable to assume that children exposed to

high amounts of PCBs, particularly dioxin-like congeners, also will develop dermal alterations as occurs

in adults.



3.  HEALTH EFFECTS - Children’s Susceptibility

PCBs 382

Numerous studies have investigated the effects of exposure to PCBs in newborn and young children.  The

main studies can be divided into those of women who consumed high amounts of contaminated fish,

primarily from the Great Lakes (Fein et al. 1984a, 1984b; Jacobson and Jacobson 1996a, 1996b, 1997;

Jacobson et al. 1984a, 1984b, 1985, 1990a, 1990b, 1992; Lonky et al. 1996, Stewart et al. 1999, 2000a), 

women from the general population with no known high exposure to PCBs (Gladen et al. 1988; Huisman

et al. 1995a, 1995b; Koopman-Esseboom et al. 1994b, 1996; Lanting et al. 1998c; Patandin et al. 1999;

Rogan and Gladen 1991, 1992; Rogan et al. 1986a, 1986b, 1987), and women who ingested rice oil

accidentally contaminated with high amounts of PCBs and structurally-related compounds (Chen et al.

1992, 1994; Guo et al. 1995; Hsu et al. 1994; Lai et al. 1994; Masuda 1994).  The main focus of these

studies has been the evaluation of neurobehavioral end points, but information on other end points such as

anthropometric measures at birth and growth rate  (Dar et al. 1992; Fein et al. 1984b, Jacobson et al.

1990a, 1990b; Lan et al. 1987; Lonky et al. 1996; Patandin et al. 1998; Rogan 1989; Rylander et al. 1995,

1998b; Smith 1984; Taylor et al. 1984, 1989; Vartiainen et al. 1998), immune status (Chao et al. 1997;

Dewailly et al. 2000; Weisglas-Kuperus et al. 1995; Yu et al. 1998), and thyroid status (Koopman-

Esseboom et al. 1994a) is also available.  

Surrogate measures of exposure that have been used in human studies include PCB measurements of

maternal blood, breast milk, and cord blood.  Cord blood is the most direct marker of fetal exposure, but

because of its relatively low fat content, it requires sensitive analytical methods for accurate PCB

analysis; analysis of breast milk does not present this difficulty.  Analytical techniques have improved

enormously in recent years, such that cord blood analysis of PCBs is now more accurate and reliable, but

still of concern due to the low concentration of fat in cord blood.

There is evidence that PCBs play a role in neurobehavioral alterations observed in newborn and young

children from women with PCB burdens near background levels, but the possibility cannot be ruled out

that other lipophilic compounds may contribute to the observed effects, particularly in the studies of

consumption of Great Lakes fish contaminated with other chemicals such as CDDs, DDE, and mercury. 

Newborns from women who ate high amounts of contaminated Lake Michigan fish had a greater number

of abnormal reflexes and more motor immaturity than low-fisheaters (Jacobson et al. 1984a).  Similar

observations were made by Rogan et al. (1986b) in the North Carolina study of children born to women

with no known high PCB exposure and in the Oswego study of children from women with high Lake

Ontario fish consumption (Lonky et al. 1996).  By measuring individual PCB congeners in cord blood of

Lake Ontario fisheaters, Stewart et al. (2000b) observed a significant association between highly

chlorinated PCBs and poorer Habituation and Autonomic scores of the NBAS for the newborns, but there 
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was no significant association with abnormal reflexes.  No significant association was seen for the lightly

and moderately chlorinated PCBs, DDE, lead, mercury, and hexachlorobenzene with any of the

neurological scores for newborns of the Lake Ontario fisheaters.  In the study of Dutch children, prenatal

exposure to four predominant PCBs (PCB levels in maternal or cord plasma) was not associated with

either reflex or postural cluster scores of a neurological examination (Huisman et al. 1995a), but there was

a significant association between increasing levels of planar PCB TEQ in breast milk and increases in

percentage with hypotonia but not percentage with abnormal reflexes.  There is limited support from

animal studies for the findings of hypotonia and hyporeflexia in newborn humans exposed to PCBs. 

Overmann et al. (1987) reported that newborn rats from dams exposed to 1.3 mg Aroclor 1254/kg/day

showed slower development of air righting ability (an index of neuromuscular maturation) on 1 of

4 testing days and also were slower than controls in a negative geotaxis test on 2 out 4 days of testing.  

Assessment of infants from the various cohorts with the Bayley Scales of Infant Development has

revealed some additional consistency among the studies.  This group of tests yields a mental development

index (MDI) and a PDI score, both of which are scaled like a standard IQ test.  In the North Carolina

cohort, prenatal exposure to PCBs (assessed by PCBs in maternal milk at birth, 1.8 ppm) was associated

with a significant decrease in PDI scores at the ages of 6 and 12 months (Gladen et al. 1988), but the

association lost statistical significance at the ages of 18 and 24 months (Rogan and Gladen 1991).  No

significant association was observed between postnatal exposure to PCBs (PCBs in milk factored by

duration of breast feeding) and PDI scores between 6 and 24 months of age.  Neither prenatal nor

postnatal exposure to PCBs showed a significant association with MDI scores.  The latter is consistent

with a lack of significant association between prenatal or postnatal exposure and MDI scores at 7 or

18 months of age also observed in the Dutch children (Koopman-Esseboom et al. 1996).  Yu-Cheng

children also had lower PDI and MDI scores when tested between the ages of 6 months and 2 years old

(Lai et al. 1994).  Alterations in memory functions were reported in children from the Michigan cohort at

7 months of age (Jacobson et al. 1985) and at 4 years of age (Jacobson et al. 1990a, 1990b, 1992), but not

in other cohorts studied.  In both instances, memory deficits were associated with prenatal exposure to

PCBs, as measured by PCBs in cord blood.  Decreased performance in memory tests has been reported

following perinatal exposure to commercial PCB mixtures in rats (Corey et al. 1996; Lilienthal and

Winneke 1991) and in monkeys (Levin et al. 1988; Schantz et al. 1989).  In addition, decreased

performance on a memory task was reported in 60-day-old rats exposed in utero to ortho-substituted PCB

congeners (Schantz et al. 1995). 
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A brain area of critical importance in the regulation of short-term or representational memory for spatial

information is the prefrontal cortex (Brozoski et al. 1979; Goldman et al. 1971).  Some studies in animals

have found changes in the concentration of neurotransmitters in the frontal cortex following exposure to

PCBs.  For example, Morse et al. (1996a) reported that rats exposed during gestation days 10–16 to 5 or

25 mg Aroclor 1254/kg/day had a significant increase in the levels of 5-HIAA and in the ratio

5-HIAA/5-hydroxytryptamine in the prefrontal cortex at 90 days of age.  These rats also showed a

significant decrease in the neuronal marker synaptophysin in the prefrontal cortex, which was interpreted

as reactive gliosis (Morse et al. 1996b).  A decrease in dopamine in the frontal cortex was also observed

in rats exposed to contaminated Great Lakes fish in utero, during lactation, and until 88 days of age

(Seegal et al. 1998).  Exposure of weanling rats to PCB 153 (0.01 mg/kg/day) or PCB 128

(0.005 mg/kg/day) for 90 days also resulted in decreased dopamine levels in the frontal cortex (Chu et al.

1996a; Lecavalier et al. 1997).  Changes in neurotransmitter levels have also been observed in other brain

areas, but further research is needed before specific neurobehavioral deficits can be correlated with

changes in specific neurotransmitters in specific brain areas.  

As previously mentioned, neurobehavioral alterations have been observed in rats and monkeys following

pre- and/or postnatal exposure to commercial Aroclor mixtures, defined experimental congener mixtures,

single PCB congeners, and Great Lakes contaminated fish.  Monkeys exposed from birth to age 20 weeks

to PCB mixtures of congeneric composition and concentration similar to that found in human breast milk

showed learning deficits long after exposure had ceased (Rice 1997, 1998, 1999b; Rice and Hayward

1997, 1999a).  This type of study appears to be the most relevant to evaluating risk of PCB exposure by

infants since they mimic the exposure scenario for a nursing human infant.

Results from evaluation of anthropometric measurements in newborn and young children have been

mixed.  Of the studies of women who consumed contaminated fish from the Great Lakes, only one out of

four, the Michigan study (Fein et al. 1984b; Jacobson et al. 1990a, 1990b), reported an association

between reduced birth weight, head circumference, and gestational age in newborns and with body weight

at 4 years with prenatal exposure to PCBs (PCBs in cord blood).  In the Oswego cohort (Lake Ontario

fish consumption), there was no significant association between prenatal exposure to PCBs, assessed by

the same fish consumption measures as in the Michigan study, and birth weight, head circumference, or

gestational age (Lonky et al. 1996).  In two additional studies of Lake Michigan women (Dar et al. 1992;

Smith 1984), fish consumption had a positive effect on birth weight.  This finding could be related to the

beneficial effects of certain fatty acids in fish (Olsen et al. 1990).  In one of these studies (Smith 1984),

the concentration of PCBs in breast milk was higher than in breast milk from women from the Michigan 



3.  HEALTH EFFECTS - Children’s Susceptibility

PCBs 385

cohort (1.13 vs 0.87 ppm).  A study of Swedish wives of Baltic Sea fishermen found an increased risk of

low birth weight with increasing maternal blood concentrations of the PCB congener PCB 153 used as a

surrogate of PCB exposure during the year of childbirth (Rylander et al. 1998b).  In the Dutch cohort,

prenatal exposure to PCBs (PCBs in cord blood) was associated with a reduced birth weight, but not with

head circumference or height at 10 days of age (Patandin et al. 1998).  Prenatal exposure in formula-fed

children was associated with reduced growth between birth and 3 months, but no such association was

seen in breast fed children, suggesting to the investigators that any detrimental effect observed in

newborns due to prenatal exposure to PCBs may have been counteracted by the benefits of breast feeding. 

No significant association was seen between any measure of exposure to PCBs and growth at the ages of

3–7 months, 7–18 months, or 18–42 months.  A study of the general population in Finland found no

significant association between birth weight and the concentration of PCBs in breast milk (Vartiainen et

al. 1998).  In this study, the mean concentration of PCBs in milk (0.4–0.5 ppm) was slightly lower than in

the Dutch study (0.62 ppm) (Koopman-Esseboom et al. 1994b).  Overall, it seems that if there is an

adverse effect of prenatal exposure to PCBs on growth, it is transient, as documented in children from the

Yusho poisoning episode (Yoshimura and Ikeda 1978).

Studies in rodents, generally with relatively high doses of PCB mixtures or congeners, have shown

decreased birth weight and reduced weight gain after birth.  This occurred in animals exposed in utero

and through breast milk, even though their weight at birth was not significantly different than in

unexposed controls (Collins and Capen 1980c; Overmann et al. 1987).  This suggests that a significant

transfer of PCBs occurred via breast feeding.  Long-term studies with much lower doses of Aroclors 1016

and 1248 in monkeys also reported decreased birth weight (Allen and Barsotti 1976; Barsotti and Van

Miller 1984).  Studies with low doses of Aroclor 1254 (0.005–0.08 mg/kg/day) found no significant

effects on anthropometric measures at birth or on growth thereafter (Arnold et al. 1995, 1997).

As indicated above, there is information regarding the effects of perinatal exposure to PCBs on

immunocompetence in children.  In a study of fisheating women from Sheboygan, Wisconsin (Lake

Michigan), maternal serum PCB level (mean 5.48–5.76 ppb) was positively and significantly associated

with the number of infectious illnesses in the infants (r=0.33, p=0.03), although breast milk PCB levels

(mean 1.13 ppm) had a weak but significantly negative association with infant illnesses (Smith 1984). 

Possible associations between infectious illnesses and other chemicals in the fish were not investigated.

Susceptibility to infections and immune status were studied in 98 breast-fed and 73 bottle-fed Inuit

(Eskimo) infants from Arctic Quebec, Canada (Dewailly et al. 2000).  The Inuits have high body burdens 
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of various organochlorine compounds due to high consumption of marine foods, particularly sea mammal

fat.  Concentrations of PCBs and other chlorinated pesticides or metabolites were measured in early breast

milk fat and used as an index of prenatal exposure to these substances;  p,p’-DDE showed the highest

mean concentration (962 ppb), followed by PCBs (621 ppb; sum of congeners 138, 153, and 180),

hexachlorobenzene (107 ppb), dieldrin (30 ppb), and mirex (14 ppb) (Dewailly et al. 1993).  The number

of infectious disease episodes and status of immunologic parameters  (WBCs, total lymphocytes and

lymphocyte subsets, serum immunoglobulins) were evaluated during the first year of life.  Acute otitis

media was the most frequent health problem during the first year of life, with 80.0% of ever breast-fed

and 81.3% of bottle-fed infants experiencing at least one episode.  Relative risk (RR) analysis by follow-

up period and number of episodes showed associations between increasing prenatal exposure to

organochlorine compounds and otitis media that were more consistent for hexachlorobenzene and

p,p’-DDE than PCBs.  Because these and other detected organochlorine compounds originated from the

same few food items and have concentrations in breast milk that are correlated with each other due to

similar properties such as lipid solubility and persistence, the results precluded identification of which

compounds could be responsible for the increased susceptibility to otitis media.  Immunologic parameters

that were significantly lower in the breast-fed babies compared to the bottle-fed group included numbers

of WBCs and lymphocytes (CD4 subtype) at 3 months of age, and serum IgA concentrations at 7 and

12 months of age; CD4/CD8 lymphocyte ratios (helper T-cells/cytotoxic T-cells) were also reduced in the

breast-fed infants at 7 and 12 months of age, although the change did not reach statistical significance. 

None of the immune parameters were associated with prenatal organochlorine exposure.

Immunologic effects of pre- and postnatal environmental exposure to PCBs and dioxins were assessed in

a subgroup of 55 infants from the Dutch Mother-Child study (Weisglas-Kuperus et al. 1995).  No

correlation was found between pre- or postnatal exposure to PCBs/dioxin and the number of episodes of

rhinitis, bronchitis, tonsillitis, and otitis during the first 18 months of life, or with humoral immunity as

evaluated by antibody levels to mumps, measles, and rubella at 18 months of age (infants were

immunized at 14 months of age).  Determination of monocyte, granulocyte, and lymphocyte counts in

cord and venous blood at 3 and 18 months of age showed that a higher prenatal as well as postnatal

PCB/dioxin exposure was associated with lower monocyte and granulocyte counts at 3 months of age,

and that a higher prenatal exposure was associated with increased total numbers of T-lymphocytes and

several T-cell subpopulations (CD8+, TcRαβ+, and TcRγδ+) at 18 months of age.  There were no

significant associations between postnatal PCB/dioxin exposure and T cell markers at 18 months of age. 

Although there were differences in the leukocyte subpopulation between high and low PCB/dioxin-

exposed infants, all values were within the normal range (Weisglas-Kuperus et al. 1995).  Follow-up 
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evaluations at 42 months of age, reported as a study abstract, found that prenatal PCB exposure was

associated with increased T cell numbers and lower antibody levels to mumps, measles and rubella

(Weisglas-Kuperus 2000).  Additionally, PCB body burden at 42 months of age was reported to be

associated with a higher prevalence of recurrent middle ear infections and chicken pox and a lower

prevalence of allergic reactions.  

Children born to mothers from the Yu-Cheng poisoning episode had higher prevalence of bronchitis or

pneumonia at 6 months of age, respiratory tract infections at 6 years of age, and middle ear infections at

6–14 years of age (Chao et al. 1997; Yu et al. 1998).  This group ingested rice oil accidentally

contaminated with high concentrations of PCBs and other dioxin-like chemicals.

Results of studies in infant Rhesus monkeys from dams exposed during gestation and lactation to as low

as 5 µg Aroclor 1254/kg/day indicated exposure-related reductions in antibody levels to SRBC and

mitogen-induced lymphocyte transformation that paralleled the findings in the maternal animals (Arnold

et al. 1995).  Although assessment of the data is limited by small numbers of infants in the exposed

groups, statistical significance was achieved for some end points and evaluation times, including reduced

IgM titers at 22–23 and 61–63 weeks of age (following gestational/lactational and/or postweaning dietary

exposure) in the infants from dams exposed to 5 µg/kg/day.  Infant Rhesus and Cynomolgus monkeys

that were orally administered a PCB congener mixture simulating the congener content of human milk at

a dose level of 7.5 µg/kg/day for the first 20 weeks of life (i.e., from parturition without in utero

exposure) had minimal immunological changes.  These included uniformly reduced anti-SRBC titers in

the treated monkeys compared to controls, although group differences were not statistically significant

due to small numbers of animals; and decreased B lymphocyte numbers in the exposed Cynomolgus

monkeys compared to controls, but this change was transient since levels returned to normal when

monkeys were retested at 1 year of age (Arnold et al. 1999).  Anti-SRBC titers were also uniformly

reduced in the treated compared to control monkeys, although group differences were not statistically

significant due to small numbers of animals.  The only other notable immunologic effect was a decrease

in B lymphocyte numbers in the exposed Cynomolgus monkeys compared to controls, but this change

was transient since levels were similar at 1 year of age.  The apparently weaker immunologic response in

the infant monkeys exposed to the breast milk congener mixture compared to those exposed in utero and

lactationally to Aroclor 1254 could be related to the lack of gestational exposure and different congener

composition of human and monkey breast milk.  These findings provide an indication that monkeys are

sensitive to low doses of PCBs whether they are administered as commercial mixtures or as a mixture of

congeners representative of those commonly found in breast milk.
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The recognition of the importance of thyroid hormones in normal development of the brain, as evident

from neurodevelopmental disorders and deficits associated with hypothyroidism, has triggered

considerable interest in the thyroid hormone system (Boyages 2000).  Hypothyroidism, typified by iodine

deficiency (e.g., endemic cretinism), can produce a wide range of neurodevelopmental deficits, including

auditory, motor, and intellectual deficits.  These outcomes suggest an importance of thyroid hormones in

the normal development of the fetal cochlea, basal ganglia, and cerebral cortex, which begin to develop in

humans during the second trimester of gestation.  This is also the time in which the fetal thyroid gland

becomes functional.  Key cell migration for brain development occurs prior to the time fetal thyroid

produces T3, and is therefore dependent on maternally produced thyroid hormone.

The results of several studies that examined relationships between indices of PCB exposure and thyroid

hormone status in children have been mixed, with negative, positive, or no correlations observed. 

Evaluation of thyroid status of 105 mother/infant pairs from the Dutch cohort during the first months of

life revealed that higher CDD, CDF, and PCB levels in breast milk, expressed as TEQs, correlated

significantly with lower plasma levels of maternal total T3 and total thyroxine, and with higher plasma

levels of TSH in the infants in the 2nd week and 3rd month after birth (Koopman-Esseboom et al. 1994a). 

Infants exposed to higher dioxin TEQ levels also had lower plasma free and total thyroxine in the 2nd

week after birth.  It should be noted, however, that plasma total T3, T4, free T4, and TSH levels of all

mother-infant pairs were in the normal range.  Longnecker et al. (2000) assayed umbilical cord sera from

160 children from the North Carolina cohort for total thyroxine, free thyroxine, and TSH.  The cord blood

had been stored frozen since its collection in 1978–1982.  The investigators found that background-level

exposure to PCBs had no effects on levels of thyroid-related hormones at birth.  Since the exposure levels

between the Dutch and the North Carolina cohorts appeared comparable, the difference in the results for

TSH across studies is unclear.  

A small (correlation coefficient, 0.15), but statistically significant positive correlation was found between

total serum PCB and TSH concentrations in cord blood of 170 infants from the general population in

Düsseldorf, Germany (Winneke et al. 1998a).  Nagayama et al. (1998a) examined the relationship

between serum TSH, total T4, and total T3 in 1-year-old infants and estimated intake of 2,3,7,8-TCDD

TEQ in breast milk during the first year of postnatal life.  The mothers had no known high exposure to

PCBs.  Small, but significant negative correlations were found for serum T4 and T3; no relationship was

apparent between TEQ intake and infant serum TSH or TBG.  The mean total dioxin TEQ intake was

34 ng/kg; however, the co-planar PCB contribution to the estimated TEQ intake, and intakes of other

PCBs were not reported.  Osius et al. (1999) examined the relationship between whole blood 
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concentrations of various PCB congeners and serum TSH, free T4, and free T3 in children who lived near

a hazardous waste incinerator.  All values were within expected ranges for children.  A significant

positive association was found between blood PCB 118 concentration and serum TSH concentration. 

Significant negative associations were found between serum T3 and PCBs 138, 153, 180, 183, and 187.

Most studies that examined effects of PCBs on thyroid function in young animals have been conducted in

rats that were administered commercial PCB mixtures or single PCB congeners during gestation and/or

lactation.  A common finding has been a decrease in circulating T4 in both the dams and the

fetus/offspring, whereas T3 levels may or may not change (Corey et al. 1996; Goldey and Crofton 1998;

Goldey et al. 1995; Juarez de Ku et al. 1994; Morse et al. 1996c; Provost et al. 1999; Schuur et al. 1998a;

Zoeller et al. 2000).  Goldey et al. (1995) reported neurobehavioral deficits in the pups, which were

attenuated by subcutaneous injections of T4 that increased serum T4 and T3 concentrations (Goldey and

Crofton 1998).  Rates of elimination of both hormones from serum were accelerated in the pups that had

been exposed to Aroclor 1254, relative to controls.  These observations suggest that the observed

neurobehavioral deficits may have been attributable to deficits in thyroid hormone.  The increased

elimination of T4 and T3 from serum is consistent with an induction of UDP-GT or other elimination

pathways for thyroid hormones (e.g., deiodination of T4 to T3).  Reduction in T4 levels in pups also have

been induced by maternal administration of the dioxin-like congeners 3,3',4.4',5-pentaPCB (PCB 126)

(Rice 1999a) and 3,3',4,4'-tetraPCB (PCB 77) (Darnerud et al. 1996a).

There is no evidence that PCBs are teratogenic in humans, and studies in rodents suggest that

teratogenicity may occur, but only at very high doses (Haake et al. 1987; Zhao et al. 1997b).  Adverse

reproductive effects have been observed in male animals following perinatal exposure to PCBs.  Fertility

was markedly reduced in male offspring of rats that were lactationally exposed to $8 mg/kg/day

Aroclor 1254 (Sager 1983; Sager et al. 1987, 1991).  The reduction in male fertility appears to be due to

impaired ability of sperm to fertilize eggs because sperm production, morphology, and motility were not

affected and plasma FSH and testosterone concentrations were not reduced (Sager et al. 1987, 1991). 

Fertility was not impaired in the male offspring of rats that were administered 30 mg/kg/day of

Aroclor 1221, 1242, or 1260 by gavage during gestation (Gellert and Wilson 1979), but this study did not

include postnatal exposure.  Results of oral and subcutaneous studies with single congeners have shown

that gestational, lactational, or adult exposures can adversely affect morphology and production of sperm

and fertility in male rats and mice (Faqi et al. 1998; Huang et al. 1998a; Smits-van Prooije et al. 1993),

although congeneric structure-activity relationships are unclear.  There were no significant effects on

number of implantation sites or litter size in rats that were exposed to 4 mg/kg/day of a PCB congener 
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mixture simulating the congener content of human milk from 50 days prior to mating until birth (Hany et

al. 1999b).  Evaluation of the offspring, however, showed significantly increased relative uterine weight

in immature females (PND 21) and reduced testes weights and serum testosterone levels in adult males

(PND 170).  There is increasing evidence that thyroid hormone serum concentrations play a crucial role in

testicular development by binding to thyroid hormone receptors expressed in Sertoli cells during a critical

window of time neonatally (Cooke et al. 1996).

PCBs have been shown to have both estrogenic and anti-estrogenic properties.  These properties of some

commercial PCB mixtures, PCB congeners, and hydroxylated derivatives of PCB congeners have been

assayed by examining uterine variables in immature or ovariectomized female rodents, cell proliferation

or gene expression variables in cultured cells including human breast cancer or HeLa cells, and in vitro

binding to estrogen receptor preparations (see Andersson et al. 1999; Arcaro et al. 1999; Battershill 1994;

Connor et al. 1997; Gierthy et al. 1997; Hansen 1998; Kramer et al. 1997; Krishnan and Safe 1993; Li

and Hansen 1997; Moore et al. 1997; Safe 1999; Safe et al. 1998 for reviews).  In general, PCB-induced

estrogenic activities have been characterized as weak compared to the endogenous hormone,

17β-estradiol, a wide variability of responses has been observed across types of PCBs and assays

indicating the involvement of multiple mechanisms, anti-estrogenic activities have been most strongly

associated with PCBs that are Ah receptor agonists, and hydroxylated metabolites of PCBs are postulated

to be at least partly responsible for physiological responses to PCBs that may involve changes in estrogen

receptor-dependent physiological processes.  Further details of some of these studies are presented in

Section 3.6, Endocrine Disruption.

There is no information regarding possible transgenerational effects of PCBs in humans and limited

information is available in animals.  Dominant lethal mutations were not induced in male Osborne-

Mendel rats following treatment by gavage with a single doses of 625–2500 mg/kg Aroclor 1242, by

gavage with five daily doses of 125 or 250 mg/kg Aroclor 1242 or 75–300 mg/kg Aroclor 1254, or in the

diet with estimated doses of 1.25 or 5 mg/kg/day Aroclor 1254 for 70 days (Green et al. 1975b).  Lack of

dominant lethality was indicated by no consistent changes in numbers of implantations and dead

implantations per pregnant untreated female.  The 70-day duration of the feeding study covered the

spermatogenic cycle of the rat.

There is no information regarding the pharmacokinetics of PCBs in children or the nutritional factors that

may influence the absorption of PCBs.  Both phase I and phase II metabolic enzymes participate in the

biotransformation and elimination of PCBs and metabolites.  Because the metabolism of PCB congeners 
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depends not only on the degree of chlorination, but also on the chlorine substitution pattern, many

different cytochromes P-450 (CYP enzymes) are involved.  Thus, metabolism of PCBs in fetuses,

neonates, and children may differ from adults depending on whether a particular cytochrome P-450

(CYP) subfamily is developmentally regulated or not.  Phase II enzymes such as glucuronosyltransferases

(UGT) and sulfotransferases also are involved in PCB metabolism and both are known to be

developmentally regulated (Leeder and Kearns 1997).  Because PCBs are lipophilic substances, they are

stored in the mother’s body and can be transferred to offspring through the placenta, as well as

accumulate in breast milk and be transferred to nursing infants.  This has been well documented by

measurements of PCBs in both umbilical cord blood and breast milk (Fein et al. 1984a; Greizerstein et al.

1999; Jacobson et al. 1984b; Koopman-Esseboom et al. 1994b; Kostyniak et al. 1999; Mes et al. 1993;

Rogan et al. 1987; Stewart et al. 1999).  Placenta passage of PCBs is further evidenced by findings of

significant correlations between maternal and cord serum PCB levels in groups of women and newborn

infants (e.g., Jacobson et al. 1984b).  Additionally, increased PCB residues were detected in blastocytes

(day 6 postcoitum) from female rabbits administered Aroclor 1260 before insemination, but not in

cleavage stage embryos (day 1 postcoitum) (Seiler et al. 1994).  In pregnant mice fed PCBs through the

first 18 days of gestation, the highest levels of serum PCBs were found in 1–2-week-old offspring

compared with 18-day fetuses or with older offspring (Masuda et al. 1979).  Results such as these have

led to the conclusion that suckling may account for higher exposure of young offspring than does

placental transfer, although the fetus may be more sensitive.  Both prenatal and breast milk exposures

have been associated with neurodevelopmental deficits in newborn and young children as discussed

above.  No PBPK models have been developed specifically for PCBs that could be used to quantitatively

predict transfer of PCBs across the placenta or via breast milk.

Since adverse health effects are of concern, particularly for prenatal exposure to PCBs, Lackmann et al.

(1999) investigated the influence of maternal age and duration of pregnancy on serum concentrations of

PCBs in full-term neonates.  Blood samples were taken from 80 full-term German neonates within the

first 12 hours of life, before the first oral feeding.  The median serum concentration of total PCBs was

0.96 µg/L (<0.30–3.14, range), with PCBs 138, 153, and 180 detected at median levels of

0.34 (<0.10–1.01), 0.42 (<0.10–1.42), and 0.17 (<0.10–0.78) µg/L, respectively.  All detectable PCB

congeners and total PCBs correlated significantly with the gestational age of the newborns, with

50–140% higher serum levels in children born at 42 weeks of gestation as compared with neonates born

in the 38th week.  Although the correlation between the PCB congeners and maternal age was not quite

statistically significant, higher PCB concentrations were observed with rising age.  PCB levels were not

correlated with birth weight.  As expected, the distribution pattern of the PCB congeners in newborns also 
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corresponds to that previously observed in adults.  Thus, the neonatal body burden of PCBs depends on

maternal age and duration of pregnancy, reflecting the increase in body burden with time as well as the

continuous transplacental transfer of PCBs from mother to fetus during pregnancy.  

Hagmar et al. (1998) measured PCB levels in whole blood, and cord blood from 30 Finnish women.  The

concentrations of PCBs 118, 138, 153, and 180 in cord blood were generally 2- to 3-fold lower than in the

whole blood from the mothers.  Positive correlations were observed between PCB concentrations in

whole blood and cord blood (r=0.67–0.80).  The correlation from this study was better than that reported

earlier between PCB levels in maternal and cord serum in the Lake Michigan study (r=0.42; Jacobson et

al. 1984b); however,  the correlation was consistent with the findings in the Dutch study on delivering

mothers (Koopman-Esseboom et al. 1994a, 1994b).  Although the concentration of PCB congeners in

cord blood is 2- to 4-fold lower than in maternal blood, cord blood represents a significant route for

prenatal exposure to PCBs as confirmed by the direct measurements made on the serum of new full-term

neonates (Lackmann et al. 1999).

Several human studies have investigated the levels of PCBs in human breast milk, not only because it

offers a means to assess body burden, but also because it represents a significant route for maternal

excretion and neonatal exposure. 

In women not known to have been exposed to high concentrations of PCBs, Masuda et al. (1978) reported

a significantly higher PCB level in infants' blood than in maternal blood; PCB levels in cord blood were

lower than in maternal blood.  These results suggested that larger amounts of PCBs are transferred

through milk compared with placental transfer.  Based on PCB levels in Canadian women's milk, it was

estimated that after the first 14 days of breast-feeding, infants would have ingested 144 µg of PCBs, and

their PCB body burden would be 0.32 ppm (Mes et al. 1984).  The average PCB concentration in

maternal whole blood was 2 ng/g (whole blood), whereas the average concentration in breast milk in 1982

was 26 ng/g (whole milk) (Mes et al. 1984).  In 1986, the average PCB concentration in breast milk had

declined to 6 ng/g (whole milk) (Mes 1994).  Data summarized by Kimbrough (1995) indicate that in

some industrialized countries an infant may accumulate 6.8% of its lifetime PCB body burden during a

nursing period of 6 months.

Lanting et al. (1998a) measured the levels of PCB congeners 118, 138, 153, and 180 in cord plasma,

breast milk, and plasma from 42-month-old children (n=126) living in the Groningen area, The

Netherlands.  In 42-month-old children who were fully breast-fed for at least 6 weeks, the median total 
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plasma PCB level was 0.81 µg/L (range: 0.23–2.2), compared to the formula-fed children that had levels

of 0.18 µg/L (range: 0.07–1.49).  The median total PCB concentration in breast milk was 11.9 µg/L

(range: 3.3–28.2), while the levels of PCBs 118, 138, 153, and 180 were below the limit of detection in

the formula milk samples.  While the plasma level of each of these congeners increased in the breast-fed

children between birth (cord blood) and 42-months of age, the formula-fed children exhibited a decrease

in the plasma level of each of these congeners over this same time period.  The relative abundance of PCB

congeners was similar within samples of cord plasma, breast milk, and plasma at 42-months of age, with

PCB 153>138>180>118.  Based on regression analysis of the above data, Lanting et al. (1998a) proposed

a model to estimate total PCBs in the plasma of 42-month-old children.  Using this model, each week of

additional breast-feeding is estimated to increase the 3PCB42mo by 0.28% (SE=0.05%) of the 3PCBmilk. 

For a mother with a median 3PCBmilk of 11.9 µg/L, as in this study, this results in an increase the 

3PCB42mo level of 0.033 µg/L per week of full breast-feeding. 

Similar results were observed in 93 formula-fed and 100 breast-fed children at 3.5 years of age in the

Rotterdam Area, The Netherlands (Patandin et al. 1997, 1999).  3PCBs 118, 138, 153, and 180 in plasma

of formula-fed children had a median level of 0.21 µg/L (range: 0.08–0.46), compared to the breast-fed

group which had a median level of 0.75 µg/L (range: 0.23–5.9).  PCB levels in maternal plasma

(2.04 µg/L, range: 0.59–7.35) and cord plasma (0.40 µg/L, range: 0.08–2.08) were significantly correlated

with the PCB levels at 3.5 years in the breast-fed and formula-fed groups.  In the breast-fed group, PCB

levels were significantly correlated with the period of breast feeding and milk PCB levels.  A higher body

weight of the child was significantly associated with lower plasma PCB levels at 3.5 years in both groups,

suggesting that growth in body mass is diluting the plasma PCB level.  With the assumptions that the

half-life for plasma PCBs is 2.8 years in children (Yakushiji et al. 1984), and that dietary intake of PCBs

after weaning is negligible, compared to prenatal and lactational exposure, it seems likely that plasma

levels of PCBs in infants during breast-feeding are similar to that of their mother’s. 

Dietary exposure to dioxin-like coplanar PCBs (77, 126, 169) and PCDDs and PCDFs from infancy until

adulthood was also estimated in this group of breast-fed and formula-fed children (Patandin et al. 1999). 

The 3PCB 77, 126, and 169 in breast milk had a median level of 14.8 pg TEQ/g milk fat (range:

4.4–45.7), while the TEQ due to PCDDs and PCDFs in breast milk was 30.6 pg TEQ/g milk fat (range:

11.1–76.4).  Thus, the coplanar PCBs contribute about one third of the total dioxin TEQs in human breast

milk.  The daily TEQ intake per kg body weight is about 50 times higher in breast-fed infants and 3 times

higher in toddlers than in adults.  Based on a model that included intake measures, food questionnaires,

and national food consumption and contamination data, breast-feeding for 6 months contributed about 
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12% (boys) or 14% (girls) of  the cumulative PCB/dioxin TEQ intake until 25 years of age.  In toddlers,

dairy products contribute 43% of the PCB-TEQ, meat and meat products contributed 14%, and processed

foods 23%.  Further information on exposures of children can be found in Section 6.6.

There are no biomarkers of exposure or effect for PCBs that have been validated in children or in adults

exposed as children.  There are no biomarkers in adults that identify previous childhood exposure.  No

studies were located regarding interactions of PCBs with other chemicals in children or adults.  No

information was located regarding pediatric-specific methods for reducing peak absorption following

exposure to PCBs, reducing body burden, or interfering with the mechanism of action for toxic effects.  In

addition, no data were located regarding whether methods for reducing toxic effects in adults might be

contraindicated in children.

3.8 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples.  They have

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 1989).

Due to a nascent understanding of the use and interpretation of biomarkers, implementation of biomarkers

as tools of exposure in the general population is very limited.  A biomarker of exposure is a xenobiotic

substance or its metabolite(s) or the product of an interaction between a xenobiotic agent and some target

molecule(s) or cell(s) that is measured within a compartment of an organism (NAS/NRC 1989).  The

preferred biomarkers of exposure are generally the substance itself or substance-specific metabolites in

readily obtainable body fluid(s), or excreta.  However, several factors can confound the use and

interpretation of biomarkers of exposure.  The body burden of a substance may be the result of exposures

from more than one source.  The substance being measured may be a metabolite of another xenobiotic

substance (e.g., high urinary levels of phenol can result from exposure to several different aromatic

compounds).  Depending on the properties of the substance (e.g., biologic half-life) and environmental

conditions (e.g., duration and route of exposure), the substance and all of its metabolites may have left the

body by the time samples can be taken.  It may be difficult to identify individuals exposed to hazardous

substances that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as

copper, zinc, and selenium).  Biomarkers of exposure to [substance x] are discussed in Section 3.8.1.
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Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an

organism that, depending on magnitude, can be recognized as an established or potential health

impairment or disease (NAS/NRC 1989).  This definition encompasses biochemical or cellular signals of

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung

capacity.  Note that these markers are not often substance specific.  They also may not be directly

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused

by polychlorinated biphenyls are discussed in Section 3.8.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic

or other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in

the biologically effective dose, or a target tissue response.  If biomarkers of susceptibility exist, they are

discussed in Section 3.10 “Populations That Are Unusually Susceptible”.

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Polychlorinated Biphenyls

PCBs are pervasive environmental contaminants that are found in body tissues and fluids of the general

population.  Because they are lipophilic and generally have half-lives longer than 1 week, PCBs are

preferentially stored in adipose tissue and are present in serum, blood plasma, and human milk.  Serum,

including umbilical cord serum, and adipose tissues are indicators of exposure, but serum or plasma PCB

concentrations can be significantly influenced by serum lipid content due to partitioning of PCBs between

adipose tissue and serum lipids (Brown and Lawton 1984).  Therefore, serum or plasma lipid PCB

concentrations are better indicators of body burden than PCB levels uncorrected by lipid content (Brown

and Lawton 1984).  This was clearly illustrated in a study by Phillips et al. (1989b).  These authors

showed that the concentration of PCBs in nonfasting serum samples from 20 healthy adult males was

29% higher than in fasting serum samples.  Total serum lipids (total cholesterol, free cholesterol,

triglycerides, and phospholipids) were 20% higher in the nonfasting group.  When the concentration of

PCBs was corrected by total serum lipids, the difference between fasting and nonfasting samples was no

longer statistically significant.  Differences in metabolic profiles among different congeners will also

influence the serum concentration at any given time.  Variations in procedures and methods of reporting

data can make interlaboratory comparison difficult (Jensen 1987).  It should also be mentioned that,

except for large exposures, blood should be collected quickly (days to weeks after exposure) if elevation 
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is to be found to document a given exposure.  The lack of obvious elevation months to years after

exposure does not, of itself, indicate lack of exposure.

Quantitative exposure to PCB mixtures can be estimated if the steady-state body burden and the

elimination half-life for the mixture are known.  In the simplest model, it is assumes that elimination of

PCBs from the body can be described as a first-order process.  Elimination half-lives of 6–7 months and

33–34 months were estimated for Aroclor 1242 and 1260, respectively, in two groups of capacitor

workers (Steele et al. 1986).  In a subsequent study, the same group of investigators (Phillips et al. 1989a)

indicate that recalculation of the half-life for Aroclor 1242 yielded a median value of 1.9 years.  This was

comparable to a half-life of 2.6 years estimated in a different group of workers over a period of 8 years

(Phillips et al. 1989a).  In individuals exposed to river water contaminated with PCBs, it was estimated

that the half-life elimination from blood for the PCB mixtures was .8–9 months, whereas skin lipid PCBs

had half-lives of 5 months (Jan and Tratnik 1988).

Short-term exposure to PCB mixtures that are rapidly eliminated may not result in the achievement of a

steady-state blood level, in which case, the elimination half-life determined will be misleading.  If a true

half-life is substantially longer than the calculated half-life, the steady-state burdens may actually be

higher than reported.  On the other hand, an underestimate of half-life, given adequate steady-state body

burden data, will result in an over-estimation of intake.

PCB congeners with a high degree of chlorination and congeners that lack unsubstituted meta-para

positions are better candidates for bioaccumulation (see Section 3.4.3, Metabolism).  This conclusion is

consistent with the finding that congeners with unsubstituted 3,4 positions on at least one of the phenyl

rings were found at a lower concentration in the blood and adipose tissue of capacitor manufacturing

workers than those with substitutions in the 2,4 or 3,4 positions on both rings (Wolff et al. 1982a).  This

means that fatty tissues will preferentially accumulate the retained congeners leading to a different

congeneric pattern compared with the original PCB source.

Eighty-nine PCB peaks were identified and confirmed in serum and adipose tissue of exposed workers

(past and/or present exposure) and nonexposed subjects (Fait et al. 1989).  Elimination of PCBs over time

was inferred from the fact that the total PCB levels in adipose tissue of previously exposed workers were

not significantly different than in nonexposed subjects.  Congeneric composition of adipose tissue did not

differ between previously exposed and nonexposed individuals indicating that single PCB congeners are

not good indicators of previous exposure.  However, the concentration of hepta- and octachlorobiphenyls 
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in the serum of previously exposed workers was significantly higher than in the comparison group and

equivalent to the currently exposed group.  Differences in serum levels of specific PCB congeners have

been observed in individuals exposed to PCB mixtures occupationally, accidentally, or environmentally

(Luotamo 1988).  Differences in the concentrations of trichlorinated and tetrachlorinated isomers were

found in the serum samples of the three groups.  Only one pentachlorinated isomer was found in

individuals environmentally exposed to PCBs, whereas five other pentachlorinated isomers were found in

accidentally exposed individuals.  The congeners that best indicated occupational exposure were

2,4,4N-triCB, 2,4,4N,5-tetraCB, 2,3,4,4N-tetraCB, and 2,3N,4,4N-tetraCB (Luotamo et al. 1993).  Those that

indicated accidental exposure were 2,4,4N-triCB, 2N,3,4-triCB, and 2,3N,4,4N-tetraCB (Luotamo et al.

1993).  Thus, it would appear that in some cases isomer-specific monitoring of serum levels of PCB

congeners in humans can determine likely exposure sources (Luotamo 1988).

PCB residue data in humans and other animals (see Section 3.4.2, Distribution) suggest that tissue or

body burdens of PCBs should be based on individual congeners or groups of congeners and not on

profiles of commercial PCB formulations.  The simplest approach involves using one congener as a

marker of total PCBs in a biological specimen.  Levels of 2,2',4,4',5,5'-hexaCB (PCB 153), a very stable

and often the most abundant congener, have been shown to correlate with the total amount of PCBs in

human breast milk (Johansen et al. 1994) and human plasma, with a correlation coefficient of

r=0.99 (Grimvall et al. 1997).  PCB 153 was highly correlated (r=0.95) with total PCBs in 460 serum

samples from Swedish men and women (Atuma and Aune 1999).  PCB 153 was also highly correlated

with total PCBs in serum (r=0.99) and follicular fluid (r=0.99) (Pauwels et al. 1999).  In addition,

PCB 153 levels correlated (r=0.91) with the total PCB-TEQs in human plasma (Grimvall et al. 1997). 

However, if a more complete profile of congeners is considered, the correlations are lower (Bachour et al.

1998; Hansen 1998, 1999).  Total PCBs or PCB 153 as a marker of the total therefore could be a

misleading indicator of the differential exposure to other individual or groups of congeners of

toxicological significance.  

Another important issue related to exposure biomarkers is whether analysis of PCBs in serum and adipose

tissue provide comparable information on body burden.  Stellman et al. (1998) measured 14 PCB

congeners in adipose tissue and serum from 293 women with nonoccupational exposure.  The relative

patterns of the 14 PCB congeners were similar to those reported in other human studies.  Significant

positive serum to adipose correlation coefficients were obtained for PCBs 74, 99, 118, 138, 146, 153,

156, 167, 170, 180, 183, and 187, while PCBs 172 and 178 did not reach statistical significance.  Thus, 
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this study supports the conclusion that either serum or adipose tissue PCB levels may serve as useful

biomarkers of body burden and/or exposure.

Due to its high fat content, human milk concentrates PCBs, which are then transferred to children through

lactation (EPA 1984d; Jacobson et al. 1984b).  For example, among 122 mothers’ milk samples in

Massachusetts screened for PCBs, 4 had total PCB levels ranging from 1,100 to 2,400 ng/g milk fat,

which were significantly higher than the group mean of 320 ng/g milk fat (Korrick and Altshul 1998). 

PCB levels in milk have been positively correlated with consumption of PCB-contaminated fish (EPA

1984d).  With the use of high resolution analytical techniques, it has been possible to compare the

congeneric composition of PCBs in milk with that of commercial PCB mixtures (Safe et al. 1985b).  Gas

chromatograms of human milk samples from Michigan did not resemble the pattern of any commercial

mixture; however, several PCB congeners possessing common structural features, which rendered them

metabolism resistant, were major components of both milk and Aroclor 1260 (Safe et al. 1985b). 

Conversely, other PCB congeners that are minor components of Aroclor 1260 were major components of

the human milk.  Yet, a different group of congeners, comprised only 28% of the PCBs present in

Aroclor 1260, only composed 0.81% of the human milk PCBs; this latter group was formed by congeners

having two adjacent unsubstituted carbons, which facilitates metabolic degradation (Safe 1989a).  Burse

et al. (1994) showed that PCB chromatograms of human serum matched the pattern of goats fed Aroclors

better than Aroclor standards.  This led the authors to suggest that some animal species could be useful in

delineating the source of the PCB exposure in humans.  In breast milk, most of the dioxin-like activity in

the milk was due to the high concentrations of (coplaner) PCB congeners (Dewailly et al. 1991).  Similar

findings were reported for milk from Norwegian mothers (Johansen et al. 1994).  In summary, highly

chlorinated PCB congeners and congeners that lack unsubstituted meta-para positions constitute the most

reliable biomarker of long-term exposure because they are metabolism resistant and, therefore, tend to

accumulate in tissues.  However, the specific PCB congeners or group of congeners to be used as

exposure biomarkers will be dependent on the outcomes under study (e.g., immunological effects,

reproductive end points, cancer).

Chloracne and other dermal alterations are well known markers of exposure to PCBs and structurally-

related halogenated aromatic hydrocarbons (Rice and Cohen 1996).  Chloracne and other dermal

alterations have been reported in subjects occupationally exposed to PCBs (Bertazzi et al. 1987; Fischbein

et al. 1979, 1982; Maroni et al. 1981a, 1981b; Meigs et al. 1954; Ouw et al. 1976, 1982; Smith et al.

1982) and in individuals exposed by accidental ingestion of rice oil contaminated with high

concentrations of PCBs, CDFs, and related chemicals during the Yusho or Yu-Cheng poisoning incidents 
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(Guo et al. 1999; Kuratsune 1989; Lu and Wu 1985; Rogan 1989).  Skin lesions consistent with those

observed in exposed adults were also commonly observed in children born to mothers with Yusho or

Yu-Cheng exposure (Funatsu et al. 1971; Gladen et al. 1990; Hsu et al. 1985; Rogan et al. 1988; Taki et

al. 1969; Yamaguchi et al. 1971; Yoshimura 1974).  No adverse dermal effects have been observed in

subjects with high consumption of Great Lakes fish contaminated with PCBs and other environmentally

persistent chemicals or in other cohorts from the general population.  In general, chloracne appears in

individuals with serum PCB levels 10–20 times higher than those of the general population, but there is

great variability among individuals.  Therefore, chloracne is not a sensitive (or specific) biomarker of

PCB exposure.

3.8.2 Biomarkers Used to Characterize Effects Caused by Polychlorinated Biphenyls

Several studies of PCB-exposed workers and general population subjects attempted to correlate serum

PCB levels with health indices.  Statistically significant correlations of serum PCB levels with serum

levels of liver-related enzymes (e.g., AST, ALT) and levels of serum lipids (cholesterol, triglycerides)

have been reported in workers occupationally exposed to PCBs (Baker et al. 1980; Emmett et al. 1988a,

1988b; Fischbein 1985; Fischbein et al. 1979; Lawton et al. 1985a, 1985b; Smith et al. 1982).  However,

associations between serum PCBs and these hepatic effects are inconclusive due to small and inconsistent

increases, lack of correction for confounding variables such as alcohol consumption, and other study

limitations.  Additionally, correlations between serum PCBs and lipids are influenced by partitioning of

PCBs between lipids in adipose tissue and serum.  This indicates that measurements of serum

triglycerides and cholesterol are more useful for correcting serum PCB levels to more accurately reflect

body burden than for detecting effects of PCBs.  It must also be pointed out that PCB mixtures display

different induction profiles, so that individual PCB congeners can be phenobarbital-type,

3-methylcholanthrene-type, or mixed-type mixed-function oxidase (MFO) inducers, or they may be

inactive as enzyme inducers.  Furthermore, the clinical significance of the alterations in liver-associated

enzymes is uncertain, as the increases may be nonspecific and are often in the normal range, and indices

of obstructive liver disorders have not been demonstrated even in occupationally exposed groups.  The

existing evidence in animals suggests that liver enzyme induction is perhaps the most sensitive biomarker

of PCB effects, but it is nonspecific (Nims et al. 1992).  MFO induction has been demonstrated indirectly

in PCB-exposed workers by increased metabolic clearance of antipyrine (Alvares et al. 1977).  The

caffeine breast test (CBT) appears to be a sensitive method for characterizing exposure/and or effects of

certain PCBs and related chemicals (Lambert et al. 1992).  In this test, 13C-methyl caffeine is ingested by

subjects, and hepatic cytochrome P-4501A2-dependent caffeine 3-N-demethylase activity is monitored by
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determining the amount of caffeine exhaled as radiolabeled CO2.  The CBT is not specific for PCBs since

PCDFs, PCDDs, and other polyaromatic hydrocarbons also induce cytochrome P-4501A. 

Results from a study with a feral mouse species showed that induction of hepatic EROD

(CYP1A1-mediated activity) was a sensitive biomarker of effect (and/or exposure) for Aroclor 1254

(Lubet et al. 1992).  Based on hepatic levels of the enzyme, the investigators could clearly distinguish

between a population of mice living in a PCB-contaminated area and a population of the same species

from a nonPCB reference site.  Furthermore, the relative levels of the enzyme correlated well with hepatic

PCB burdens.  When the results based on feral mice were compared to results obtained in female

Fischer 344/NCr rats exposed for acute or intermediate durations to Aroclor 1254 or in male B6C3F1

mice exposed acutely to Aroclor 1254 in the laboratory, the order of responsiveness was

Fischer 344/NCr > B6C3F1 > feral mice.  Results from a study by Nims et al. (1992) showed that

increased CYP1A1 activity could be detected directly or indirectly in rats treated with relatively low

doses of Aroclor 1254 (0.1 mg/kg/day for 7 days) in the diet.  CYP2B1 activity was a much less sensitive

indicator of effect (and/or exposure).  It should be noted that induction of CYP1A1-mediated activity may

also result from exposure to a variety of other environmental contaminants.  Recently, a human hepatoma

cell line, HepG2, was used to determine the dose response of various Aroclor mixtures as well as several

dioxin-like PCB congeners (Anderson et al. 1995).  In this assay, the human CYP1A1 gene was

engineered such that, when activated by an inducer, produces luciferase instead of P-450.  The reaction is

then monitored by measuring luminescence and protein content.  Of the seven Aroclor mixtures assayed,

Aroclor 1260 produced the greatest induction.  Aroclor 1016 and 1221 induced the lowest levels; for the

remaining Aroclor mixtures, 1232, 1242, 1248, and 1254, induction did not correlate with the percentage

of chlorination.  The order of inducing potential for the congeners was 3,3',4,4',5-pentaCB

>3,3',4,4',5,5'-hexaCB >2,3,4,4',5-pentaCB > 3,3',4,4'-tetraCB >2,3,3',4,4',5-hexaCB.  Based on the

results of the assays, the authors estimated that except for Aroclors 1016 and 1221, the approximate

detection limit in environmental samples for the other Aroclors would be in the 2–4 µg/g range; for the

congeners the detection limit was in the range 0.01–1 µg/g.  For the purpose of comparison, for

2,3,7,8-TCDD the detection limit would have been 0.00005 µg/g.

Correlations between serum PCB levels and hypertension or various hepatic indices (e.g., serum enzymes

and lipids) in people who were environmentally exposed to PCBs are also generally unclear due to

confounding variables (Kreiss et al. 1981; Stehr-Green et al. 1986a, 1986b; Steinberg et al. 1986).  These

exposures involved consuming contaminated fish or living or working near an electrical manufacturing

plant.      
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3.9 INTERACTIONS WITH OTHER CHEMICALS

As discussed in Section 3.5.2 (Mechanisms of Toxicity), PCBs represent a group of 209 structurally

related chemicals with several subgroups displaying biological actions involving different potential

mechanisms.  Some biological activities of PCBs involve initial Ah-receptor mediated mechanisms (e.g.,

induction of hepatic CYP1A oxygenases and Phase II enzymes such as UDP glucuronyl transferases,

epoxide hydrolases, or glutathione transferase, body wasting, thymic atrophy, and porphyria), other

activities involve Ah-receptor independent mechanisms (e.g., induction of CYP2B and CYP3A 

oxygenases, induction of changes in brain dopamine levels, and disruption of Ca+2 homeostasis), and

other biological activities of PCBs may involve both Ah-receptor dependent and independent mechanisms

(e.g., liver hypertrophy, disruption of steroid hormone homeostasis or thyroid hormone homeostasis,

disruption of immune functions, and induction and promotion of liver cancer).  Because of this diversity

in biological activities, there is a large potential for opportunities for PCB mixtures to alter the toxicity of

other chemicals or other chemicals to alter the toxicity of PCBs.  

Interactions Due to PCB Induction of Hepatic Enzymes    

One type of interaction that received considerable early research attention involves PCB-induced changes

in hepatic profiles of Phase I and II enzymes, leading to altered metabolism of other xenobiotic agents,

and subsequent alteration of their toxicity.  For example, observed effects of PCB pretreatment on toxicity

of other chemicals in animals include increased metabolism and excretion of pentobarbital and decreased

pentobarbital sleeping times (Villeneuve et al. 1972), increased genotoxicity of numerous carcinogens

(e.g., benzo[a]pyrene) in vitro (Hayes 1987; Hutton et al. 1979), increased duodenal ulcerogenicity of

acrylonitrile (Szabo et al. 1983), and increased renal toxicity of trichloroethylene (Kluwe et al. 1979). 

The capacity of PCB mixtures to induce cytochrome P-450 has resulted in increased toxicity of other

chemicals whose toxicity depends on metabolic activation.  For example, pretreating animals with PCB

mixtures resulted in increased hepatotoxicity due to halothane, vinylidene fluoride, diethylnitrosamine,

trichloroethylene, carbon tetrachloride, 1,1,2-trichloroethane, tetrachloroethylene, and

2,2,2-trifluoroethylvinyl ether (Conolly et al. 1979; Gans and Pintauro 1986; Kluwe et al. 1979; Moslen

et al. 1977; Murphy et al. 1979; Sipes et al. 1987).
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Interactions Between PCB Congeners, PCBs and CDDs, and PCBs, CDDs, and CDFs    

Research in the 1970s and 1980s focusing on mechanistic similarities between PCBs, CDDs, and CDFs

led to the development and use of a TEF approach to evaluating health hazards from complex

environmental mixtures of these halogenated aromatic hydrocarbons.  The approach relies on an

assumption that components in these complex mixtures jointly act in an additive manner through a

common Ah-receptor initial mechanism.  Concern about this assumption has led to several investigations

of possible interactions between specific PCB congeners, between some PCB congeners or PCB mixtures

and 2,3,7,8-TCDD, and among PCBs, CDDs, and CDFs.  Evidence for additivity and nonadditive

interactions (e.g., potentiation or antagonism) has been found depending on the PCB congeners involved,

end point examined, and dose levels of examined agents.  

Interactions Between PCB Congeners.  Observations of nonadditive interactions between specific PCB

congeners include: 2,2',4,4',5,5'-hexaCB (10–50 mg/kg) antagonism of embryo malformations, edema,

and liver lesions in chickens exposed to 2 µg/kg 3,3',4,4',5-pentaCB (Zhao et al. 1997a);

2,2',4,4',5,5'-hexaCB (271 mg/kg) antagonism of cleft palate formation in mice exposed to

0.78–1.04 mg/kg 3,3',4,4',5-pentaCB (Zhao et al. 1997b); 2,2',4,4',5,5'-hexaCB (18–72 mg/kg)

antagonism of impairment of immune response in mice exposed to 6–12 µg/kg 3,3',4,4',5-pentaCB

(Harper et al. 1995; Zhao et al. 1997b); synergism between 20 weekly subcutaneous doses of 5 mg/kg

2,2',4,4',5,5'-hexaCB and 1–10 µg/kg 3,3',4,4',5-pentaCB in promoting formation of γ-glutamyl

transpeptidase-positive hepatic foci in partially hepatectomized rats initiated with 30 mg/kg

nitrosodiethylamine (Bager et al. 1995); strong antagonism by 2,2',5,5'-tetraCB (10 or 25 µM) or

2,2',3,3',4,4'-hexaCB (12.5 or 25 µM) of luciferase expression induced by 3,3',4,4'-tetraCB (10 nM) in

cultured recombinant Hepa1c1cc7 mouse hepatoma cell lines, but not in guinea pig GPC16 colon

adenocarcinoma cells or human HepG2 hepatoma cells (Aarts et al. 1995); weak antagonism between

20 weekly subcutaneous doses of 0.13–6.6 µg/kg 3,3',4,4',5-pentaCB and 66–3,302 µg/kg

2,3,3',4,4'-pentaCB in promoting formation of γ-glutamyl transpeptidase-positive hepatic foci in partially

hepatectomized rats initiated with 30 mg/kg nitrosodiethylamine (Haag-Grönlund et al. 1998; Johansson

et al. 1999); and weak antagonism between 0.13–6.6-µg/kg doses of 3,3',4,4',5-pentaCB and

220–11,003-µg/kg doses of 2,2',4,4',5,5'-hexaCB in promoting formation of γ-glutamyl transpeptidase-

positive hepatic foci, in changing concentrations of plasma retinol and liver retinoids, in increasing

relative liver weight, and in inducing liver CYP2B1/2 activities (Haag-Grönlund et al. 1998; Johansson et

al. 1999).
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Interactions Between PCBs and CDDs.  Acute parenteral administration of several commercial PCB

mixtures (Aroclors 1242, 1248, 1254, and 1260) and a synthetic mixture of PCB congeners reflective of

PCBs detected in human milk antagonized 2,3,7,8-TCDD-induced impairment of the immune response to

SRBC in mice at PCB:TCDD dose ratios >1000:1 (Bannister et al. 1987; Davis and Safe 1989). 

Aroclor 1232 had no effect on TCDD-induced immunotoxicity in these studies (Davis and Safe 1989). 

Aroclor doses that antagonized the acute immunotoxicity of single doses of 0.0012 or 0.0036 mg/kg

2,3,7,8-TCDD ranged from about 1 to 50 mg/kg/day (Bannister et al. 1987; Davis and Safe 1989). 

Among seven individual PCB congeners examined for their ability to influence this immunotoxic action

of single intraperitoneal doses of 0.0012 µg/kg 2,3,7,8-TCDD in mice (six hexachlorobiphenyls and one

pentachlorobiphenyl with different chlorine substitution patterns), three were antagonistic (the

2,3,3',4,5,5'-, 2,3,3',4,5'- and 2,2',4,4',5,5'-congeners), and 4 showed no influence (the 2,3,3',4,4',5' -,

2,3',4,4',5',6-, 2,2',4,4',5,6'-, and 2,2',4,4',6,6'-congeners ) (Biegel et al. 1989b; Davis and Safe 1990;

Smialowicz et al. 1997).  In these studies, doses of individual PCB congeners ranged from about 1 to

100–300 mg/kg.

Oral co-exposure of pregnant mice to 244 mg/kg Aroclor 1254 and 0.020 mg/kg 2,3,7,8-TCDD, at an

Aroclor:TCDD dose ratio of 12,200:1, completely antagonized TCDD-induced cleft palate formation in

offspring (Haake et al. 1987). The complexity of interactions between PCBs and TCDD-induced

developmental toxicity is illustrated by observations that, among one tetrachlorobiphenyl and two

hexachlorobiphenyl congeners examined, one (the 2,3,3',4,4',5-congener) potentiated TCDD-induced cleft

palate formation (Birnbaum et al. 1985) and the other two (the 2,2',4,4'- and 2,2',4,4',5,5'-congeners)

antagonized TCDD’s actions (Biegel et al. 1989a, 1989b; Birnbaum et al. 1985; Morrissey et al. 1992). 

Antagonism of TCDD-induced cleft palate formation in mouse offspring by 2,2',4,4'-tetraCB and 

2,2',4,4',5,5'-hexaCB showed complex (i.e., inverted U-shape) relationships with dose (Morrissey et al.

1992).  For example, no antagonistic effect (against a TCDD dose of 0.0015 µg/kg) was produced by

10–20 mg/kg doses of 2,2',4,4',5,5'-hexaCB, but antagonism increased with increasing

2,2',4,4',5,5'-hexaCB dose to a maximum (500 mg/kg), and then declined to no antagonism at

1,000 mg/kg 2,2',4,4',5,5'-hexaCB (Morrissey et al. 1992).  2,2',4,4',5,5'- HexaCB also antagonized

TCDD-induced hydronephrosis in mouse offspring showing a similar inverted U-shape relationship with

dose (Biegel et al. 1989b; Morrissey et al. 1992).  In contrast, combined exposure of pregnant mice to

2,3,3',4,4',5-hexaCB and 2,3,4,7,8-pentachlorodibenzofuran appeared to additively produce

hydronephrosis and cleft palate in the offspring (Birnbaum et al. 1987). 
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Several 13-week oral exposure studies have examined possible binary interactions between three PCB

congeners (at several dietary concentrations delivering daily doses ranging from about 0.1 to

10 mg/kg/day) and 2,3,7,8-TCDD (at several dietary concentrations delivering daily doses ranging from

about 0.00003 to 0.3 mg/kg/day) in influencing several end points in rats (van Birgelen et al. 1992,

1994a, 1994b, 1996a; van der Kolk et al. 1992).  The PCB:TCDD concentration ratios administered in

these studies were selected to reflect relative concentrations in samples of human milk and fat. 

2,2',4,4',5,5'-HexaCB and 2,3,7,8-TCDD showed joint additive action in decreasing thyroid hormone

levels at 4 weeks, but synergistic action at 13 weeks (van Birgelen et al. 1992), whereas

2,3,3',4,4',5-hexaCB (van Birgelen et al. 1994a) and 3,3',4,4',5-pentaCB (van Birgelen et al. 1994b)

showed less-than-additive joint action with 2,3,7,8-TCDD in decreasing thyroid hormone levels. 

2,2',4,4',5-Hexachlorobiphenyl did not influence TCDD-induced effects on body weight and thymus

weight, and additively increased relative liver weight with TCDD (van der Kolk et al. 1992), whereas

2,3,3',4,4',5-hexaCB and 3,3',4,4',5-pentaCB showed less-than-additive joint action with TCDD on these

end points.  2,2',4,4',5,5'-hexaCB and 2,3,7,8-TCDD showed a distinct synergism in increasing hepatic

porphyrin levels, but 2,3,3',4,4',5-hexaCB and 3,3',4,4',5-pentaCB showed no such synergism with

2,3,7,8-TCDD (van Birgelen et al. 1996a).  All three of these congeners individually decreased hepatic

levels of retinol and retinylpalmitate. In combination with TCDD, less-than-additive joint actions were

noted, but TCDD doses used in these studies produced a near maximal response in decreasing retinoid

levels (van Birgelen et al. 1992, 1994a, 1994b).

Interactions Among PCBs, CDDs, and CDFs.  Liver tumor promotion activity was examined in partially

hepatectomized rats exposed to a mixture containing 68 ppm 2,3,7,8-TCDD, 223 ppm

1,2,3,7,8-pentachloro-p-dioxin, 1,151 ppm 2,3,4,7,8-pentachlorodibenzofuran, 4,130 ppm

3,3',4,4',5-pentaCB, 866,604 ppm 2,3',4,4',5-pentaCB, and 127,824 ppm 2,3,3',4,4',5-hexaCB and

compared with predicted tumor promotion activity using TEFs based on tumor promotion activity of the

individual components compared to TCDD activity (Van der Plas et al. 1999).  The mixture composition

was reflective of relative concentrations, and accounted for about 90% of total TCDD TEQs, found in

samples of Baltic Sea fish.  Observed tumor promotion activity of the mixture was about one-half of

predicted activity.  Another mixture, containing, in addition to the above components, 20,000 g

2,2',4,4',5,5'-hexaCB per g of 2,3,7,8-TCDD, showed a tumor promotion activity that was also less than

that predicted by the TEF approach.  A possible explanation of the differences between the observed and

TEF predicted values is that the components may have interacted in a less-than-additive manner (e.g., less

potent PCBs may antagonize tumor promotion by the more potent 2,3,7,8-TCDD), but equally as

plausible is the possibility that the TEFs are inaccurate and overestimate tumor promotion potencies (van 
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der Plas et al. 1999).  In related studies, 2,2',4,4',5,5'-hexaCB antagonized TCDD promotion of malignant

transformations of carcinogen-initiated mouse fibroblasts (Wolfe 1998), whereas 3,3',4,4',5-pentaCB

added to promotion of fibroblast transformation in the presence of 2,3,7,8-TCDD (Wolfe 1998) and to

promotion of liver tumors in rats with co-exposure to 2,3,7,8-TCDD (Hemming et al. 1985).  

The possibility that interactions among PCBs, CDDs, and CDFs may influence reproductive end points

(blockage of ovulation, reduction of ovarian weight gain, and changes in preovulatory hormone levels)

was examined in gonadotropin-primed immature female rats given single oral doses of

0.057–0.457 mg/kg 3,3',4,4',5-pentaCB (a PCB with known Ah receptor agonist activity) or

0.010–0.160 mg/kg 2,3,4,7,8-pentachlorodibenzofuran alone or together in combination with

2,3,7,8-TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin, and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin, all of

which were shown to be effective blockers of ovulation in this assay (Gao et al. 1999, 2000).  The

mixture was administered at TCDD-TEQ doses ranging from 0.0038 to 0.0303 mg/kg.  Parallel dose-

response relationships for inhibition of ovulation were found for the individual agents and for the

equipotent mixture.  This finding is consistent with the hypothesis that the agents in the tested mixture are

likely to block ovulation by additive joint action in a similar mechanism and supports the use of the TEF

approach for this type of endocrine disruption.  Another PCB congener, 2,2',4,4'-tetraCB (which has no

detectable Ah receptor agonist activity), was inactive at the dose examined in this assay (41.9 mg/kg). 

The effect of its presence in a mixture with effective components, however, was not studied (Gao et al.

2000). 

Interactions Between PCBs and Methylmercury    

PCBs and methylmercury represent a combination of agents of public health concern that are potential

neurotoxicants found in the complex mixture of biopersistent toxicants in contaminated fish from the U.S.

Great Lakes and the Baltic Sea.  Changes in neurological function or development from PCBs and

methylmercury have been proposed to at least partly involve disruption of calcium homeostatic

mechanisms in neural cells leading to changes in neurotransmitter release (e.g., dopamine) or cell

damage.  Exposure of rat striatal tissue for 4 hours with methylmercury alone at concentrations ranging

from 1 to 40 µM or a 1:1 mixture of Aroclors 1254 and 1260 at concentrations ranging from 10 to

200 ppm resulted in a significant, dose-dependent depletion of tissue dopamine levels (Bemis and Seegal

1999).  Bemis and Seegal (1999) noted that these concentrations were, in general, higher than those

measured in samples of Great Lakes fish (0.84–1.9 ppm PCBs and 0.34 ppm mercury).  Combined in

vitro exposure of rat striatal tissue to methylmercury and this 1:1 mixture of Aroclors 1254 and 1260 
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(10–200 ppm) synergistically depleted tissue levels of dopamine (Bemis and Seegal 1999).  For example,

combined exposure to 4 µM methylmercury and 200 ppm PCBs, or 10 µM methylmercury and 20, 40,

100, or 200 ppm PCBs, showed a significant statistical interaction (in an analysis of variance) indicative

of synergistic effects on depleting tissue dopamine levels.  These results suggest a possible synergism in

affecting neurological dysfunction and development, but no in vivo demonstration of such a synergism is

available. 

A study of combined oral exposure of pregnant female mice to methylmercury (0.4 or 4 mg/kg/day) and

Kanechlor 500 (about 940 mg/kg/day) from gestation day 15 to day 21 after delivery found no evidence

for obvious synergistic effects on righting and swimming ability, hindlimb support, general open field

activity, and learning ability in offspring evaluated at several postnatal periods or on reproductive

performance in the F0 and F1 generations (Tanimura et al. 1980).  Methylmercury, at 4 (but not 0.4) mg

Hg/kg/day, potentiated PCB-induced decreased postnatal survival in mice (Tanimura et al. 1980). 

Survival of male offspring in all Kanechlor groups showed a marked decline, compared with controls, at

about 5 weeks after birth; at 10 weeks after birth, male offspring survival percentages were about 60, 60,

and 40% for the groups with Kanechlor plus 0, 0.4, and 4 mg Hg/kg, compared with >90% in the control

and methylmercury alone groups.  Autopsies revealed no obvious or specific cause of death.  Survival

data for female offspring were reported to have been similar.  

In a study of minks, reproductive end points, serum thyroid hormone levels (T3 and T4), and histology of

brain, kidney, adrenals, pituitary, and thyroid were evaluated in groups of adult ranch-bred minks fed a

commercial mink food supplemented with 0 or 1 ppm Aroclor 1254, 1 ppm Hg as methylmercury, 1 ppm

Aroclor 1254 + 1 ppm methylmercury, or 0.5 ppm Aroclor 1254 + 0.5 ppm methylmercury for 8 months

that spanned one breeding period (December 1984 through June 1985) (Wren et al. 1987a, 1987b). 

Exposed groups contained 12 females and 4 males; control groups had 15 females and 5 males.  Food

intake and body weight data were not reported, but estimates of 0.2 mg/kg/day Aroclor 1254 and 0.2 mg

Hg/kg/day are derived for the 1-ppm treatment based on a food intake of 150 g/day and body weight of

0.9 kg for minks (Aulerich et al. 1987).   During the third month of exposure, eight females and one male

in the 1 ppm methylmercury group, and three females in the 1 ppm Aroclor + 1 ppm methylmercury

group, died, displaying convulsions, tremors, and lethargy.  The mortality was attributed to a combination

of cold stress and methylmercury poisoning, and surviving minks were fed diets containing 1 ppm

methylmercury every other day for the remainder of the study.   No exposure-related effects were found

on the thyroid, pituitary, adrenal glands, or serum T4 or T3 levels in adult minks that survived the 8-month

exposure period.  Fertility of adult male minks, percentage of females whelped, or number of offspring 
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born per female were not significantly affected by any of the treatments.  The average number of

offspring per female at weaning (5 weeks after birth) was significantly (p< 0.05) lower in the 1 ppm

Aroclor + 1 ppm methylmercury group (2.1 offspring/female) than in the control (4.5), 1 ppm

Aroclor (5.0), 1 ppm methylmercury (4.0), or 0.5 ppm Aroclor + 0.5 ppm methylmercury groups (3.6),

indicating that postnatal offspring mortalities were increased by combined exposure to the high levels of

methylmercury and Aroclor 1254.  

Wren et al. (1987b) concluded that these observations showed a synergistic effect of Aroclor 1254 and

methylmercury on decreased postnatal survival of mink offspring.  An alternative interpretation of the

results is that combined exposure induced postnatal mortality at concentrations of the individual agents

(1 ppm) that did not induce postnatal mortality, but it is not possible to discern if they acted together in a

less-than-additive, additive, or greater-than-additive manner without including treatments involving

2 ppm concentrations of the individual agents alone.  A clear demonstration of synergistic action would

have involved increased postnatal mortality produced by the 0.5 ppm Aroclor + 0.5 ppm methylmercury

treatment; however, postnatal mortality was not changed, compared with control, by this treatment.

Intermediate-duration exposures of quail to methylmercury or Aroclor 1260 in the diet led to

accumulation of porphyrins in liver; hepatic porphyrin levels in quail exposed to both agents

simultaneously were similar to levels predicted based on additivity of response (Leonzio 1996b).  

Combined exposure of rats or quail to commercial PCB mixtures and methylmercury appears to

counteract PCB induction of hepatic CYP enzymes (Leonzio et al. 1996a; Takabatake et al. 1980), but the

toxicological significance of this interaction is unclear.

Interactions Between PCBs and p,p’-DDE    

Results from animal (and some human) studies identify several sensitive shared targets of PCBs and

p,p’-DDE oral toxicity including the liver (hepatomegaly, degenerative histological effects, and liver

cancer), immune system (suppression of  cell-mediated immunological responses), neurological

development (altered neurobehavior in offspring exposed in utero or during nursing periods), and altered

reproductive function or development.  A limited amount of in vitro and in vivo data regarding possible

interactions between PCBs and p,p’-DDE are available as reviewed below.

Incubation of an estrogen receptor preparation from alligator oviducts with a mixture containing 18 µM

p,p’-DDE, 2.6 µM p,p’-DDD, 0.63 µM dieldrin, 0.53 µM Aroclor 1242, 0.25 µM trans nonachlor, 
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0.16 µM cis nonachlor, 0.22 µM chlordane, and 0.2 µM toxaphene inhibited the binding of tritium-

labeled 17β-estradiol to estrogen receptors by 57% (Vonier et al. 1996).  The individual agents, at the

concentrations used in this mixture, did not inhibit the in vitro binding of 17β-estradiol to the estrogen

receptors, with the exception that 2.6 µM p,p’-DDD inhibited binding by 20%.  Vonier et al. (1996)

concluded that combinations of these chemicals decreased estradiol binding “in a greater-than-additive

manner.”   Design limitations of this study, however, preclude drawing definitive conclusions whether the

mode of joint toxic action among these chemicals in this screening assay was less-than-additive, additive,

or greater-than-additive.

Combined dietary exposure of mallards to 40 ppm p,p’-DDE and Aroclor 1254 did not alter DDE-

induced egg shell thinning, but appeared to decrease the number of intact eggs that were produced

compared with values for control groups or groups exposed to either agent alone (Risebrough and

Anderson 1975).  Dietary exposure of groups of mallards (4 drakes and 10 hens) to 40 ppm p,p’-DDE or

40 ppm p,p’-DDE + 40 ppm Aroclor 1254 for 5 months caused 17 and 19%, respectively, reduction in

mean egg shell thickness compared with control groups (Risebrough and Anderson 1975).   Exposure to

40 ppm Aroclor 1254 alone did not affect egg shell thickness.  Combined exposure reduced total egg

production over the study period by about 35% compared with controls.  Egg production in the first

7 weeks was similar in all groups, but markedly dropped thereafter in the DDE+Aroclor 1254 group. 

About 25% of the decline in egg production in the combined exposure group was attributed to egg eating. 

Further information or studies regarding this apparent synergism between p,p’-DDE and Aroclor 1254

were not located.  Additional research may help to determine if a similar synergism may occur between

p,p’-DDE and PCBs in affecting reproductive function in mammals.

Interactions Between PCBs and Other Chemicals    

An initial report (Arnold et al. 1996) that binary mixtures of hydroxylated PCBs and weakly estrogenic

pesticides (dieldrin, endosulfan, toxaphene, and chlordane) resulted in synergistic increases in estrogen

receptor binding and reporter gene-expression in transfection-facilitated yeast and endometrial carcinoma-

derived cell cultures was subsequently withdrawn by the investigators due to the inability to reproduce

the results (McLachlan 1997).  A subsequent examination of possible synergy among binary mixtures of

two hydroxylated PCBs (2,4,6-trichloro-4'-biphenylol and 2,3,4,5-tetrachloro-4'-biphenylol) and two

pesticides (endosulfan and dieldrin) in two in vitro estrogenic activity assays (competitive estrogen

receptor binding and induction of multicellular nodules in human cancer-derived MCF-7 cells) found no

evidence for synergy between these hydroxylated PCBs, between these pesticides, or between 
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2,4,6-trichloro-4'-biphenylol and physiologically relevant concentrations of 17β-estradiol (Arcaro et al.

1998).  Likewise, no evidence for obvious synergy was found between tributyltin (50 nM) and

3,3',4,4',5-pentaCB (100 nM) or Aroclor 1016 (50 ppm) in inhibiting human natural killer cell in vitro

lytic actions against leukemia cells (Whalen et al. 1998) or among methylmercury (0.1–2 µg/mL), a

CDD/CDF mixture of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 1,2,3,7,8-pentachlorodibenzo-p-dioxin,

1,2,3,4,7,8-hexachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and

1,2,3,7,8-pentachlorodibenzofuran (1–15 pg/mL), and three commercial PCB mixtures, Aroclor 1242,

1254, and 1260 (0.01–0.5 µg/mL) in altering several in vitro activities (mixed leukocyte reaction, natural

killer cell activity, and phagocytic activities) of rat leukocytes (Omara et al. 1998).

Simultaneous exposure of rats to Aroclor 1254 or 1260 and chemicals of environmental concern such as

the pesticides mirex, photomirex, and/or kepone in the diet resulted in increased severity of the liver

lesions attributed to exposure to chlorinated biphenyls alone (Chu et al. 1980).  Induction of hepatic AHH

activity by Aroclor 1254 in the diet of lactating rats was increased in an additive manner by simultaneous

dietary exposure to polybrominated biphenyls such as Firemaster BP-6 (McCormack et al. 1979).

The induction of liver carcinogenesis by Aroclor 1254 in C57BL/10ScSn mice is markedly increased by

iron (Madra et al. 1995).  A single dose of iron dextran in mice fed Aroclor resulted in a significant

increase in octoploid nuclei within 2 weeks; it persisted for 6 months and resulted in massive hepatic

porphyria.  In another study (Madra et al. 1996), the iron-enhanced toxicity appears to be due to the

induction of P-450 1A1 isoforms in the nuclear membrane as well as in the microsomes. 

Pretreatment of rats with Aroclor 1254 protected against hepatotoxicity due to inhalation of 1,1-dichloro-

ethylene, suggested that MFO induction by PCBs may be responsible for detoxification of 1,1-dichloro-

ethylene (Reynolds et al. 1975).  This detoxification might occur if the epoxide of 1,1-dichloroethylene

isomerizes rapidly to an aldehyde before reacting with tissues.

Increased dietary ascorbic acid may protect against some of the toxic effects of PCBs, such as altered

enzyme activity and liver histopathology, perhaps by inhibiting lipid peroxidation (Chakraborty et al.

1978; Kato et al. 1981a).  The exact mechanism is not known.

Co-administration of cadmium and Aroclor 1248 resulted in a significant increase in growth retardation

and plasma cholesterol, compared to controls or rats fed a diet containing cadmium or Aroclor 1248

alone.  The effects were found to be additive (Suzuki 1980).
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Pretreatment of rats with Aroclor 1254 markedly accelerated the biotransformation and bioactivation of

the industrial chemical 2,6-dinitrotoluene (Chadwick et al. 1993).  This resulted in an increased formation

and excretion of mutagenic metabolites in the urine.  Also, Aroclor 1254 potentiated the formation of

2,6-dinitrotoluene-derived DNA adducts in the liver.

PCBs can interact with structurally diverse carcinogens in various ways.  Oral studies have shown that

Aroclor 1254 and other PCBs with similar percentages of chlorine by weight (e.g., Kanechlor 500,

Clophen A50) promote the development of liver preneoplastic foci, liver tumors, and lung tumors in rats

or mice that have been treated with other carcinogens as initiators, including nitrosamines and

2-acetylaminofluorene (Anderson et al. 1986; Deml and Oesterle 1987; Kimura et al. 1976; Oesterle and

Deml 1983, 1984; Pereira et al. 1982; Preston et al. 1981; Tatematsu et al. 1979).  PCBs also can enhance

or inhibit the activity of other hepatocarcinogens when simultaneously administered orally (Ito et al.

1973; Kimura et al. 1976; Makiura et al. 1974).  There is no conclusive evidence that Aroclor is a skin

tumor promoter when repeatedly applied to the skin of mice that were initiated with DMBA or MNNG

(Berry et al. 1978, 1979; Poland et al. 1983), but a single dermal application of Aroclor 1254 to mice

showed weak initiator activity when promoted with TPA (DiGiovanni et al. 1977).  Pretreatment with a

single dermal dose of Aroclor 1254 inhibited skin tumor initiation by DMBA in mice (Berry et al. 1979). 

Intraperitoneal injection of Aroclor 1254 to mice on Gd 19 protected the offspring from lung tumors, but

increased the incidence of liver tumors, following injection of N-nitrosodimethylamine on

postnatal day 4 or 14 (Anderson et al. 1983).  The genotoxicity of numerous carcinogens is potentiated

in vitro by PCBs, but this does not indicate that PCBs should be regarded universally as tumor promoters

because of the protective role of PCBs against carcinogenicity of many genotoxic carcinogens in vivo

(Hayes 1987).

3.10 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to PCBs than will most persons

exposed to the same level of PCBs in the environment.  Reasons may include genetic makeup, age, health

and nutritional status, and exposure to other toxic substances (e.g., cigarette smoke).  These parameters

result in reduced detoxification or excretion of PCBs, or compromised function of organs affected by

PCBs.  Populations who are at greater risk due to their unusually high exposure to PCBs are discussed in

Section 5.7, Populations With Potentially High Exposures.
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The potential susceptibility of embryos, neonates, and children are discussed in detail in Section 3.7,

Children’s Susceptibility.

Other subpopulations that are potentially more susceptible to PCBs include those with incompletely

developed glucuronide conjugation mechanisms (Calabrese and Sorenson 1977; Lester and Schmid

1964), such as those with Gilbert’s Syndrome.  Gilbert’s Syndrome is a relatively common and benign

congenital liver disorder that is characterized by mild, fluctuating increase in serum bilirubin, and is

estimated to occur in 3–7% of the adult population (American Liver Foundation 2000).  Persons with

hepatic infections may have decreased glucuronide synthesis, making them more sensitive because of

their decreased capacity to detoxify and excrete PCBs (Calabrese and Sorenson 1977).  Those with

compromised liver function, such as in the case of liver cirrhosis or hepatitis B, could also be considered

more susceptible to PCB toxicity.  PCBs, via induction of ALA synthetase, might be capable of

precipitating an attack of porphyria in patients with acute intermittent porphyria.

3.11 METHODS FOR REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects of

exposure to PCBs.  However, because some of the treatments discussed may be experimental and

unproven, this section should not be used as a guide for treatment of exposures to PCBs.  When specific

exposures have occurred, poison control centers and medical toxicologists should be consulted for

medical advice.  No texts were found that provided specific information about treatment following

exposures to PCBs.

3.11.1 Reducing Peak Absorption Following Exposure

Human exposure to PCBs can occur by inhalation, ingestion, or by dermal contact.  PCBs are readily

absorbed through the gastrointestinal tract, respiratory system, and skin.  Data from animal studies

suggest that the rate of absorption following oral exposure is greater than that following inhalation or

dermal exposures.  Specific information regarding the prevention or reduction of toxicological effects

following acute exposure to PCBs was not located in the literature.  General recommendations for

reducing absorption of PCBs following acute exposure include removal of contaminated food, water, air,

and/or clothing from the exposed individual.  Multiple washes of contaminated skin with soap and water

immediately following dermal exposure to PCBs have also been recommended (HSDB 1995).  Washing

is most effective immediately following exposure, since PCBs are readily absorbed through the skin.  
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Trichlorobenzene and mineral oil have been found useful in decontaminating exposed areas of skin in rats

(Wester et al. 1990).  However, using hydrocarbon-based solvents to cleanse PCB-contaminated skin

could carry the risk of increasing the dermal absorption of those fat-soluble compounds in humans.  

Many of the clinical symptoms that result from PCB exposure, such as chloracne, are delayed in onset. 

Therefore, ingestion of PCBs is normally not recognized until long after the time when inducing emesis

might be beneficial.  In addition, emesis may result in aspiration of the lipid materials into the lungs,

possibly causing lipoid pneumonitis.  The value of administering activated charcoal to decrease the

absorption of PCBs is unknown, but is frequently recommended as a slurry, either aqueous or mixed with

a saline cathartic or sorbitol (HSDB 1995).  Repetitive administration of activated charcoal might be

useful in preventing reabsorption of metabolites.  In rats, rice bran fiber decreased absorption of PCBs in

the intestinal tract and had a stimulatory effect on fecal excretion of PCBs (Takenaka and Tarahashi

1991).  It is unclear that rice bran would be of benefit in PCB-poisoned humans.

3.11.2 Reducing Body Burden

There are no known treatment methods for reducing body burden of PCBs.  It should be noted that

significant amounts of PCBs can be eliminated through lactation (see Section 3.7, Children’s

Susceptibility), indicating that breast feeding can reduce maternal body burden of PCBs.  However, in

most cases, the benefits of breast feeding outweigh any possible PCB risks to the mother from the body

burden or to the child from exposure via the milk.

Limiting or preventing further exposures appears to be the most practical method for reducing body

burden of PCBs.  For the general population, especially subgroups that consume diets high in

contaminated fish (e.g., sport fisherman), this can be achieved through public health advisories on fish

consumption.  A listing of fish advisories for PCBs is provided in Chapter 8 (Table 8-1).

   

3.11.3 Interfering with the Mechanism of Action for Toxic Effects

No specific information was located regarding clinical methods of interfering with PCB mechanisms of

toxic action.  Some of the toxic effects, such as immunological effects, body weight loss, enzyme

induction and porphyria, appear to be mediated by a common initial mechanism involving the Ah

cytosolic receptor (Poland et al. 1976; Safe 1984, 1990), as discussed in Section 3.5.2 (Mechanisms of

Toxicity).  The responsiveness of a particular organ to PCB congeners may depend on the presence of 
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functional Ah receptors.  PCB binding to the Ah receptor is followed by a series of events that lead to the

accumulation of occupied nuclear receptor complexes and enhanced CYP1A gene expression.  Although

speculative, it is possible that interference with this mechanism may lead to a more specific treatment for

reducing some of the toxic effects of PCB congeners that exert this mechanism of toxic action.  Future

research on Ah receptor antagonists may provide new insight for clinical treatment of PCB Ah receptor-

mediated toxicity, but at present, only symptomatic and supporting therapy is available for PCB-exposed

humans.

Toxic effects of PCBs may also involve Ah-receptor independent mechanisms, or both Ah-receptor

dependent and independent mechanisms (see Section 3.5.2).  For example, PCBs can be metabolized to

reactive arene oxide intermediates that may alkylate critical cellular macromolecules and result in injury

(Gardner et al. 1973; Safe 1990).  Clinical intervention to interfere with Ah-receptor independent

mechanisms have not been developed.

In summary, presently no specific treatments are available for patients with acute or long-term exposure

to PCBs.  Additional research is necessary to develop specific methods to mitigate PCB toxicity.

3.12 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of polychlorinated biphenyls is available.  Where adequate

information is not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is

required to assure the initiation of a program of research designed to determine the health effects (and

techniques for developing methods to determine such health effects) of polychlorinated biphenyls.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be

evaluated and prioritized, and a substance-specific research agenda will be proposed.
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3.12.1 Existing Information on Health Effects of Polychlorinated Biphenyls

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to

polychlorinated biphenyls are summarized in Figure 3-5.  The purpose of this figure is to illustrate the

existing information concerning the health effects of polychlorinated biphenyls.  Each dot in the figure

indicates that one or more studies provide information associated with that particular effect.  The dot does

not necessarily imply anything about the quality of the study or studies, nor should missing information in

this figure be interpreted as a “data need”.  A data need, as defined in ATSDR’s Decision Guide for

Identifying Substance-Specific Data Needs Related to Toxicological Profiles (ATSDR 1989), is

substance-specific information necessary to conduct comprehensive public health assessments. 

Generally, ATSDR defines a data gap more broadly as any substance-specific information missing from

the scientific literature.

This section identifies information needs regarding PCB mixtures which, if met, would contribute to a

more precise association between levels of exposure at hazardous waste sites and adverse health effects. 

Most of the information evaluated in this report has been obtained from studies in which commercial PCB

mixtures were used, and this is the most practical basis for hazard evaluation.  People are environmentally

exposed to PCB mixtures of different congeneric composition than commercial PCB mixtures.  Although

the toxicity of environmental PCB mixtures consequently may be increased or decreased compared to

commercial mixtures, there are insufficient mixture toxicity data on which to assess hazards and directly

base minimal risk levels for environmental PCBs.  One approach that has been widely considered for

estimating the risk from environmental exposure to PCBs is the TEF method.  As discussed in

Section 3.5.2, the TEF approach can be used to estimate the potency of PCB mixtures by comparing the

relative toxicity of individual PCB congeners to that of 2,3,7,8-TCDD, which is the most toxic and

extensively studied of these structurally-related halogenated aromatic hydrocarbons.  Although TEFs are

used to some extent to guide public health decisions because of the limited toxicological data for complex

environmental mixtures and many of their components, the approach has received limited validation and

has a number of limitations related to assumptions that the components jointly act in an additive manner

through a common Ah-receptor mechanism of toxicity.  In particular, the TEF approach does not account

for evidence that non-Ah-receptor-binding congeners are major components in PCB-containing

environmental mixtures that may contribute to induction of health effects. Due to evidence of non-

additive interactions between specific PCB congeners and between some PCB congeners and

2,3,7,8-TCDD (see Section 3.9), as well as increasing evidence that PCB-induced effects may involve 
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Figure 3-5.  Existing Information on Health Effects of Polychlorinated Biphenyls
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Ah-receptor-dependent mechanisms, Ah-receptor-independent mechanisms, or both Ah-receptor-

dependent and Ah-receptor-independent mechanisms (see Section 3.5.2), the accuracy of the TEF

approach is questionable.  Due to the current lack of any alternative validated congener-based risk

assessment methodology, and considering the likelihoods that (1) multiple mechanisms are involved in

PCB-induced health effects, (2) different PCB congeners may produce effects by different mechanisms,

and (3) humans are exposed to complex mixtures of interacting PCBs with differing biological activities,

it appears reasonable to use commercial mixtures as a surrogate for environmental mixtures in assessing

health risks from exposure to environmental mixtures of PCBs.  Because toxicity data on commercial

PCB mixtures are likely to provide a better approximation of the toxicity of environmental mixtures than

existing methods based on unmixed congeners, since a congener based approach would poorly reflect the

net contribution of components to the toxicity of a mixture, toxicity data on commercial mixtures are the

most appropriate basis for deriving minimal risk levels for environmental mixtures of PCBs. 

Consequently, although additional congener studies are necessary to further elucidate the significance and

mechanisms of neurological, immunological and other effects of concern, studies of commercial PCBs

and other relevant mixtures of congeners (e.g., the mixture simulating the congener composition of breast

milk used in the intermediate MRL study) are most relevant to human health risk assessment.

Information on the human health effects of PCBs containing low levels of CDF contaminants is primarily

available from occupational exposure studies of industries in which PCBs are no longer used. 

Information on effects in children exposed to PCBs during gestation and/or lactation also is available,

particularly regarding neurodevelopmental effects.  These studies examined the effects in children born to

women with no known high exposure to PCBs as well as children from women who consumed, for a long

time, fish contaminated with PCBs and other persistent chemicals, especially from areas surrounding the

Great Lakes. The relative contribution of the inhalation and dermal routes in the occupational exposures

is unknown, but existing information on health effects in exposed workers is included with inhalation

exposure in Figure 3-5.  Health effects information is available on humans who were exposed to heated

PCBs during the Yusho and Yu-Cheng incidents, but, as discussed in Section 3.1, CDFs are considered to

be the main causal agent due to relatively high levels of these contaminants.  The other human data are

generally limited by insufficient exposure information and other factors, but seem to be consistent with

effects observed in animals.  Information on health effects in animals is extensive and available for all

effect categories, but is almost completely limited to oral exposure studies.  This appears to reflect

experimental practicality and concern for what is thought to be the most prevalent and likely route of

environmental exposure.
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3.12.2 Identification of Data Needs

Acute-Duration Exposure.    The hepatotoxicity of PCBs in rats is reasonably well characterized for

acute-duration oral exposure (Carter 1984, 1985; Carter and Koo 1984; Kato and Yoshida 1980; Kling et

al. 1978; Price et al. 1988), but it is unclear if the liver is the most sensitive target organ for acute

exposure.  Other targets appear to include the kidneys, stomach, and thyroid (Bruckner et al. 1973;

Hansen et al. 1976; Kimbrough et al. 1972; Price et al. 1988), but insufficient information exists to

determine if effects in these or other tissues occur at lower doses or are more critical than effects in the

liver.  Acute oral studies in other species are needed to determine the most sensitive target and species for

acute exposure basis and the possible basis for an acute oral MRL.  Studies with monkeys would be

informative because intermediate- and chronic-duration studies indicate that this species is more sensitive

than the rat and that developmental, endocrinological, and immunological effects are particularly sensitive

end points.

Information on toxic effects of acute-duration exposure to PCBs by routes other than oral are limited to

LD50 values for dermal exposure (Fishbein 1974; Puhvel et al. 1982), but these data may not be reliable

due to possible delayed lethality.  PCBs are well absorbed after exposure by all routes, and distribution to

and retention by adipose tissue has been observed in humans after inhalation, oral, and/or dermal

exposure (Brown and Lawton 1984; Fait et al. 1989; Jensen 1987).  Mobilization of PCBs from adipose

tissue to target organs is likely to be similar regardless of the route of exposure.  Additional acute dermal

studies are relevant because the skin is a route of concern for exposure at or near hazardous waste sites,

particularly due to possibilities for brief contact.  Acute inhalation toxicity studies may be relevant due to

the potential for inhalation exposure from electrical appliances in buildings and downwind from PCB

disposal facilities and incinerators.

Intermediate-Duration Exposure.    The preponderance of toxicity data for PCBs is available from

animals exposed to PCBs in the diet in intermediate-duration studies.  Studies have been performed with

various species, but the rat, monkey, and mink have been tested most extensively, and the monkey and

mink consistently appear to be the most sensitive.  The liver, skin, and stomach are unequivocal targets,

but existing studies do not identify NOAELs for effects in these organs in monkeys and minks (Allen

1975; Allen and Norback 1973, 1976; Allen et al. 1973, 1974a; Andrews 1989; Barsotti et al. 1976;

Becker et al. 1979; Bell 1983; Bleavins et al. 1980; Bruckner et al. 1973, 1974, 1977; Goldstein et al.

1974; Hansen et al. 1976; Hornshaw et al. 1986; Kimbrough and Linder 1974; Kimbrough et al. 1972;

Kling et al. 1978; Koller 1977).  Anemia consistently occurs in monkeys at doses similar to those 
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producing other effects, but a NOAEL and the relative importance of this effect is not known (Allen

1975; Allen and Norback 1976; Allen et al. 1973, 1974a).  There is evidence suggesting that effects occur

in the thyroid and adrenal glands of rats at doses lower than those producing effects in other tissues in

monkeys and minks (Bruckner et al. 1973, 1974; Byrne et al. 1987, 1988; Collins and Capen 1980b,

1980c; Collins et al. 1977; Kasza et al. 1978; Kato et al. 1982a; Tryphonas et al. 1986a; Wassermann et

al. 1973), but these doses are in proximity to those producing developmental toxicity in monkeys.  A

series of intermediate-duration studies in infant monkeys found neurodevelopmental effects of a low dose

(7.5 µg/kg/day) of a congener mixture that simulated the congener composition of human breast milk

(Rice 1997, 1998, 1999b; Rice and Hayward 1997, 1999a).  The single dose level tested was a LOAEL

that was used as the basis for the intermediate MRL.  Additional intermediate-duration oral studies are

needed to better characterize the neurodevelopmental effects of similarly low doses of PCB mixtures as

well as the LOAEL region for immunological, endocrinological, and other sensitive end points. 

Additional studies could also corroborate evidence indicating PCB-related changes in bone structure in

growing rats (Andrew 1989) and on PCB-related endocrine disruption.

Some information is available on effects of PCBs in animals by inhalation (one study with rats, mice,

rabbits, and guinea pigs, and a second study with rats) (Casey et al. 1999; Treon et al. 1956) or dermal

exposure (two studies with rabbits, one study with mice) (Puhvel et al. 1982; Vos and Beems 1971; Vos

and Notenboom-Ram 1972) for intermediate durations.  Although limited by various study inadequacies

including insufficient numbers of animals, dose levels, end points and NOAEL data, this information is

essentially consistent with the oral data in indicating that the liver, kidneys, thyroid and skin are main

targets of toxicity.  The limitations of these studies and lack of intermediate-duration inhalation studies in

other species known from oral studies to be more sensitive than rats precludes the derivation of an MRL

for this route and duration.  Well-designed intermediate-duration studies in the more sensitive species,

particularly monkeys, are needed to determine thresholds for other targets.  Additional investigation could

help determine whether the respiratory system effects observed in workers exposed by inhalation

(Emmett et al. 1988a, 1988b; Fischbein et al. 1979; Lawton et al. 1986; Smith et al. 1982; Warshaw et al.

1979) were truly PCB effects or were caused by other contaminants.  Toxicity studies by the inhalation

route would be relevant due to the potential for environmental exposure by this route, particularly in the

vicinity of waste sites, but may not be practical due to low volatility.  Additional intermediate-duration

dermal studies, especially in sensitive species, are relevant because the skin is a route of concern for

exposure at or near hazardous waste sites.
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Chronic-Duration Exposure and Cancer.    Some epidemiological studies of PCB-exposed

workers, which involve inhalation and dermal exposure, have provided evidences that PCBs were

associated with adverse health effects, including hepatic and dermal changes (Alvares et al. 1977; Baker

et al. 1980; Bertazzi et al. 1987; Chase et al. 1982; Colombi et al. 1982; Emmett 1985; Emmett et al.

1988a, 1988b; Fischbein 1985; Fischbein et al. 1979, 1982, 1985; Kimbrough et al. 1999a, 1999b;

Lawton et al. 1985a, 1985b, 1986; Maroni et al. 1981a, 1981b; Meigs et al. 1954; Ouw et al. 1976, 1982;

Smith et al. 1982; Warshaw et al. 1979).  Reported effects on the respiratory system and gastrointestinal

tract in these workers are suggestive.  Hypertension in a population that consumed fish containing PCBs

and DDT or other environmentally-exposed populations cannot be attributed conclusively to PCBs

(Kreiss 1985; Kreiss et al. 1981; Massachusetts Department of Public Health 1987; Stehr-Green et al.

1986a).  As discussed in following subsections, there is growing evidence that immunologic,

reproductive, and thyroid effects are effects of concern in PCB-exposed populations.  Relatively few

toxicity studies of animals with chronic oral exposure to PCBs have been performed (Allen and Norback

1976; Arnold et al. 1993a, 1993b, 1995; General Electric Co. 1997a, 1997b; Kimbrough et al. 1975; Loo

et al. 1989; Mayes et al. 1998; NCI 1978; Phillips et al. 1972; Tryphonas et al. 1986a, 1986b, 1989,

1991b), and chronic inhalation and dermal toxicity studies with animals, which could support or refute the

findings of occupational studies, are lacking.  Although limited in quantity, the available chronic animal

oral toxicity data essentially corroborate the results of intermediate-duration studies with respect to effects

in the liver, skin, stomach, blood, and thyroid, but provide no information on renal effects.  Additional

studies could help explain a lack of adrenal effects in monkeys exposed chronically (Loo et al. 1989) and

changes in this organ in rats exposed in intermediate-duration studies.  Additional studies would be

necessary to determine the most sensitive animal target organ and species for chronic exposure and verify

that immunologic effects are the most appropriate basis for the MRL.  Additional human studies could

help verify and elucidate suggestive effects, including whether gastrointestinal symptoms in workers are

secondary to liver toxicity and the possible association between PCBs and hypertension. Additional

evaluations of the thyroid would be particularly informative because intermediate-duration animal studies

indicating that the thyroid may be a particularly sensitive target of toxicity in monkeys has limitations

(Tryphonas et al. 1986b).  Other chronic-duration exposure studies targeting the potential of specific PCB

congeners to act as endocrine disruptors would be useful.

There is sufficient evidence that commercial PCB mixtures containing 60% chlorine by weight are

carcinogenic in rats (General Electric Co. 1997a, 1997b; Kimbrough et al. 1975; Mayes et al. 1998;

Norback and Weltman 1985; Schaeffer et al. 1984).  Aroclor 1254 and other lower chlorinated

commercial PCB mixtures have a lower carcinogenic potential than the 60% chlorine mixtures (General 
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Electric Co. 1997a, 1997b; Ito et al. 1973; Kimbrough and Linder 1974; Kimbrough et al. 1972; Mayes et

al. 1998; Morgan et al. 1981; NCI 1978; Schaeffer et al. 1984; Ward 1985).  Although the evidence that

PCBs are carcinogenic in rats is conclusive, additional studies could provide information on interspecies

differences.  Further studies with PCB congeners aimed at elucidating the mechanism of promotion and

the possible role of intercellular communication in tumor promoting activity (Hemming et al. 1992)

would be valuable.

Human studies provide suggestive evidence that PCBs are carcinogenic.  The carcinogenicity of PCBs in

humans has been investigated in retrospective cohort mortality studies, which investigated cancer in

exposed workers, and in case-control studies of environmental exposure that examined associations

between serum or adipose tissue levels of PCBs and occurrence of cancer.  Some of the mortality studies

suggest that occupational exposures to PCBs were associated with cancer at several sites, particularly the

liver, biliary tract, intestines, and skin (melanoma) (Bahn et al. 1976, 1977; Bertazzi et al. 1987; Brown

and Jones 1981; Brown 1987b; Gustavsson and Hogstedt 1997; Gustavsson et al. 1986; Hardell et al.

1996; Hsieh et al. 1996; Kimbrough et al. 1999a, 1999b; Kuratsune et al. 1987; Loomis et al. 1997;

Nicholson and Landrigan 1994; Rothman et al. 1997; Shalat et al. 1989; Sinks et al. 1992; Tironi et al.

1996).  There is no clear association between occupational exposures to PCBs and cancer in other tissues,

including the brain, hematopoietic, and lymphatic (e.g., non-Hodgkin’s lymphoma).  The hypothesis that

environmental exposure to PCBs can cause breast cancer in humans is controversial and needs to be

further studied.  A number of case-control studies have investigated possible associations between breast

cancer and concentrations of PCBs in breast tissue or blood in the general population.  Breast adipose

levels of total PCBs or individual congeners were increased in women with breast cancer in some but not

all studies (Aronson et al. 2000; Dewailly et al. 1994; Falck et al. 1992; Guttes et al. 1998; Liljegren et al.

1998; Mussalo-Rauhamaa et al. 1990; Unger et al. 1984; Wasserman et al. 1976).  Other environmental

exposure studies used serum PCB concentrations as the marker of exposure with blood samples taken

after the diagnosis of breast cancer (Moysich et al. 1998, 1999; Wolff et al. 1993; Zheng et al. 2000), or

prospectively collected prior to diagnosis (Dorgan et al. 1999; Helzlsouer et al. 1999; Høyer et al. 1998;

Hunter et al. 1997; Krieger et al. 1994; Wolff et al. 2000).  None of the serum studies found significantly

different mean blood levels of PCBs in breast cancer cases and controls.  There also were no significant

associations between risk of breast cancer and serum PCBs in most of these studies, although some data

suggest that risk may be increased in some subgroups of postmenopausal women (Moysich et al. 1998,

1999).  Many of the better designed studies were prospective, and none of the prospective studies found

that PCBs were associated with the occurrence of breast cancer (Dorgan et al. 1999; Helzlsouer et al.

1999; Høyer et al. 1998; Hunter et al. 1997; Krieger et al. 1994; Wolff et al. 2000).  Additional studies,
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including follow-up of existing cohorts, are needed to better characterize the relationship between PCBs

and cancer in humans.

Genotoxicity.    An increased percentage of chromosomal aberrations was reported in a study in which

workers were exposed to PCBs for >10 years (Kalina et al. 1991).  However, there was simultaneous

exposure to benzene, which is known to cause genotoxic effects in humans.  A different study reported a

slight increase in the incidence of sister chromatid exchanges in 12 men exposed to PCBs following a fire

in an electric station (Melino et al. 1992).  It is quite possible, however, that toxic chlorinated dioxins

and/or furans were generated during the fire.  Studies with Aroclor 1254 in human lymphocytes in vitro

gave conflicting results; Hoopingarner et al. (1972) found no evidence of chromosomal damage at a

concentration of 100 µg/mL, whereas Sargent et al. (1989) observed chromosomal damage at a

concentration of 1.1 µg/mL.  Aroclors 1242 and 1254 were not genotoxic in rats and mice when

administered orally in acute- and intermediate-duration studies (Garthoff et al. 1977; Green et al. 1975a,

1975b; Robbiano and Pino 1981); however, longer term studies were not located.  Furthermore, other

PCB mixtures have not been tested.  Studies by the inhalation and dermal routes would help develop

dose-response relationships for these routes.  Available pharmacokinetic data do not suggest route-

specific target organs.  Aroclor 1254 was not mutagenic in Salmonella (Bruce and Heddle 1979; Heddle

and Bruce 1977; Schoeny et al. 1979).  Studies with other mixtures, and using other prokaryotes, would

provide information regarding differences in potencies of different mixtures and in the sensitivities of

different organisms.  Cytogenetic analysis of human populations exposed to PCBs in occupational

settings or exposed by consumption of food contaminated with PCBs would provide an opportunity to

assess the genotoxic potential of these compounds in humans.  However, the generally negative results of

in vitro and in vivo animal studies indicate that commercial PCB mixtures are not likely to pose a

genotoxic threat to humans.  

Reproductive Toxicity.    Limited information is available on reproductive effects of PCBs in humans. 

In women, there was no apparent effect of occupational exposure to various Aroclor mixtures on mean

number of pregnancies (Taylor et al. 1989).  Due to study limitations and lack of information on gravidity

in other studies, the effect of PCBs on human conception is unclear.  Studies that examined reproductive

end points in women whose diets contained Great Lakes fish found suggestive evidence that consumption

of the fish may be associated with a slightly shorter menstrual cycle length (Mendola et al. 1997), but not

with increased risk for spontaneous fetal death (Mendola et al. 1995a).  Studies of one cohort of Great

Lakes fisheaters indicated that women were more likely to have positive associations with conception

delay than their exposed husbands (Buck et al. 1997, 1999, 2000), although contrary results were found in 
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another cohort which found an association between conception delay and Great Lakes fish consumption

in exposed men, but not in their wives (Courval et al. 1999).  The strength of the human evidence that

consumption of Great Lakes fish may or may not be associated with adverse effects on conception and

other reproductive abilities is weak given the small magnitude of effects when they have been detected

and study limitations as discussed in Section 3.2.5.2.  Additional long-term prospective or longitudinal

epidemiology studies are needed are needed to follow these PCB-exposed populations for reproductive

end points as well as to assess the clinical relevance of the effects.

Oral studies with animals provide conclusive evidence for reproductive toxicity of PCBs in females of

various species and some evidence for effects in male rats.  Effects that have been induced in female

animals include estrus changes and reduced implantation rate in adult rats and/or their offspring,

decreased conception in mice, partial or total reproductive inhibition in minks, and menstrual alterations

and decreased fertility in monkeys (Allen et al. 1974a; Arnold et al. 1990, 1993a, 1993b, 1995; Aulerich

and Ringer 1977; Backlin and Bergman 1995; Backlin et al. 1997, 1998a, 1998b; Barsotti et al. 1976;

Brezner et al. 1984; Jones et al. 1997; Kihlstrom et al. 1992; Sager and Girard 1994; Welsch 1985). 

Monkeys (Rhesus) and minks are the most sensitive species tested, although reproductive effects were not

induced at doses quite as low as those inducing the critical neurobehavioral, immunological, and

dermal/ocular effects used to derive the intermediate and chronic MRLs.  In male animals, short-term

exposure to high oral doses of Aroclor 1254 induced no changes in the weight or histology of the testes or

accessory glands in adult rats (Dikshith et al. 1975; Sanders et al. 1974), although seminal vesicle weights

and caudal epididymal weights and sperm counts were reduced in rats that were exposed for several

months as weanlings (Gray et al. 1993).  No studies in male mice or rats evaluated reproductive

capability.  There is limited evidence of hypoactivity of the seminiferous tubules in monkeys that were

chronically exposed to a dose of Aroclor 1248 that also caused clinical signs of toxicity (Allen and

Norback 1976).  In contrast to the limited evidence for reproductive effects in male adult animals, fertility

was markedly reduced in male offspring of rats that were lactationally exposed to relatively high doses of

Aroclor 1254 (Sager 1983; Sager et al. 1987, 1991), and results of oral and subcutaneous studies with

single congeners have also shown that gestational and neonatal exposures can adversely affect

morphology and production of sperm and fertility in male rats and mice (Faqi et al. 1998; Huang et al.

1998a; Smits-van Prooije et al. 1993).  As discussed in Section 3.5.2, effects on male reproductive organs

appear to involve postnatal developmentally-specific vulnerable periods of responsiveness.  Additional

animal studies could help characterize effects on fertility in exposed adults, interspecies and sex

differences in sensitivity, and define the NOAEL region for reproductive effects.
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Developmental Toxicity.    There is mounting evidence that perinatal exposure to PCBs induces

adverse developmental effects in humans, specifically, but not limited to, neurobehavioral alterations in

newborn and children exposed during gestation and/or via breast milk.  This has been seen in children

born to mothers exposed to PCBs by consumption of contaminated fish from the Great Lakes (Fein et al.

1984a, 1984b; Jacobson et al. 1984a, 1990a, 1990b, 1992; Lonky et al.1996; Stewart et al. 1999, 2000b)

and in children from women with no known high-exposure to PCBs in North Carolina (Gladen et al.

1988; Rogan and Gladen 1991; Rogan et al. 1986a, 1986b, 1987), The Netherlands (Huisman et al.

1995a, 1996b; Koopman-Esseboom et al. 1996; Lanting et al. 1998a; Patandin et al. 1999), and Germany

(Winneke et al. 1998b).  In the various cohorts studied, some common findings of neurodevelopmental

effects have been reported, other affected end points have not been the same in all studies.  This is not

unexpected given the different degrees of control for confounders and the different measures of exposure

used.  Moreover, apparent inconsistencies between studies may reflect not only limitations in study

design, but also problems inherent in detecting neurobehavioral deficits at exposure levels near the

threshold for effects.  Effects associated with PCB exposure included abnormal reflexes and more motor

immaturity in newborns (Jacobson et al. 1984a; Lonky et al. 1996; Rogan et al. 1986b), altered PDI

scores at 1–2 years of age (Gladen et al. 1988; Koopman-Esseboom et al. 1996), and alterations in

memory functions at 7 months of age (Jacobson et al. 1985) and at 4 years of age (Jacobson et al. 1990a,

1990b, 1992) and in cognitive abilities at 42 months using the Kaufman Assessment Battery for Children

(Patandin et al. 1999).  It must be kept in mind, however, that in all of these studies, there is a possibility

that other lipophilic compounds may have contributed to the observed effects, particularly  in the studies

on consumption of Great Lakes fish contaminated with other chemicals such as CDDs, DDE, and

mercury.  It is expected that children from these prospective studies continue to be monitored in order to

assess the impact of these subtle neurobehavioral alterations as they grow older and their potential

implications at a population level.  It is also important to address the issue of continuity of effect over

time.  This means establishing whether the children who showed impaired performance in some tests at

18 and 24 months are the same who performed poorly in tests given as neonates.  This would help

interpretation of  the biological significance of the exposure.

Improvements in analytical methods for measuring PCBs should greatly facilitate analysis of PCB

congeners in cord blood, the most accurate surrogate of exposure during gestation.  This should allow

researchers to establish more precise potential associations between specific PCB congeners and health

outcomes, as done for example by Stewart et al. (2000b) in their study of Lake Ontario fisheaters.  It is

also important that researchers provide as much information as possible regarding not only the analytical 
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methods used for measuring PCBs, but also the methods for measuring lipids so that comparisons

between studies can be made.  

Studies in animals support the findings in humans.  Studies in rodents have provided valuable

information, but monkeys, whether exposed during gestation and/or during infancy, have proved to be

much more very sensitive to PCBs and some structurally-related chemicals.  Investigators should continue

efforts to develop an operant test battery that measures a variety of functions that can be validated for use

in rodents, monkeys, and humans and that can be applied in epidemiological studies.  Studies with single

congeners are valuable in that they provide information on possible mechanisms of action, but people,

specifically nursing infants, are exposed to a mixture of PCB congeners in the milk.  Therefore, further

studies that administer PCB mixtures of congeneric composition similar to that of human breast milk

represent the most relevant approach to mimicking real life exposure to infants.  Varying the congener

composition of the reconstituted milk sample may help associate specific PCB congeners with specific

neurodevelopmental outcomes. 

Some studies in humans have suggested that gestational exposure to PCBs and other chemicals can affect

the thyroid hormone system in infants (Koopman-Esseboom et al. 1994a; Nagayama et al. 1998a;

Winneke et al. 1998a).  These observations  have been extensively corroborated in experimental animals

(Collins and Capen 1980c; Corey et al. 1996; Goldey et al. 1995; Juarez de Ku et al. 1994; Li et al. 1998;

Morse et al. 1996b; Seo and Meserve 1995).  Yet, further information is needed comparing thyroid

hormone levels in the brain and histological changes of exposed animals during crucial periods of nerve

tract development and neuronal differentiation.  Normal thyroid status is also crucial for the normal

development and functioning of reproductive organs, and further research in this area is also needed. 

Perinatal exposure to PCBs also has been associated with alterations in immunocompetence in children

(Dewailly et al. 2000; Smith 1984; Weisglas-Kuperus 2000; Weisglas-Kuperus et al. 1995).  These

children should continue to be observed for any indication of reduced immunocompetence which may

potentially lead to increased incidence of illnesses.  The findings of immune alterations following PCB

exposure are consistent with observations in animals.  Immunological alterations have been reported in

adult monkeys and their offspring after long-term exposure to commercial PCB mixtures at doses as low

as 0.005 mg/kg/day (Arnold et al. 1995; Tryphonas et al. 1989, 1991a, 1991b).    
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Immunotoxicity.    There are indications of altered immune status in adult and infant human

populations who were orally exposed to mixtures of PCBs and other chemicals.  Information on

immunological effects of PCBs in humans is mainly available from studies of people exposed

occupationally (Chase et al. 1982; Emmett et al. 1988a, 1988b; Lawton et al. 1985a; Maroni et al. 1981b;

Smith et al. 1982), by consumption of contaminated fish and other marine foods (Dewailly et al. 2000;

Smith et al. 1984), by consumption of contaminated rice oil in the Yusho and Yu-Cheng poisoning

incidents (Chang et al. 1981, 1982a, 1982b; Chao et al. 1997; Kuratsune 1989; Lu and Wu 1985;

Nakanishi et al. 1985; Rogan 1989; Shigematsu et al. 1971; Yu et al. 1998), and via general

environmental exposures in a Dutch population (Weisglas-Kuperus et al. 1995).  The occupational studies

provide little information for assessing immunotoxicity because evaluations were essentially limited to

inconclusive routine clinical measurements of WBC counts and serum proteins with no investigations of

functional immune parameters.  The most conclusive findings were in the Yusho and Yu-Cheng

populations who experienced the highest levels of PCB exposure and least complex exposure mixture. 

Interpretation of the data from the other human studies is complicated by responses that were generally

subtle and exposures that included a number of persistent toxic substances in addition to PCBs that are

also potentially immunotoxic.  Overall, there appears to be a consistency of effects among the human

studies suggesting sensitivity of the immune system to PCBs and these other chemicals, particularly in

infants exposed in utero and/or via breast feeding.  For example, susceptibility to respiratory tract

infections was increased in Yusho/Yu-Cheng adults and their children, and there was an association

between infectious illnesses and PCBs in the children of mothers who consumed Lake Michigan or

Sheboygan River fish.  Children born to Yu-Cheng mothers also had an increased prevalence of middle

ear infections, and the incidence of acute otitis media was increased in Inuit infants of mothers whose

diets were based on marine mammal fat.  Serum IgA and/or IgM antibody levels were decreased in the

Yusho and Yu-Cheng populations as well as in the Inuit children.  Monocyte counts were reduced in

Yu-Cheng patients and the infants of the Dutch mother-child study, and changes in T lymphocyte subsets

were found in the Yu-Cheng, Inuit child, and Dutch child populations.  However, due to the mixed

chemical nature of the exposures and generally insufficient information on possible exposure-response

relationships, the human studies provide only limited evidence that exposed adults and infants exposed in

utero or via breast feeding may have compromised their immune system rendering them unable to

overcome infection.  Additional studies are needed to better characterize the immunologic potential of

PCBs in exposed humans, particularly by incorporating an immunological component in the early design

of epidemiologic studies, as well as establishing a broad database of normal values for clinical

immunology end points to which experimental results can be compared.  The hypothesis that a possible 
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relationship between PCBs and non-Hodgkin’s lymphoma could be related to the immunosuppressive

effects of PCBs is another area requiring further research.

The immunotoxicity of PCBs in animals has been documented in various species that were orally exposed

via commercial mixtures, mixtures of congeners analogous to human breast milk, Great Lakes fish, or

single congeners.  Studies in rats, mice, guinea pigs, and rabbits showed that intermediate-duration

exposures to relatively high doses of commercial PCB mixtures caused morphological and functional

alterations in the immune system.  Effects observed in these species included thymic and splenic atrophy,

reduced antibody responses to SRBC and other foreign antigens, increased susceptibility to infection by

viruses and other microbes, reduced skin reactivity to tuberculin, and increased proliferation of splenic

lymphocytes in response to mitogenic stimulation (Allen and Abrahamson 1973; Bonnyns and Bastomsky

1976; Exon et al. 1985; Imanishi et al. 1980; Koller 1977; Loose et al. 1977, 1978a, 1978b, 1979;

Smialowicz et al. 1989; Street and Sharma 1975; Talcott and Koller 1983; Talcott et al. 1985; Vos and

Van Driel-Grootenhuis 1972).  Immunological assessments of rats and mice that were fed diets containing

low doses of PCBs and other chemicals in Great Lakes fish were generally mixed, although some

alterations were found that are similar to those observed in the studies of commercial PCB mixtures

(Cleland et al. 1989; Tryphonas et al. 1998a, 1998b).

Oral studies of Aroclor mixtures in monkeys confirm the findings of immunotoxicity in the other species

and further indicate that the immune system of monkeys is particularly sensitive to PCBs.  Immunological

effects of PCBs in monkeys include decreased antibody responses to SRBC, increased susceptibility to

bacterial infections, altered lymphocyte T-cell subsets, decreased lymphoproliferative responsed to

mitogens, and histopathological changes in the thymus, spleen, and lymph nodes (Abrahamson and Allen

1973; Allen and Barsotti 1976; Allen et al. 1980; Barsotti et al. 1976; Thomas and Hinsdill 1978;

Truelove et al. 1982; Tryphonas et al. 1986a, 1989, 1991a, 1991b).  The parameters most consistently

affected in monkeys are reduced IgM and IgG antibody responses to SRBC, which were induced at

chronic oral doses as low as 0.005 mg/kg/day (Tryphonas et al. 1989, 1991a, 1991b).  Results of studies

in gestationally- and lactationally-exposed infant monkeys are consistent with the data in adult animals

showing immunosuppressive effects of PCBs (Aroclor 1254) at doses as low as 0.005 mg/kg/day, with

reductions in IgM and IgG antibody levels to SRBC and mitogen-induced lymphocyte transformation that

generally paralleled the findings in maternal animals (Arnold et al. 1995).  The 0.005 mg/kg/day LOAEL

for immunological effects in monkeys was used as the basis of the chronic oral MRL for PCBs.  Also,

minimal immunological alterations were induced in infant monkeys that were orally exposed to a similar

dose (0.0075 mg/kg/day) of a PCB congener mixture simulating the congener content of human milk for 
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the first 20 weeks of life (Arnold et al. 1999).  Additional immunological studies in animals are needed to

verify that the immune system is the most sensitive target of PCBs and the most appropriate basis for

chronic MRL derivation, as well as better characterize dose-response relationships in sensitive species

following intermediate-duration exposure.

Neurotoxicity.    As previously mentioned under Developmental Toxicity, one of the main focus of

research on PCBs has been the evaluation of a possible association between exposure to PCBs during

gestation and/or lactation and neurobehavioral alterations in newborn and young children. Thus far, there

is no evidence that PCBs at the levels found in the environment are neurotoxic to adults.  There is no

conclusive evidence that workers who were exposed to commercial PCB mixtures for long periods and

had high PCB body burdens developed neurological deficits (Emmett et al. 1988a; Fischbein et al. 1979;

Smith al. 1982).  However, sensory and motor nerve alterations were observed in Yusho and Yu-Cheng

patients who ingested rice oil contaminated with high amounts of PCBs, CDFs, and other structurally-

related chemicals (Chia and Chu 1984, 1985; Kuratsune 1989; Rogan 1989).  Evaluation of an adult

population on a visual-motor coordination test and a hand steadiness test revealed no significant effect

from exposure to PCB/DDE through long-term consumption of Lake Michigan fish (Schantz et al. 1999). 

The results from cognitive assessment of this cohort are expected to be available in the near future.  

The mechanism(s) of neurotoxicity of PCBs is not entirely clear, but evidence accumulated in recent

years suggests that multiple mechanisms may be involved including alterations in levels of

neurotransmitters in various brain areas, of calcium homeostasis (Kodavanti et al. 1993), inositol

phosphates (Shafer et al. 1996), protein kinase C (Kodavanti et al. 1995), ryanodine receptor binding

(Wong and Pessah 1996), and neutrophil activation (Ganey et al. 1993).  Continued research in these

areas is necessary to establish correlations between biochemical, morphological, and functional

alterations in the brain of PCB-exposed animals, as well as to determine possible preferential

accumulation of PCB congeners in specific brain areas that could be associated with specific

neurobehavioral effects.  Establishing relationships between in vitro and in vivo effects is important for

the development of appropriate in vitro preparations in which putative neurotoxicant PCBs can be easily

tested.

Epidemiological and Human Dosimetry Studies.    Consumption of contaminated food

(particularly diets high in fish from contaminated waters) and inhalation of indoor air in buildings that

have electrical parts that contain PCBs are the main sources of exposure for the general population.  PCBs

can pass across the placenta and also can accumulate in breast milk such that breast-fed infants and 
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unborn children are at risk of being exposed to PCBs (DeKoning and Karmaus 2000; Fein et al. 1984a,

1984b; Huisman et al. 1995a, 1996b; Jacobson et al. 1984a, 1990a, 1990b; Rogan et al. 1986a, 1986b,

1987).  Although PCBs are no longer manufactured in the United States, PCB-containing transformers

and capacitors remain in use.  Thus, occupational exposure may occur in workers during accidents or

repair of electrical equipment containing PCBs.  Present and future occupational exposure to PCBs may

also occur from residual PCBs in workplaces, from disposal of PCBs and/or contaminated equipment, or

during cleanup of hazardous waste sites.  A number of studies have examined possible associations

between health effects and exposure to PCBs, particularly in adults occupationally exposed to PCBs

(Alvares et al. 1977; Baker et al. 1980; Bertazzi et al. 1987; Chase et al. 1982; Colombi et al. 1982;

Emmett 1985; Emmett et al. 1988a, 1988b; Fischbein 1985; Fischbein et al. 1979, 1982, 1985;

Kimbrough et al. 1999a; Lawton et al. 1985a, 1985b, 1986; Maroni et al. 1981a, 1981b; Meigs et al.

1954; Ouw et al. 1976, 1982; Smith et al. 1982; Taylor et al. 1989; Warshaw et al. 1979), adults and/or

their children following maternal consumption of contaminated fish from the Great Lakes and other

waters (Buck et al. 1997, 1999, 2000; Courval et al. 1999; Dewailly et al. 2000; Fein et al. 1984a, 1984b;

Jacobson et al. 1984a, 1990a, 1990b, 1992; Kreiss 1985; Kreiss et al. 1981; Lonky et al. 1996; Mendola

et al. 1995a, 1997; Smith 1984; Stewart et al. 1999, 2000b), and in children from women in North

Carolina (Gladen et al. 1988; Rogan and Gladen 1991; Rogan et al. 1986a, 1986b, 1987), the Netherlands

(Huisman et al. 1995a, 1995b; Koopman-Esseboom et al. 1994a, 1996; Lanting et al. 1998; Patandin et al.

1999; Weisglas-Kuperus 2000; Weisglas-Kuperus et al. 1995), and Germany (Winneke et al. 1998b) with

no known high-exposure to PCBs.  Chloracne and other skin changes, and various hepatic alterations

including increased serum levels of liver enzymes and lipids have been associated with occupational

exposures.  There are also reports of respiratory, gastrointestinal, hematological, skeletal, developmental,

and neurological effects in exposed workers, but the evidence is not strong enough to conclusively

establish cause-effect relationships.  The epidemiologic studies of the contaminated fisheating populations

and people exposed via the general environment raise concern for reproductive effects in adults and

neurodevelopmental and immunological alterations in children of exposed parents, as discussed above in

the Reproductive Toxicity, Developmental Toxicity, Neurotoxicity, and Immunotoxicity data need

subsections.  Additional well conducted epidemiological investigations, particularly follow-up studies and

transgenerational studies of high risk populations, are needed to better characterize the potential for PCBs

to induce these effects.  These studies should also address limitations that constrain some of the existing

human studies, such as unmeasured PCB exposure concentrations, lack of controls for confounding co-

exposures, and lack of comparative population data.
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Concern that even low levels of PCBs transferred to the fetus across the placenta and that greater amounts

might be transferred to nursing infants via breast milk has triggered many of the epidemiological studies. 

The results from some of these studies suggest that perinatal exposure to PCBs may induce subtle long-

lasting neurological damage in children (Fein et al. 1984a, 1984b; Gladen et al. 1988; Huisman et al.

1995a, 1996b; Jacobson et al. 1984a, 1990a, 1990b, 1992; Koopman-Esseboom et al. 1996; Lanting et al.

1998a; Lonky et al. 1996; Patandin et al. 1999; Rogan and Gladen 1991; Rogan et al. 1986a, 1986b,

1987; Stewart et al. 1999, 2000b).  Suggestive evidence for immunological (Dewailly et al. 2000; Smith

1984; Weisglas-Kuperus et al. 1995; Weisglas-Kuperus 2000) and thyroid effects (Koopman-Esseboom

et al. 1994a; Nagayama et al. 1998a; Winneke et al. 1998a) in children also has been presented.  Many of

these are prospective studies that have followed-up the children for many years and are expected to

continue to do so in order to ascertain the duration and real life significance of these subtle alterations. 

Biomarkers of Exposure and Effect.    

Exposure.  PCBs are stored at highest concentrations in adipose tissue and are present in serum and

human milk.  Several studies have shown that serum and adipose PCB levels are biomarkers of exposure

(Brown and Lawton 1984; EPA 1984d; Fait et al. 1989; Jacobson et al. 1984b; Jan and Tratnik 1988;

Luotamo 1988; Safe et al. 1985b; Schecter et al. 1994; Steele et al. 1986; Wolff et al. 1982a).  It has been

proposed that measurement of PCB levels in both serum and adipose tissue may be more predictive of

body burden than each value separately, although either serum or adipose tissue PCB levels may serve as

useful biomarkers of body burden and/or exposure (Stellman et al. 1998).  Further studies on the

predictive value of levels of PCBs (particularly congeners) in serum and adipose tissue in individuals

exposed to PCBs for short, intermediate, and chronic durations would provide valuable information that

could lead to early detection of PCB exposure.

PCB residue data in humans and other animals (see Section 3.4.2, Distribution) suggest that tissue or

body burdens of PCBs should be based on individual congeners or groups of congeners and not based on

profiles of commercial PCB formulations.  The simplest approach involves using one congener as a

marker of total PCBs in a biological specimen.  For example, levels of 2,2',4,4',5,5'-hexaCB (PCB 153), a

very stable and often the most abundant congener, have been shown to correlate well with the total

amount of PCBs in human breast milk, plasma, or follicular fluid (Atuma and Aune 1999; Grimvall et al.

1997; Johansen et al. 1994; Pauwels et al. 1999).  However, if a more complete profile of congeners is

considered, the correlations are lower (Bachour et al. 1998; Hansen 1998, 1999).  Use of  PCB 153 or

congener groups as a marker of the total therefore could be a misleading indicator of the differential 
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exposure to other individual or groups of congeners of toxicological significance.  Further studies are

needed to assess the feasibility of using individual congeners or groups of congeners as a marker for total

exposure to PCBs.

Effect.  There are no specific biomarkers of effects for PCBs.  Numerous studies have attempted to

correlate serum PCB levels with liver-associated enzymes in PCB-exposed workers and general

population subjects; however, no conclusive association has been found (Baker et al. 1980; Emmett et al.

1988a, 1988b; Fischbein 1985; Fischbein et al. 1979; Kreiss et al. 1981; Lawton et al. 1985a, 1985b;

Smith et al. 1982; Stehr-Green et al. 1986a, 1986b; Steinberg et al. 1986).  Further studies to identify

specific biomarkers of effects of PCBs would facilitate medical surveillance leading to early detection of

potentially adverse health and possible treatment.  Congener-specific analysis combined with TEF

calculations may be useful for characterizing dioxin-like health effects.  However, as discussed in the

introduction to Section 3.11.1, use of congener-specific analyses is not yet practical for most laboratories,

and the TEF approach for PCBs is still under development and limited to dioxin-like congeners’ effects

only.

Absorption, Distribution, Metabolism, and Excretion.    There are no quantitative data regarding

absorption in humans by the inhalation or dermal route, but data from occupationally exposed individuals

suggest that PCBs are well absorbed by these routes (Wolff 1985).  Only one study was located that

provided quantitative oral absorption data in a volunteer (Buhler et al. 1988).  Schlummer et al. (1998)

used a mass balance approach to assess the gastrointestinal absorption of specific PCB congeners from

food in seven individuals, 24–81 years of age, with different contaminant body burdens.  Together, the

data support the passive diffusion model for gastrointestinal absorption, where the concentration of the

contaminant in the blood is the major factor determining absorption.  PCB congeners showing nearly

complete net absorption had very low or nondetectable levels in the serum lipids.  For other congeners,

there was a trend for decreasing net absorption and/or increasing net excretion with increasing congener

concentration in serum lipids.  Similar congener specific, mass balance human studies are needed to

confirm and extend these findings.  The animal data indicate that PCBs are efficiently absorbed by the

oral route (Albro and Fishbein 1972; Hansen 1999), but most of the information is derived from excretion

data.  Inhalation and dermal absorption data are limited.  No studies were located in which a range of

doses of PCB mixtures of different chlorine contents were administered by the inhalation, oral, and

dermal routes, and for various exposure periods.



3.  HEALTH EFFECTS - Adequacy of Database

PCBs 431

As with absorption, distribution data in humans are limited to serum, milk, and/or tissue PCB residue data

from occupationally and environmentally exposed subjects, and suggest that PCBs distribute

preferentially to tissues with high fat content regardless of the route of exposure (Brown and Lawton

1984; Fait et al. 1989; Jensen 1987).  As with other organisms, PCB residue levels in humans reflects

multiple exposure pathways, and congener-specific elimination.  PCB profiles in human serum

immediately following exposures reflect the profiles in the exposure sources; however, selective

metabolism and excretion begin to alter the congener profile within 4–24 hours (Hansen 1999).  In large

population based studies, it is often necessary to summarize large quantities of congener-specific data

from many individuals in order to highlight mean and range data for each PCB congener.  While this

approach is necessary to summarize data for publication, congener profiles for individuals are often never

reported.  Thus, it may not be possible to identify a few individuals that may have had an unusual profile

or elevated congener level due to a recent PCB exposure.  Human studies reporting congener specific

PCB residue data should consider citing electronic databases, which could contain the complete data set

for each subject in the study.  

Moysich et al. (1999) recently evaluated proposed frameworks for grouping PCBs, including a more

simple approach based on relative abundance and degree of chlorination.  McFarland and Clarke (1989)

proposed an approach to grouping PCB congeners based on their potential risk to the environment and

human health.  Another framework for grouping PCB was proposed by Wolff et al. (1997), based on the

biological activities of the congeners and their presence in house dust and humans.  Numerous factors,

such as the analytical methods used by various labs for sample preparation and analysis, the type of

human sample (milk, serum, plasma, adipose), sample size, year sample was collected, subject age, and

exposure history are all critical to the detection and quantification of a specific congener in a given

sample.  These factors need to be considered when adopting an optimal framework for grouping PCB

congeners to assess exposure and relative risk .

Recently, Dewailly et al. (1999) measured the concentration of 14 PCB congeners in subcutaneous fat,

omental fat, brain, and liver from autopsy tissue samples collected from Greenlanders between 1992 and

1994.  PCB concentrations (lipid basis) were similar in omental fat and subcutaneous abdominal fat,

while the hepatic concentrations were generally about 20% lower than fat.  PCB levels in brain (lipid

basis) were about 10–20% of the levels found in subcutaneous fat.  The lower concentration in brain

cannot be explained by the presence of the blood-brain barrier because PCBs are highly lipophilic and are

therefore expected to freely diffuse across this barrier.  The difference in accumulation may be due to the

nature of more polar brain lipids, which are mainly phospholipids.  PCBs may partition to a greater extent 
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into the triglycerides found in adipose tissue.  Further investigation is needed to understand factors

regulating the tissue specific distribution of PCB congeners, particularly to critical target organs such as

the brain.

Studies in animals that could provide a basis for assessing the comparative distribution of PCBs when

administered by the inhalation, oral, and dermal routes of exposure were not located.  A recent study in

ferrets by Apfelbach et al. (1998) reported for the first time that the olfactory system may be a potentially

significant portal for the entry of airborne PCBs.  The olfactory bulbs of the exposed ferrets had the

highest total PCB concentration (642 ng/g lipids), while the liver, adipose tissue, and brain had levels of

202, 303, and 170 ng/g lipids, respectively.  The data suggest that inhaled PCBs pass into the dentrites of

olfactory sensory neurons and are transported via olfactory axons directly to the bulbs where they

accumulate.  While the olfactory system appears to be a significant site for the disposition of airborne

PCBs, further studies are needed to confirm this observation and assess whether greater disposition in the

brain is associated with inhalation exposure.

Data derived from oral administration of PCBs to animals indicate that PCBs distribute first to liver and

muscle, and are subsequently translocated to adipose tissue and skin for storage (Allen et al. 1974b;

Curley et al. 1971; Hashimoto et al. 1976; Klasson-Wehler et al. 1989a).  Studies regarding distribution

through the placenta after inhalation and dermal exposures were not available.

Other than isolated studies with human microsomes (Schnellmann et al. 1983), data regarding biotrans-

formation of PCBs in humans are limited to information about occupationally exposed individuals, whose

PCB intake is assumed to derive mainly from inhalation and dermal exposure (Fait et al. 1989; Jensen and

Sundström 1974; Wolff et al. 1982b).  The use of human cell systems in culture might be considered a

useful alternative to studying the metabolic fate of PCBs, but limited expression of a complete profile of

enzymes reduces their value.  The metabolism of PCBs after oral administration in experimental animals

has been extensively studied (Safe 1989a).  Although information regarding metabolism following

inhalation or dermal exposure is lacking, there is no reason to believe that other pathways would operate

after exposure by these routes.

State of the art PCB exposure assessment utilizing  human serum, milk, and/or tissues should not only

include congener specific PCB analysis, but analyze persistent PCB metabolites.  Since certain

hydroxylated and methylsulfonyl (MeSO2) PCB metabolites are present in some cases at levels higher 
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than their respective parent compounds, it is necessary to further investigate the potential biological

and/or toxicological activities of these persistent metabolites.

Studies regarding urinary or fecal excretion of PCBs in humans were not located; however, elimination of

PCBs through maternal milk is well documented (Masuda et al. 1978; Mes et al. 1984).  Fecal excretion is

the main route of elimination of PCBs in animals after oral exposure (Lutz and Dedrick 1987).  Although

data regarding excretion in animals after inhalation exposure were not located, there is no reason to

suspect different patterns of excretion.  Dermal data suggest that excretion of certain PCBs may follow a

two-phase elimination process, as described for oral exposure, but this information is derived from a

single study (Wester et al. 1990).

Comparative Toxicokinetics.    The existing evidence suggests that qualitative differences in the

toxicokinetic disposition of PCBs exist among humans and the numerous animals species studied and also

among animal species (Lutz and Dedrick 1987; Safe 1989a; Sipes and Schnellmann 1987).  However,

these differences appear to be highly dependent on the specific congener or mixture studied.  Further

pharmacokinetic modeling studies with additional groups of PCB congeners would be valuable to

determine the validity of extrapolating data.  In addition, studies with human cell systems in vitro could

help estimate metabolic rate constants for use in pharmacokinetic models.  In general, all species absorb

PCBs efficiently and accumulate PCBs in tissues rich in fat.  Once absorbed, PCBs distribute in a

biphasic manner in all species examined (Lutz and Dedrick 1987).  Identification of metabolites in

humans and animals suggests that all species examined share some common biochemical reactions. 

Experimental data in animals indicate that fecal elimination is the main route of excretion (Bleavins et al.

1984; Klasson-Wehler et al. 1989a, 1989b; Mühlebach and Bickel 1981), but no human information was

located in the existing literature.  Analysis of the excreta of humans exposed in the workplace and near

hazardous waste sites would provide information regarding biotransformation and elimination kinetics in

humans.  In addition, similar target organs have been identified across animal species.  Monkeys and

minks are the most sensitive species tested regarding dioxin-like effects, but pharmacokinetic data in

minks are scant.  Although the toxicological data in humans (Emmett et al. 1988a; Fischbein et al. 1979)

are limited, adverse cutaneous reactions documented in humans are also seen in monkeys (Arnold 1993a,

1995), although at much lower doses.  This and other effects seen in monkeys, not observed in

populations occupationally or environmentally exposed to PCBs, have led some to suggest that monkeys

may not represent a suitable animal model (James et al. 1993; Kimbrough 1995).  However, the

clinicopathologic picture in monkeys is more like humans than any other species.  As these studies

suggest, the monkey is more sensitive than humans on a dose basis.  Attention must be paid to differences 
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between adults and immature animals of all species.  The more rapidly growing immature animals

generally have lower and distinct profiles of biotransformation enzymes as well as much smaller

peripheral fat depots for sequestering the lipophilic PCBs.

Methods for Reducing Toxic Effects.    The mechanism by which PCBs enter the blood stream in

humans is not known; consequently, there are no established methods for reducing absorption.  In

experimental animals, however, administration of rice bran fiber reduced gastrointestinal absorption

(Takenaka and Tarahashi 1991).  Identification of additional substances that could prevent or delay

absorption and that do not represent a toxic risk themselves would be valuable.  There are no established

methods for reducing body burden in humans, but a few reports have indicated that fasting may be

effective (Imamura and Tung 1984).  Studies examining the effect of fasting in animals exposed to PCBs

would provide useful information that can be used to better characterize the effectiveness of this

approach.  The metabolism of PCBs leads to the formation of highly reactive and potentially toxic

derivatives.  Thus, additional studies examining the feasibility of favoring metabolic pathways leading to

the formation of nontoxic metabolites would be valuable.  The mechanisms of toxic actions of PCBs are

not completely understood, and no methods exist to block the toxic response due to exposure to PCBs.

Further studies aimed at elucidating the mechanisms of action of PCBs would help in developing possible

methods for reducing toxic effects.

Children’s Susceptibility.    Data needs relating to developmental effects are discussed more

extensively above in the Developmental Toxicity subsection.  Prenatal exposure to PCBs has been

associated with neurodevelopmental effects.  However, many exposures to PCBs involve mixtures

including other chemicals.  Studies employing specific congeners of PCBs are needed to establish the

association between exposure, neurotransmitter and T4 levels in the brain, and neurobehavioral effects.

Experiments aimed at defining critical windows of PCB action in the developing organism would provide

valuable information, especially for pregnant women who may wish to alter their dietary habits during

pregnancy. In addition, studies to define the relationship of prenatal exposure to specific PCB congeners,

its activity as an endocrine disruptor, and effects on sexual differentiation are needed.  Continued

monitoring of children from the Dutch, Lake Michigan, Lake Ontario prospective studies is expected with

particular emphasis on evaluation of immune competence, thyroid function, and cognitive abilities. 

Development of PBPK models that could be used to predict PCB body burdens in neonates and infants as

a function of maternal body burden would be useful.  Studies of the pharmacokinetics of PCBs in the

fetus (i.e., assessment of placental permeability for individual congeners), infant, and child would be

useful in further defining the potential for toxic effects of these compounds.  Areas of focus include the



3.  HEALTH EFFECTS - Adequacy of Database

PCBs 435

effect of the developing and changing metabolic capacities of the fetus, neonate, and child on the

production of toxic metabolites and/or detoxification of the parent compound and metabolites.

Child health data needs relating to exposure are discussed in 6.8.1 Identification of Data Needs:

Exposures of Children.

3.12.3 Ongoing Studies

Table 3-15 lists ongoing studies on the health effects of PCBs identified from the Federal Research in

Progress database (FEDRIP 2000).  Ongoing studies from the ATSDR Great Lakes Human Health Effects

Research Program are listed in Table 3-16. 
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Table 3-15.  Ongoing Studies on the Health Effects of PCBs
 

Investigator Affiliation Title Sponsor

Aulerich, R Michigan State
University
East Lansing, MI

Fur animal studies (mink) USDA or
cooperating state
institutions

Berkowitz, Gertrud S Mount Sinai School of
Medicine of CUNY, 
New York, NY

Exposure of indoor pesticides
and PCBs—Effects on growth
and neurodevelopment

NIEHS

Bernstein, Leslie Univ of Southern Calif
Los Angeles

Organochlorine residue levels
and risk of breast cancer

NIEHS

Bradfield,
Christopher A

University of
Wisconsin Madison

Transgenic models of dioxin
action

NIEHS

Burchiel, Scott W University of New
Mexico

Effects of immunotoxic
xenobiotics on human
peripheral blood lymphocytes

NCRR

Bursian, S Michigan State
University

The fate and biological effects
of xenobiotics in animals

USDA or
cooperating state
institutions

Carpenter, David O State University of
New York at Albany

Mechanisms responsible for 
cognitive impairment caused by
exposure to PCBs

NIEHS

Charles, MJ University of California
Davis

Exploration of linkages among
organochlorines, oxidative DNA
damage, and breast cancer

USDA or
cooperating state
institutions

Chou, K Michigan State
University

Control mechanisms of male
reproduction and sperm
fertilizing ability

USDA or
cooperating state
institutions

Cohn, Barbara A Public Health Institute, 
Berkeley, CA

Prenatal organochlorine
exposure and human
reproduction

NIEHS

Dean, Charles E Colorado State
University 

Promotion of hepatic neoplasia
by PCB mixtures

NIEHS

Dorgan, J NCI, NIH Prediagnostic breast cancer
serum bank

Division of Cancer
Prevention and
Control

Dukelow, W Richard Michigan State
University 

Toxic chemical influences on in
vivo and in vitro reproduction

NIEHS

Finlay, Mary F Benedict College,
Columbia, SC

Pilot study—Toxicological
effects of PCB during
spermatogenesis

NCRR
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Table 3-15.  Ongoing Studies on the Health Effects of PCBs (continued)
 

Investigator Affiliation Title Sponsor

Gammon, Marilie D Columbia University Breast cancer and the
environment on Long Island

NCI

Ganey, PE Michigan State
University

Mechanisms and
consequences of neutrophil
activation by hazardous
chemicals

USDA or
cooperating state
institutions

Gierthy, John F State Univ of New
York at Albany

PCB estrogenicity in human
breast cancer cells

NIEHS

Glauert, Howard P University of Kentucky Mechanisms of hepatic tumor
promotion by PCBs

NIEHS

Gore, Andrea Mount Sinai School of
Medicine of CUNY

Neuroendocrine mechanisms
of environmental toxicity during
early development

NIEHS

Grandjean, Phillippe Boston University Serum PCB as a risk indicator
for breast cancer in women

NIEHS

Greeley, George H,
Jr

University of Texas
Medical Branch

Dioxin action in the alimentary
canal

NIEHS

Hansen, LG University of IL
Urbana

Identification of PCB congeners
associated with fish
consumption

USDA or
cooperating state
institutions

Harris, Craig Michigan State
University

PCB effects on uterine wall NIEHS

Hassoun, Ezdihar A University of Toledo,
Toledo, OH

TCDD induced oxidative stress
in the tissues

NIEHS

Hejtmancik, Milton Battelle Memorial
Institute, 
Columbus, OH

Evaluation of dioxin toxic
equivalency factors

NIEHS

Hennig, Bernhard University of Kentucky Superfund chemicals and
endothelial cell dysfunction

NIEHS

Henny, Charles J Forest and Rangeland
Ecosystem Science
Center
Corvallis, OR

Environmental endocrine
disruptors: effects and possible
mechanism(s) in young male
river otters

USGS Biological
Resources
Division

Hertz-Picciotto, Irva University of North
Carolina 
Chapel Hill

Fetal PCB exposure, thyroid
function, and
neurodevelopment

NIEHS

Hooper, Michael University of
Washington, 
Seattle, WA

Wildlife biomarker applications
to remediation decision making

NIEHS
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Table 3-15.  Ongoing Studies on the Health Effects of PCBs (continued)
 

Investigator Affiliation Title Sponsor

Hunter, David J Brigham and
Women's Hospital,
Boston, MA

Environmental risk factors and
breast cancer

NIEHS

Jefcoate, Colin R University of
Wisconsin Madison

Organochlorine compounds
and human breast cytochrome
P-450

NIEHS

Keefe, Thomas J Colorado State
University

Historical prospective —
organochlorines/breast cancer

NCI

Klaassen, Curtis D University of Kansas
Medical Center

Environmental hormones—
effects on thyroid function

NIEHS

Klebanoff, MA NICHD, NIH Fetal, neonatal  and  childhood
effects of in utero exposure to
PCBs and DDE

National Institute
of Child Health
and Human
Development

Korrick, Susan A Brigham and
Women's Hospital,
Boston, MA

Polychlorinated biphenyls and
infertility

NIEHS

Korrish, Susan Harvard University In utero PCB and metal
exposure and infant
development

NIEHS

Laessig, Susan A Marine Biological
Laboratory,
 Woods Hole, MA

Ortho-substituted PCB on
calcium homeostasis in aplysia
bag cell neurons

NCRR

Longnecker, MP NIEHS, NIH Human health effects of
exposure to organochlorine
compounds

NIEHS

Matte, Thomas Mount Sinai School of
Medicine of CUNY

Prenatal PCB exposure and
neurodevelopmental outcomes
in adolescence and adulthood

NIEHS

Mc Coy, George L Benedict College,
Columbia, SC

Pilot study—Toxic and
estrogenic actions of PCB in
reproduction

NCRR

Ozonoff, David M Boston University Superfund basic research
center at Boston University

NIEHS

Peterson, Richard E University of
Wisconsin Madison

Ah receptor independent
central nervouse
system/reproductive effects of
PCBs

NIEHS

Quimby, Fred W Cornell University Model for assessment of
immunotoxicity of
environmental pollutants

NIEHS
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Table 3-15.  Ongoing Studies on the Health Effects of PCBs (continued)
 

Investigator Affiliation Title Sponsor

Rattner, Barnett A Patuxent Wildlife
Research Center
Laurel, MD

Effects of organochlorine
contaminants on reproductive
success of black-crowned
night-herons (Nycticorax
nycticorax) nesting in Baltimore
Harbor, Maryland

USGS Biological
Resources
Division

Robertson, Larry W University of Kentucky Activation of PCB's to
genotoxins in vivo

NIEHS

Rogan, WJ NIEHS, NIH Human exposure to
halogenated aromatic
compounds

NIEHS

Roth, Robert A Michigan State
University

Mechanisms and
consequences of neutrophil
activation by hazardous
chemicals

NIEHS

Safe, SH Texas A&M University Endocrine toxicology studies USDA or
cooperating state
institutions

Safe, Stephen H Texas A&M University Toxic halogenated aromatics NIEHS

Santiago-Rivera,
Azara L

State University of
New York at Albany

Biopsychosocial well being
among Akwesasne residents

NIEHS

Schantz, SL University of Illinois
Urbana

Developmental effects of
fish-borne toxicants in rats

USDA or
cooperating state
institutions

Schantz, SL University of IIlinois
Urbana

Developmental effects of
combined PCB and MEHG
exposure

USDA or
cooperating state
institutions

Schell, Lawrence M State University of
New York at Albany

PCBs  and well being of
Mohawk children and
youth—growth, development,
and cognition

NIEHS

Schwartz, Stephen M Fred  Hutchinson 
Cancer  Research 
Center, 
Seattle, WA

Phytoestrogens,
organochlorines, and fibroid
risk

NIEHS

Seegal, Richard F Wadsworth Center,
Albany, NY

Developmental effects of fish
borne toxicants in the rat

NIEHS

Shiverick, Kathleen T University of Florida,
Gainesville

Placental/uterine effects of
chlorinated hydrocarbons

NIEHS
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Table 3-15.  Ongoing Studies on the Health Effects of PCBs (continued)
 

Investigator Affiliation Title Sponsor

Spink, David C State University of
New York at Albany

Alterations in estrogen
metabolism caused by
exposure to PCBs

NIEHS

Stellman, Steven D American Health
Foundation, Valhalla,
NY

Epidemiology of breast cancer NCI

Thomas, Peter M University of Texas
Austin

Mechanisms of reproductive
neuroendocrine toxicity

NIEHS

Trosko, James E Michigan State
University

Evaluation of Superfund
chemicals as epigenetic
toxicants

NIEHS

Weston, Ainsley Mount Sinai School of
Medicine of CUNY

Effects of PCB-containing river
sediments on carcinogen
metabolism

NIEHS

Wolff, Mary S Mount Sinai School of
Medicine of CUNY

Inner city toxicants and
neurodevelopmental
impairment

NIEHS

Zacharewski, T Michigan State
University

Identification and assessment
of endocrine disruptors

USDA or
cooperating state
institutions

Zhu, Bao T University  of  South 
Carolina at Columbia

Effects of cigarette smoking or
PCBs on human estradiol

NCI

Zoeller, RT University of 
Massachusetts

PCB and thyroid hormone
action in developing cochlea

NIEHS

Source: FEDRIP (2000), USDA Current Research Information System (2000), USGS-BRD Science Information
System (2000)

NCI = National Cancer Institute; NCRR = National Center for Research Resources; NICHD = National Institute of
Child Health and Human Development; NIEHS = National Institute of Environmental Health Sciences; NIH = National
Institutes of Health; USDA = U.S. Department of Agriculture; USGS = U.S. Geological Survey

Postal abbreviations used
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Table 3-16.  Ongoing Studies on the Human Health Effects of PCBs
Sponsored by ATSDR

 

Investigator Affiliation Title

Anderson, HA Wisconsin Department of
Health and Social Services
Madison, Wisconsin

Consortium for the health assessment
of Great Lakes sport fish consumption

Darvill, T State University of New York
at Oswego
Oswego, New York

Behavioral effects of consumption of
Lake Ontario fish: Two methodological
approaches

Dellinger, J University of Wisconsin at
Milwaukee
Milwaukee, Wisconsin

Ojibwa Health Study II: Epidemiology,
laboratory toxicology, and outreach

Fitzgerald, E New York State Department
of Health
Albany, New York

Neurologic effects of environmental
exposure to PCBs along the upper
Hudson River

Karmus, W. Michigan State University
East Lansing, Michigan

Assessing effects in human
reproductive health for PCB exposure
via consumption of Great Lakes fish

Schantz, SL University of Illinois at
Urbana-Champaign
Urbana, Illinois

Human health effects of PCB exposure
from contaminated fish

Vena, J State University of New York
at Buffalo
Buffalo, New York

The New York Angler Study: Exposure
characterization and reproductive and
developmental health

Waller, DP University of Illinois at
Chicago
Chicago, Illinois

Great Lakes fish as a source of
maternal and fetal exposure to
chlorinate hydrocarbons

ATSDR = Agency for Toxic Substances and Disease Registry
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4.  CHEMICAL AND PHYSICAL INFORMATION

4.1 CHEMICAL IDENTITY

PCBs are a class of chemical compounds in which 2–10 chlorine atoms are attached to the biphenyl

molecule.  Monochlorinated biphenyls (i.e., one chlorine atom attached to the biphenyl molecule) are

often included when describing PCBs.  The general chemical structure of chlorinated biphenyls is shown

below.

It can be seen from the structure that a large number of chlorinated compounds are possible.  The

209 possible compounds are called congeners.  PCBs can also be categorized by degree of chlorination. 

The term “homolog” is used to refer to all PCBs with the same number of chlorines (e.g., trichloro-

biphenyls).  Homologs with different substitution patterns are referred to as isomers.  For example, the

dichlorophenyl homolog contains 12 isomers.

The numbering system for the PCBs is also shown above.  Positions 2, 2', 6, and 6' are called ortho

positions, positions 3, 3', 5, and 5' are called meta positions, and positions 4 and 4' are called para

positions.  The benzene rings can rotate around the bond connecting them; the two extreme configurations

are planar (the two benzene rings in the same plane) and the nonplanar in which the benzene rings are at a

90E angle to each other.  The degree of planarity is largely determined by the number of substitutions in

the ortho positions.  The replacement of hydrogen atoms in the ortho positions with larger chlorine atoms

forces the benzene rings to rotate out of the planar configuration.  The benzene rings of non-ortho

substituted PCBs, as well as mono-ortho substituted PCBs, may assume a planar configuration and are

referred to as planar or coplanar congeners; the benzene rings of other congeners cannot assume a planar

or coplanar configuration and are referred to as non-planar congeners. 

Monsanto Corporation, the major U.S. producer of PCBs from 1930 to 1977, marketed mixtures of PCBs

under the trade name Aroclor.  The Aroclors are identified by a four-digit numbering code in which the
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first two digits indicate the type of mixture and the last two digits indicate the approximate chlorine

content by weight percent.  Thus, Aroclor 1242 is a chlorinated biphenyl mixture of varying amounts of

mono- through heptachlorinated homologs with an average chlorine content of 42%.  The exception to

this code is Aroclor 1016, which contains mono- through hexachlorinated homologs with an average

chlorine content of 41% (Hutzinger et al. 1974).

The trade names of some commercial PCB mixtures manufactured in other countries are Clophen

(Germany), Fenclor (Italy), Kanechlor (Japan), and Phenoclor (France) (De Voogt and Brinkman 1989). 

The composition of commercial Clophen A-60 and Phenoclor DP-6 is similar to Aroclor 1260; that of

Kanechlor 500 is similar to Aroclor 1254.  Fenclor contains 100% decachlorobiphenyl (De Voogt and

Brinkman 1989).  The chemical identity of the Aroclors is summarized in Table 4-1.  The identity of the

209 PCB congeners is shown in Table 4-2.  The congeners are arranged in ascending numerical order

using a numbering system developed by Ballschmiter and Zell (1980) that follow the IUPAC rules of

substituent characterization in biphenyls.  The resulting PCB numbers, also referred to as congener,

IUPAC, or BZ numbers, are widely used for identifying individual congeners.  

4.2 PHYSICAL AND CHEMICAL PROPERTIES

Physical and chemical properties of the Aroclors are summarized in Table 4-3.  An important property of

PCBs is their general inertness; they resist both acids and alkalis and have thermal stability.  This made

them useful in a wide variety of applications, including dielectric fluids in transformers and capacitors,

heat transfer fluids, and lubricants (Afghan and Chau 1989).  In general, PCBs are relatively insoluble in

water, and the solubility decreases with increased chlorination (see Table 4-3).  PCBs are also freely

soluble in nonpolar organic solvents and biological lipids (EPA 1980b).  PCBs are combustible liquids,

and the products of combustion may be more hazardous than the material itself.  By-products of

combustion include hydrogen chloride, polychlorinated dibenzodioxins (PCDDs), and polychlorinated

dibenzofurans (PCDFs) (NFPA 1994).

The approximate weight percent of chlorobiphenyls in some commercial Aroclors is summarized in

Table 4-4, and the congener composition of Aroclors is shown in Table 4-5.  The congener composition

of commercial PCBs may vary from lot to lot even in products from the same manufacturer.  In addition,

no two descriptions of commercial PCB mixtures, even from the same lot or a manufactured product, are

identical because of slight differences in the conditions of the chlorination process or the use of different

analysis procedures.  For example, a late production Aroclor 1254 lot (Aroclor 1254 “Late”), with greatly
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Table 4-1.  Chemical Identity of Selected Technical Polychlorinated Biphenyls or Aroclorsa,b 

Characteristic Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248

Synonym(s) PCB-1016;
Polychlorinated
biphenyl mixture
with 41.5% chlorine

PCB-1221;
Polychlorinated
biphenyl mixture
with 21% chlorine

PCB-1232;
Polychlorinated
biphenyl mixture
with 32% chlorine

PCB-1242;
Polychlorinated
biphenyl mixture
with 41.5% chlorine

PCB-1248;
Polychlorinated
biphenyl mixture
with 48% chlorine

Registered trade name(s) Aroclorc Aroclor Aroclor Aroclor Aroclor

Chemical formula See Table 4-4 See Table 4-4 See Table 4-4 See Table 4-4 See Table 4-4

Chemical structure See Section 4.1 See Section 4.1 See Section 4.1 See Section 4.1 See Section 4.1

Identification numbers:

CAS registry 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6

NIOSH RTECS TQ1351000 TQ1352000 TQ1354000 TQ1356000 TQ1358000

EPA hazardous wasted 3502e 3502e 3502e 3502e 3502e

OHM/TADS 8500400f 8500401f 8500402f 8500403f 8500404f

DOT/UN/NA/IMCO
shipping

UN2315/IMO9.2g UN2315/IMO9.2g UN2315/IMO9.2g UN2315/IMO9.2g UN2315/IMO9.2g

HSDB 6352g 6353g 6354g 6355g 6356g

NCI No data No data No data No data No data
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Table 4-1.  Chemical Identity of Selected Technical Polychlorinated Biphenyls or Aroclors a,b (continued)

Characteristic Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268

Synonym(s) PCB-1254;
Polychlorinated biphenyl
mixture with 54%
chlorine

PCB-1260;
Polychlorinated biphenyl
mixture with 60%
chlorine

PCB-1262;
Polychlorinated biphenyl
mixture with 61.5–62.5%
chlorine

PCB-1268; 
Polychlorinated biphenyl
mixture with 68%
chlorine

Registered trade name(s) Aroclor Aroclor Aroclor Aroclor

Chemical formula See Table 4-4 See Table 4-4 See Table 4-4 See Table 4-4

Chemical structure See Section 4.1 See Section 4.1 See Section 4.1 See Section 4.1

Identification numbers:

CAS registry 11097-69-1 11096-82-5 37324-23-5 11100-14-4

NIOSH RTECS TQ1360000 TQ1362000 TQ1364000h No data

EPA hazardous wasted 3502e 3502e No data No data

OHM/TADS 8500405f 8500406f No data No data

DOT/UN/NA/IMO shipping UN2315/IMO9.2g UN2315/IMO9.2g UN2315h UN2315h

HSDB 6357g 1822g No data No data

NCI C02664i No data No data No data

aAll information obtained from SANSS 1990 and Hutzinger et al. 1974 except
where noted.
bChemical names used are those currently indexed by the Chemical
Abstracts Service.
cAroclor is the trade name for chlorinated biphenyls made by Monsanto
Chemical Company.

dDesignation prior to May 19, 1980.
eEPA 1980a
fEPA-NIH 1990
gHSDB 2000
hChemfinder 2000
iNIOSH 1987a

CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North America/International Maritime Dangerous Goods
Code; EPA = Environmental Protection Agency; HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for
Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; PCB = polychlorinated biphenyl;
RTECS = Registry of Toxic Effects of Chemical Substances
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Table 4-2.  Chemical Identity of Polychlorinated Biphenyl Congeners 
and Homologs

PCB No.a Structure CAS No.b

Biphenyl 92-52-4
Monochlorobiphenyl 27323-18-8

1 2 2051-60-7
2 3 2051-61-8
3 4 2051-62-9

Dichlorobiphenyl 25512-42-9
4 2,2N 13029-08-8
5 2,3 16605-91-7
6 2,3N 25569-80-6
7 2,4 33284-50-3
8 2,4N 34883-43-7
9 2,5 34883-39-1
10 2,6 33146-45-1
11 3,3N 2050-67-1
12 3,4 2974-92-7
13 3,4N 2974-90-5
14 3,5 34883-41-5
15 4,4N 2050-68-2

Trichlorobiphenyl 25323-68-6
16 2,2N,3 38444-78-9
17 2,2N,4 37680-66-3
18 2,2N,5 37680-65-2
19 2,2N,6 38444-73-4
20 2,3,3N 38444-84-7
21 2,3,4 55702-46-0
22 2,3,4N 38444-85-8
23 2,3,5 55720-44-0
24 2,3,6 55702-45-9
25 2,3N,4 55712-37-3
26 2,3N,5 38444-81-4
27 2,3 N,6 38444-76-7
28 2,4,4N 7012-37-5
29 2,4,5 15862-07-4
30 2,4,6 35693-92-6
31 2,4N,5 16606-02-3
32 2,4N,6 38444-77-8
33 2N,3,4 38444-86-9
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Table 4-2.  Chemical Identity of Polychlorinated Biphenyl Congeners 
and Homologs (continued)

PCB No.a Structure CAS No.b

34 2N,3,5 37680-68-5
35 3,3N,4 37680-69-6
36 3,3N,5 38444-87-0
37 3,4,4N 38444-90-5
38 3,4,5 53555-66-1
39 3,4N,5 38444-88-1

Tetrachlorobiphenyl 26914-33-0
40 2,2N,3,3N 38444-93-8
41 2,2N,3,4 52663-59-9
42 2,2N,3,4N 36559-22-5
43 2,2N,3,5 70362-46-8
44 2,2N,3,5N 41464-39-5
45 2,2N,3,6 70362-45-7
46 2,2N,3,6N 41464-47-5
47 2,2N,4,4N 2437-79-8
48 2,2N,4,5 70362-47-9
49 2,2N,4,5N 41464-40-8
50 2,2N,4,6 62796-65-0
51 2,2N,4,6N 68194-04-7
52 2,2N,5,5N 35693-99-3
53 2,2N,5,6N 41464-41-9
54 2,2N,6,6N 15968-05-5
55 2,3,3N,4 74338-24-2
56 2,3,3N,4N 41464-43-1
57 2,3,3N,5 70424-67-8
58 2,3,3N,5N 41464-49-7
59 2,3,3N,6 74472-33-6
60 2,3,4,4N 33025-41-1
61 2,3,4,5 33284-53-6
62 2,3,4,6 54230-22-7
63 2,3,4N,5 74472-35-8
64 2,3,4N,6 52663-58-8
65 2,3,5,6 33284-54-7
66 2,3N,4,4N 32598-10-0
67 2,3N,4,5 73575-53-8
68 2,3N,4,5N 73575-52-7
69 2,3N,4,6 60233-24-1
70 2,3N,4N,5 32598-11-1
71 2,3N,4N,6 41464-46-4
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Table 4-2.  Chemical Identity of Polychlorinated Biphenyl Congeners 
and Homologs (continued)

PCB No.a Structure CAS No.b

72 2,3N,5,5N 41464-42-0
73 2,3N,5N,6 74338-23-1
74 2,4,4N,5 32690-93-0
75 2,4,4N,6 32598-12-2
76 2N,3,4,5 70362-48-0
77 3,3N,4,4N 32598-13-3
78 3,3N,4,5 70362-49-1
79 3,3N,4,5N 41464-48-6
80 3,3N,5,5N 33284-52-5
81 3,4,4N,5 70362-50-4

Pentachlorobiphenyl 25429-29-2
82 2,2N,3,3N,4 52663-62-4
83 2,2N,3,3N,5 60145-20-2
84 2,2N,3,3N,6 52663-60-2
85 2,2N,3,4,4N 65510-45-4
86 2,2N,3,4,5 55312-69-1
87 2,2N,3,4,5N 38380-02-8
88 2,2N,3,4,6 55215-17-3
89 2,2N,3,4,6N 73575-57-2
90 2,2N,3,4N,5 68194-07-0
91 2,2N,3,4N,6 68194-05-8
92 2,2N,3,5,5N 52663-61-3
93 2,2N,3,5,6 73575-56-1
94 2,2N,3,5,6N 73575-55-0
95 2,2N,3,5N,6 38379-99-6
96 2,2N,3,6,6N 73575-54-9
97 2,2N,3N,4,5 41464-51-1
98 2,2N,3N,4,6 60233-25-2
99 2,2N,4,4N,5 38380-01-7
100 2,2N,4N,4N,6 39485-83-1
101 2,2N,4,5,5N 37680-73-2
102 2,2N,4,5,6N 68194-06-9
103 2,2N,4,5N,6 60145-21-3
104 2,2N,4,6,6N 56558-16-8
105 2,3,3N,4,4N 32598-14-4
106 2,3,3N,4,5 70424-69-0
107 2,3,3N,4N,5 70424-68-9
108 2,3,3N,4,5N 70362-41-3
109 2,3,3N,4,6 74472-35-8
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Table 4-2.  Chemical Identity of Polychlorinated Biphenyl Congeners 
and Homologs (continued)

PCB No.a Structure CAS No.b

110 2,3,3N,4N,6 38380-03-9
111 2,3,3N,5,5N 39635-32-0
112 2,3,3N,5,6 74472-36-9
113 2,3,3N,5N,6 68194-10-5
114 2,3,4,4N,5 74472-37-0
115 2,3,4,4N,6 74472-38-1
116 2,3,4,5,6 18259-05-7
117 2,3,4N,5,6 68194-11-6
118 2,3N,4,4N,5 31508-00-6
119 2,3N,4,4N,6 56558-17-9
120 2,3N,4,5,5N 68194-12-7
121 2,3N,4,5N,6 56558-18-0
122 2N,3,3N,4,5 76842-07-4
123 2N,3,4,4N,5 65510-44-3
124 2N,3,4,5,5N 70424-70-3
125 2N,3,4,5,6N 74472-39-2
126 3,3N,4,4N,5 57465-28-8
127 3,3N,4,5,5N 39635-33-1

Hexachlorobiphenyl 26601-64-9
128 2,2N,3,3N,4,4N 38380-07-3
129 2,2N,3,3N,4,5 55215-18-4
130 2,2N,3,3N,4,5N 52663-66-8
131 2,2N,3,3N,4,6 61798-70-7
132 2,2N,3,3N,4,6N 38380-05-1
133 2,2N,3,3N,5,5N 35694-04-3
134 2,2N,3,3N,5,6 52704-70-8
135 2,2N,3,3N,5,6N 52744-13-5
136 2,2N,3,3N,6,6N 38411-22-2
137 2,2N,3,4,4N,5 35694-06-5
138 2,2N,3,4,4N,5N 35065-28-2
139 2,2N,3,4,4N,6 56030-56-9
140 2,2N,3,4,4N,6N 59291-64-4
141 2,2N,3,4,5,5N 52712-04-6
142 2,2N,3,4,5,6 41411-61-4
143 2,2N,3,4,5,6N 68194-15-0
144 2,2N,3,4,5N,6 68194-14-9
145 2,2N,3,4N,6,6N 74472-40-5
146 2,2N,3,4N,5,5N 51908-16-8
147 2,2N,3,4N,5,6 68194-13-8
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Table 4-2.  Chemical Identity of Polychlorinated Biphenyl Congeners 
and Homologs (continued)

PCB No.a Structure CAS No.b

148 2,2N,3,4N,5,6N 74472-41-6
149 2,2N,3,4N,5N,6 38380-04-0
150 2,2N,3,4N,5,6N 68194-08-1
151 2,2N,3,5,5N,6 52663-63-5
152 2,2N,3,5,6,6N 68194-09-2
153 2,2N,4,4N,5,5N 35065-27-1
154 2,2N,4,4N,5,6N 60145-22-4
155 2,2N,4,4N,6,6N 33979-03-2
156 2,3,3N,4,4N,5 38380-08-4
157 2,3,3N,4,4N,5N 69782-90-7
158 2,3,3N,4,4N,6 74472-42-7
159 2,3,3N,4,5,5N 39635-35-3
160 2,3,3N,4,5,6 41411-62-5
161 2,3,3N,4,5N,6 74472-43-8
162 2,3,3N,4N,5,5N 39635-34-2
163 2,3,3N,4N,5,6 74472-44-9
164 2,3,3N,4N,5N,6 74472-45-0
165 2,3,3N,5,5N,6 74472-46-1
166 2,3,4,4N,5,6 41411-63-6
167 2,3N,4,4N,5,5N 52663-72-6
168 2,3N,4,4N,5N,6 59291-65-5
169 3,3N,4,4N,5,5N 32774-16-6

Heptachlorobiphenyl 28655-71-2
170 2,2N,3,3N,4,4N,5 35065-30-6
171 2,2N,3,3N,4,4N,6 52663-71-5
172 2,2N,3,3N,4,5,5N 52663-74-8
173 2,2N,3,3N,4,5,6 68194-16-1
174 2,2N,3,3N,4,5,6N 38411-25-5
175 2,2N,3,3N,4,5N,6 40186-70-7
176 2,2N,3,3N,4,6,6N 52663-65-7
177 2,2N,3,3N,4N,5,6 52663-70-4
178 2,2N,3,3N,5,5N,6, 52663-67-9
179 2,2N,3,3N,5,6,6N 52663-64-6
180 2,2N,3,4,4N,5,5N 35065-29-3
181 2,2N,3,4,4N,5,6 74472-47-2
182 2,2N,3,4,4N,5,6N 60145-23-5
183 2,2N,3,4,4N,5N,6 52663-69-1
184 2,2N,3,4,4N,6,6N 74472-48-3
185 2,2N,3,4,5,5N,6 52712-05-7
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Table 4-2.  Chemical Identity of Polychlorinated Biphenyl Congeners 
and Homologs (continued)

PCB No.a Structure CAS No.b

186 2,2N,3,4,5,6,6N 74472-49-4
187 2,2N,3,4N,5,5N,6 52663-68-0
188 2,2N,3,4N,5,6,6N 74487-85-7
189 2,3,3N,4,4N,5,5N 39635-31-9
190 2,3,3N,4,4N,5,6 41411-64-7
191 2,3,3N,4,4N,5N,6 74472-50-7
192 2,3,3N,4,5,5N,6 74472-51-8
193 2,3,3N,4N,5,5N,6 69782-91-8

Octachlorobiphenyl 31472-83-0
194 2,2N,3,3N,4,4N,5,5N 35694-08-7
195 2,2N,3,3N,4,4N,5,6 52663-78-2
196 2,2N,3,3N,4,4N,5,6N 42740-50-1
197 2,2N,3,3N,4,4N,6,6N 33091-17-7
198 2,2N,3,3N,4,5,5N,6 68194-17-2
199 2,2N,3,3N,4,5,5N,6N 52663-75-9
200 2,2N,3,3N,4,5,6,6N 52663-73-7
201 2,2N,3,3N,4,5N,6,6N 40186-71-8
202 2,2N,3,3N,5,5N,6,6N 2136-99-4
203 2,2N,3,4,4N,5,5N,6 52663-76-0
204 2,2N,3,4,4N,5,6,6N 74472-52-9
205 2,3,3N,4,4N,5,5N,6 74472-53-0

Nonachlorobiphenyl 53742-07-7
206 2,2N,3,3N,4,4N,5,5N,6 40186-72-9
207 2,2N,3,3N,4,4N,5,6,6N 52663-79-3
208 2,2N,3,3N,4,5,5N,6,6N 52663-77-1

Decachlorobiphenyl 2051-24-3
209 2,2N,3,3N,4,4N,5,5N,6,6N 2051-24-3

aBallschmiter and Zell 1980, also referred to as BZ number
bErickson 1986
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Table 4-3.  Physical and Chemical Properties of Some Aroclorsa

Property Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242
Molecular weightb 257.9c 200.7c 232.2c 266.5c

Color Clear Clear Clear Clear

Physical state Oil Oil Oil Oil

Melting point, EC No data 1d No data No data

Boiling point, EC 325–356 275–320 290–325 325–366

Density, g/cm3 at 25 EC 1.37 1.18 1.26 1.38

Odor No data No data No data Mild hydrocarbond

Odor threshold:
Water
Air

No data
No data

No data
No data

No data
No data

No data
No data

Solubility:
Water, mg/L

Organic solvent(s)

0.42 (25 EC)e

Very solubleg

0.59 (24 EC)f

Very solubleg

0.45 (25 EC)

Very solubleg

0.24c; 0.34 (25 EC)e 
0.10 (24 EC)f

Very solubleg

Partition coefficients:
Log Kow

h

Log Koc

5.6
No data

4.7
No data

5.1
No data

5.6
No data

Vapor pressure, mm Hg at 25 EC 4x10-4 c 6.7x10-3 c 4.06x10-3 c 4.06x10-4 c

Henry’s law constant, atm-m3/mol at 25 ECi 2.9x10-4 3.5x10-3 No data 5.2x10-4

Autoignition temperature No data No data No data No data

Flashpoint, EC (Cleveland open cup) 170 141–150 152–154 176–180

Flammability limits, EC None to boiling point 176 328 None to boiling point

Conversion factors
Air (25 EC)j 1 mg/m3=0.095 ppm 1 mg/m3=0.12 ppm 1 mg/m3=0.105 ppm 1 mg/m3=0.092 ppm

Explosive limits No data No data No data No data
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Table 4-3.  Physical and Chemical Properties of Some Aroclorsa (continued)

Property Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268
Molecular weightb 328c 357.7c 389 453

Color Light yellow Light yellow No data Cleark

Physical state Viscous liquid Sticky resin No data Viscous liquidk

Melting point No data No data No data No data

Boiling point, EC 365–390 385–420 390–425 435–450

Density, g/cm3 at 25 EC 1.54 1.62 1.64 1.81

Odor Mild hydrocarbond No data No data No data

Odor threshold:
Water
Air

No data
No data

No data
No data

No data
No data

No data
No data

Solubility:
Water, mg/L
Organic solvent(s)

0.012c; 0.057 (24 EC)
Very solubleg

0.0027c;0.08 (24 EC)f

Very solubleg
0.052 (24 EC)f

No data
0.300 (24 EC)f

Soluble

Partition coefficients:
Log Kow
Log Koc

6.5
No data

6.8
No data

No data
No data

No data
No data

Vapor pressure, mm Hg at 25 EC 7.71x10-5 c 4.05x10-5 c No data No data

Henry’s law constant, atm-m3/mol at 25 ECi 2.0x10-3 4.6x10-3 No data No data

Autoignition temperature No data No data No data No data

Flashpoint EC (Cleveland open cup) No data No data 195E C 195E C



Table 4-3.  Physical and Chemical Properties of Some Aroclorsa (continued)

Property Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268

PC
Bs

455
4.  C

H
EM

IC
AL AN

D
 PH

YSIC
AL IN

FO
R

M
ATIO

N

Flammability limits, EC None to boiling point None to boiling point None to boiling point None to boiling point

Conversion factors, Air (25 EC)j 1 mg/m3=0.075 ppm 1 mg/m3=0.065 ppm 1 mg/m3=0.061 ppm 1 mg/m3=0.052 ppm

Explosive limits No data No data No data No data

aAll information obtained from Monsanto Chemical Company 1985 and Hutzinger et al. 1974 unless otherwise noted.
bAverage weight from Table 3-3.
cEPA 1979h; data on temperature not available.
dNIOSH 1997
eParis et al. 1978
fHollifield 1979
gEPA 1985b
hThese log Kow values represent an average value for the major components of the individual Aroclor.  Experimental values for the individual components were
obtained from Hansch and Leo 1985.
iThese Henry's law constants were estimated by dividing the vapor pressure by the water solubility.  The first water solubility given in this table was used for the
calculation.  The resulting estimated Henry's law constant is only an average for the entire mixture; the individual chlorobiphenyl isomers vary significantly from the
average.  Burkhard et al. (1985) estimated the following Henry's law constants (atm-m3/mol) for various Aroclors at 25 EC: 1221 (2.28x10-4), 1242 (3.43x10-4),
1248 (4.4x10-4), 1254 (2.83x10-4), and 1260 (4.15x10-4).
jThese air conversion factors were calculated by using the average molecular weight and ideal gas law.
kChemical Health and Safety Data; National Toxicology Program (http://ntp-server.niehs.nih.gov)
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Table 4-4.  Approximate Weight Percent of PCB Homologs in Some Aroclors

Homolog
Aroclor
1016a

Aroclor
1221b

Aroclor
1232c

Aroclor
1242d

Aroclor
1248e

C12H9Cl 0.70 60.06 27.55 0.75 0.07

C12H8Cl2 17.53 33.38 26.83 15.04 1.55

C12H7Cl3 54.67 4.22 25.64 44.91 21.27

C12H6Cl4 22.07 1.15 10.58 20.16 32.77

C12H5Cl5 5.07 1.23 9.39 18.85 42.92

C12H4Cl6 Not detected Not detected 0.21 0.31 1.64

C12H3Cl7 Not detected Not detected 0.03 Not detected 0.02

C12H2Cl8 Not detected Not detected Not detected Not detected Not detected

C12H1Cl9 Not detected Not detected Not detected Not detected Not detected

Average molecular
mass 262 206 240 272 300

Empirical Formula
Aroclor
1254f

Aroclor
1254g

Aroclor
1260d

Aroclor
1262h

Aroclor 
1268

C12H9Cl 0.02 Not detected 0.02 0.02 No data

C12H8Cl2 0.09 0.24 0.08 0.27 No data

C12H7Cl3 0.39 1.26 0.21 0.98 No data
C12H6Cl4 4.86 10.25 0.35 0.49 No data

C12H5Cl5 71.44 59.12 8.74 3.35 No data

C12H4Cl6 21.97 26.76 43.35 26.43 No data

C12H3Cl7 1.36 2.66 38.54 48.48 No data

C12H2Cl8 Not detected 0.04 8.27 19.69 No data

C12H1Cl9 0.04 0.04 0.70 1.65 No data

Average molecular
mass 334 334 378 395 453

Source: Frame et al. (1996)

aLot A2 Aroclor 1016
bLot A1 Aroclor 1221
cLot A1.5 Aroclor 1232
dMean of three Lots
eLot A3.5 Aroclor 1248

fLot A4 Aroclor 1254 (Monsanto Lot KI-02-6024) from
abnormal late production (1974–1977)
gLot G4 Aroclor 1254 (GE/118-peak analytical
standard)
hLot A6 Aroclor 1262
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Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

1 2 0.52 0.54 0.05 0.02 0.02 — 0.02
2 3 0.02 0.03 — — — — —
3 4 0.15 0.18 0.01 — — —  —
4 2,2N 3.62 3.08 0.32 0.04 0.02 0.06 0.02
5 2,3 0.17 0.14 0.00 — — — — 
6 2,3N 1.64 1.43 0.13 0.00 0.01 0.02 0.01
7 2,4 0.29 0.26 0.02 — — — —
8 2,4N 8.29 7.05 0.81 0.26 0.05 0.13 0.04
9 2,5 0.58 0.50 0.04 — — — —
10 2,6 0.23 0.20 — — — — —
11 3,3N — — — — — — —
12 3,4 0.07 0.06 — — — — —
13 3,4N 0.24 0.22 0.02 — — — —
14 3,5 — — — — — — —
15 4,4N 2.40 2.10 0.22 0.06 0.01 0.03 0.01
16 2,2N,3 3.88 3.14 1.04 0.71 0.02 0.09 0.01
17 2,2N,4 3.98 3.13 1.05 0.93 0.02 0.08 0.02
18 2,2N,5 10.86 8.53 4.29 3.29 0.08 0.25 0.05
19 2,2N,6 0.99 0.80 0.22 0.14 — — — 
20 2,3,3N 0.88 0.72 0.14 0.08 — — —
21 2,3,4 NM NM — — — — —
22 2,3,4N 3.50 2.84 1.33 1.38 0.02 0.04 0.01
23 2,3,5 0.01 0.01 — 0.00 — — —
24 2,3,6 0.16 0.13 0.01 — — — —
25 2,3N,4 0.72 0.59 0.11 0.04 — — —
26 2,3N,5 1.57 1.28 0.40 0.23 — 0.03 —
27 2,3,6 0.51 0.41 0.12 0.07 — — —
28 2,4,4N 8.50 6.86 3.59 5.57 0.06 0.19 0.03
29 2,4,5 0.10 0.08 0.00 0.01 — — —
30 2,4,6 0.00 — — — — — —
31 2,4N,5 9.32 7.34 5.07 5.47 0.11 0.28 0.04
32 2,4N,6 2.37 1.90 0.88 0.93 0.01 0.05 0.01
33 2N,3,4 6.21 5.01 2.23 2.21 0.05 0.16 0.03
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Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb (continued)

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

34 2N,3,5 0.03 0.02 0.00 0.00 — — —
35 3,3N,4 0.05 0.08 0.00 — — — —
36 3,3N,5 — — — — — — —
37 3,4,4N 1.02 2.03 0.79 0.95 0.01 0.07 0.01
38 3,4,5 — — — — — — —
39 3,4N,5 — — — — — — —
40 2,2N,3,3N 0.58 0.76 1.13 0.92 0.15 0.12 —
41 2,2N,3,4 0.76 0.68 0.77 0.75 0.02 0.01 —
42 2,2N,3,4N 1.59 1.19 1.67 1.79 0.09 0.15 0.01
43 2,2N,3,5 0.28 0.18 0.30 0.19 — — —
44 2,2N,3,5N 4.47 3.55 6.31 5.09 0.67 2.31 0.03
45 2,2N,3,6 1.23 0.89 1.09 0.91 0.02 0.05 —
46 2,2N,3,6N 0.49 0.36 0.47 0.39 — — —
47 2,2N,4,4N 1.26 0.93 1.49 2.41 0.07 0.14 —
48 2,2N,4,5 1.61 1.18 1.66 1.54 0.05 0.12 —
49 2,2N,4,5N 3.35 2.53 4.12 4.17 0.26 1.10 0.01
50 2,2N,4,6 0.01 0.00 — — — — —
51 2,2N,4,6N 0.32 0.23 0.30 0.31 — — —
52 2,2N,5,5N 4.63 3.53 6.93 5.58 0.83 5.38 0.24
53 2,2N,5,6N 0.95 0.71 1.05 0.88 0.04 0.12 —
54 2,2N,6,6N 0.01 0.01 — 0.01 — — —
55 2,3,3N,4 — 0.10 0.06 0.05 — — —
56 2,3,3N,4N 0.07 1.81 3.16 3.19 1.70 0.55 0.02
57 2,3,3N,5 0.01 0.02 0.02 0.02 — — —
58 2,3,3N,5N — — — — — — —
59 2,3,3N,6 0.41 0.32 0.37 0.23 0.01 0.02 —
60 2,3,4,4N 0.04 1.18 1.85 2.67 0.95 0.18 0.04
61 2,3,4,5 — — — — — — —
62 2,3,4,6 — — — — — — —
63 2,3,4N,5 0.06 0.12 0.17 0.19 0.07 0.02 —
64 2,3,4N,6 1.87 1.70 3.01 3.32 0.36 0.59 0.01
65 2,3,5,6 — — — — — — —
66 2,3N,4,4N 0.39 3.39 5.84 7.22 3.56 1.01 0.02
67 2,3N,4,5 0.06 0.16 0.13 0.10 0.01 — —
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Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb (continued)

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

68 2,3N,4,5N — — — — — — —
69 2,3N,4,6 0.00 — — — — — —
70 2,3N,4N,5 0.59 3.73 7.28 7.39 6.83 3.49 0.04
71 2,3N,4N,6 1.16 1.03 1.67 1.86 0.11 0.15 0.01
72 2,3N,5,5N 0.00 0.01 0.02 0.01 — — —
73 2,3N,5N,6 0.00 0.00 — — — — —
74 2,4,4N,5 0.33 1.81 3.14 4.67 2.19 0.84 0.05
75 2,4,4N,6 0.06 0.04 0.08 0.08 — — —
76 2N,3,4,5 — 0.08 0.13 0.13 0.03 0.02 —
77 3,3N,4,4N — 0.31 0.41 0.52 0.20 0.03 —
78 3,3N,4,5 — — — — — — —
79 3,3N,4,5N — — — — — — —
80 3,3N,5,5N — — — — — — —
81 3,4,4N,5 — 0.01 0.01 0.02 0.00 — —
82 2,2N,3,3N,4 — 0.26 0.81 0.62 1.53 1.11 —
83 2,2N,3,3N,5 — 0.11 0.26 0.20 0.56 0.48 0.01
84 2,2N,3,3N,6 0.05 0.41 1.26 0.91 1.58 2.32 0.11
85 2,2N,3,4,4N — 0.31 0.98 1.14 2.49 1.28 0.01
86 2,2N,3,4,5 — 0.03 0.11 0.09 0.10 0.06 —
87 2,2N,3,4,5N — 0.46 1.45 1.11 3.41 3.99 0.41
88 2,2N,3,4,6 — 0.00 0.02 0.02 — — —
89 2,2N,3,4,6N — 0.09 0.20 0.17 0.11 0.09 —
90 2,2N,3,4N,5 — — NM NM NM NM —
91 2,2N,3,4N,6 0.06 0.21 0.63 0.56 0.53 0.93 0.01
92 2,2N,3,5,5N — 0.09 0.38 0.25 0.57 1.29 0.30
93 2,2N,3,5,6 — 0.00 0.04 0.03 — — —
94 2,2N,3,5,6N — 0.01 0.03 0.02 0.01 0.02 —
95 2,2N,3,5N,6 0.31 0.61 1.96 1.43 1.84 6.25 2.45
96 2,2N,3,6,6N 0.04 0.03 0.08 0.06 0.01 0.04 —
97 2,2N,3N,4,5 — 0.38 1.22 0.97 2.78 2.62 0.09
98 2,2N,3N,4,6 — — — — — — —
99 2,2N,3N,4N,5 0.01 0.46 1.47 1.81 4.53 3.02 0.04
100 2,2N,4N,4N,6 — — — — — — —
101 2,2N,4,5,5N 0.04 0.69 2.22 1.89 5.49 8.02 3.13
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Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb (continued)

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

102 2,2N,4,5,6N 0.04 0.07 0.19 0.17 0.09 0.15 —
103 2,2N,4,5N,6 — — 0.02 0.01 — 0.03 —
104 2,2N,4,6,6N — — — — — — —
105 2,3,3N,4,4N 0.00 0.47 1.60 1.45 7.37 2.99 0.22
106 2,3,3N,4,5 — — — — — — —
107 2,3,3N,4N,5 — — — — — — —
108 2,3,3N,4,5N — — — — — — —
109 2,3,3N,4,6 — 0.06 0.18 0.13 0.78 0.37 0.01
110 2,3,3N,4N,6 — 0.83 2.97 2.55 8.42 9.29 1.33
111 2,3,3N,5,5N — — — — — — —
112 2,3,3N,5,6 — — — — — — —
113 2,3,3N,5N,6 — — — — 0.01 — —
114 2,3,4,4N,5 — 0.04 0.12 0.12 0.50 0.18 — 
115 2,3,4,4N,6 — 0.04 0.11 0.11 0.37 0.20 — 
116 2,3,4,5,6 — — — — — — —
117 2,3,4N,5,6 — 0.03 0.09 0.10 0.19 0.23 —
118 2,3N,4,4N,5 — 0.66 2.29 2.35 13.59 7.35 0.48
119 2,3N,4,4N,6 — — 0.06 0.06 0.12 0.08 —
120 2,3N,4,5,5N — — — — — — —
121 2,3N,4,5N,6 — — — — — — —
122 2N,3,3N,4,5 — 0.01 0.06 0.05 0.25 0.10 —
123 2N,3,4,4N,5 — 0.03 0.07 0.08 0.32 0.15 —
124 2N,3,4,5,5N — 0.03 0.10 0.07 0.47 0.29 0.01
125 2N,3,4,5,6N — 0.02 0.04 0.03 0.03 0.02 —
126 3,3N,4,4N,5 — — 0.00 0.00 0.02 0.00 —
127 3,3N,4,5,5N — — — — — — —
128 2,2N,3,3N,4,4N — 0.02 0.12 0.08 1.71 1.42 0.53
129 2,2N,3,3N,4,5 — — 0.02 0.39 0.38 0.14
130 2,2N,3,3N,4,5N — — 0.04 0.01 0.50 0.60 0.22
131 2,2N,3,3N,4,6 — — — — 0.14 0.19 0.07
132 2,2N,3,3N,4,6N — 0.04 0.15 0.14 1.50 2.29 2.90
133 2,2N,3,3N,5,5N — — — — — 0.11 0.07
134 2,2N,3,3N,5,6 — — — 0.01 0.20 0.37 0.34
135 2,2N,3,3N,5,6N — — 0.04 0.04 0.28 0.61 1.08



PCBs 461

4.  CHEMICAL AND PHYSICAL INFORMATION

Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb (continued)

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

136 2,2N,3,3N,6,6N — — 0.05 0.06 0.24 0.70 1.46
137 2,2N,3,4,4N,5 — — 0.03 0.02 0.52 0.42 0.02
138 2,2N,3,4,4N,5N — 0.10 0.38 0.41 5.95 5.80 6.54
139 2,2N,3,4,4N,6 — — — — 0.14 0.15 —
140 2,2N,3,4,4N,6N — — — — — — —
141 2,2N,3,4,5,5N — 0.01 0.07 0.09 0.69 0.98 2.62
142 2,2N,3,4,5,6 — — — — — — —
143 2,2N,3,4,5,6N — — — — — — —
144 2,2N,3,4,5N,6 — — — 0.01 0.12 0.24 0.61
145 2,2N,3,4N,6,6N — — — — — — —
146 2,2N,3,4N,5,5N — — 0.04 0.05 0.45 0.67 1.15
147 2,2N,3,4N,5,6 — — — — 0.02 0.10 —
148 2,2N,3,4N,5,6N — — — — — — —
149 2,2N,3,4N,5N,6 — 0.06 0.24 0.33 1.82 3.65 8.75
150 2,2N,3,4N,5,6N — — — — — — —
151 2,2N,3,5,5N,6 — — 0.04 0.08 0.22 0.69 3.04
152 2,2N,3,5,6,6N — — — — — — —
153 2,2N,4,4N,5,5N — 0.06 0.23 0.43 3.29 3.77 9.39
154 2,2N,4,4N,5,6N — — — — 0.02 0.04 —
155 2,2N,4,4N,6,6N — — — — — — —
156 2,3,3N,4,4N,5 — 0.01 0.06 0.04 1.13 0.82 0.52
157 2,3,3N,4,4N,5N — — 0.01 0.00 0.30 0.19 0.02
158 2,3,3N,4,4N,6 — 0.01 0.04 0.04 0.90 0.81 0.58
159 2,3,3N,4,5,5N — — — — — — —
160 2,3,3N,4,5,6 — — — — — — —
161 2,3,3N,4,5N,6 — — — — — — —
162 2,3,3N,4N,5,5N — — — — — — —
163 2,3,3N,4N,5,6 — 0.01 0.06 0.08 0.70 1.03 2.42
164 2,3,3N,4N,5N,6 — — 0.02 0.03 0.31 0.40 0.69
165 2,3,3N,5,5N,6 — — — — — — —
166 2,3,4,4N,5,6 — — — — 0.05 0.05 —
167 2,3N,4,4N,5,5N — — 0.01 0.01 0.35 0.27 0.19
168 2,3N,4,4N,5N,6 — — — — — — —
169 3,3N,4,4N,5,5N — — — — — — —
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Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb (continued)

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

170 2,2N,3,3N,4,4N,5 — — — 0.08 0.35 0.52 4.11
171 2,2N,3,3N,4,4N,6 — — — — 0.08 0.14 1.11
172 2,2N,3,3N,4,5,5N — — — — 0.03 0.07 0.70
173 2,2N,3,3N,4,5,6 — — — — — — 0.10
174 2,2N,3,3N,4,5,6N — — — 0.08 0.14 0.34 4.96
175 2,2N,3,3N,4,5N,6 — — — — — — 0.17
176 2,2N,3,3N,4,6,6N — — — — 0.01 0.04 0.59
177 2,2N,3,3N,4N,5,6 — — — 0.03 0.08 0.20 2.57
178 2,2N,3,3N,5,5N,6, — — — — — 0.03 0.83
179 2,2N,3,3N,5,6,6N — — — 0.02 0.02 0.10 2.03
180 2,2N,3,4,4N,5,5N — — 0.02 0.21 0.42 0.67 11.38
181 2,2N,3,4,4N,5,6 — — — — — — 0.01
182 2,2N,3,4,4N,5,6N — — — — — — —
183 2,2N,3,4,4N,5N,6 — — — 0.06 0.09 0.18 2.41
184 2,2N,3,4,4N,6,6N — — — — — — —
185 2,2N,3,4,5,5N,6 — — — — — — 0.55
186 2,2N,3,4,5,6,6N — — — — — — —
187 2,2N,3,4N,5,5N,6 — — — 0.09 0.09 0.25 5.40
188 2,2N,3,4N,5,6,6N — — — — — — —
189 2,3,3N,4,4N,5,5N — — — — 0.01 0.01 0.10
190 2,3,3N,4,4N,5,6 — — — — 0.05 0.07 0.82
191 2,3,3N,4,4N,5N,6 — — — — — — 0.17
192 2,3,3N,4,5,5N,6 — — — — — — —
193 2,3,3N,4N,5,5N,6 — — — — — 0.03 0.53
194 2,2N,3,3N,4,4N,5,5N — — — — — 0.01 2.07
195 2,2N,3,3N,4,4N,5,6 — — — — — — 0.84
196 2,2N,3,3N,4,4N,5,6N — — — — — — 1.09
197 2,2N,3,3N,4,4N,6,6N — — — — — — 0.07
198 2,2N,3,3N,4,5,5N,6 — — — — — — 0.10
199 2,2N,3,3N,4,5,5N,6N — — — — — 0.01 1.78
200 2,2N,3,3N,4,5,6,6N — — — — — — 0.25
201 2,2N,3,3N,4,5N,6,6N — — — — — — 0.24
202 2,2N,3,3N,5,5N,6,6N — — — — — — 0.33
203 2,2N,3,4,4N,5,5N,6 — — — — — 0.02 1.40
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Table 4-5.  Polychlorinated Biphenyl Congener Compositions 
(in Weight Percent)a in Aroclorsb (continued)

PCB No. Chlorine positions

Aroclor

1016c 1242d 1248e 1248f
1254g

“Late” 1254h 1260i

204 2,2N,3,4,4N,5,6,6N — — — — — — —
205 2,3,3N,4,4N,5,5N,6 — — — — — — 0.10
206 2,2N,3,3N,4,4N,5,5N,6 — — — — 0.03 0.03 0.53
207 2,2N,3,3N,4,4N,5,6,6N — — — — — — 0.05
208 2,2N,3,3N,4,5,5N,6,6N — — — — 0.01 0.01 0.13
209 2,2N,3,3N,4,4N,5,5N,6,6N — — — — — — NM
Sum of weight percents = 100.0 100.0 100.2 100.2 100.2 100.4 100.3

aWeight percent values in table are biased high with respect to mole percent values (not calculated).
bSource: Frame et al. (1996)
cLot A2 Aroclor 1016
dMean of three Lots of Aroclor 1242
eLot A3.5 Aroclor 1248
fLot G3.5 Aroclor 1248
gLot A4 Aroclor 1254 (Monsanto Lot KI-02-6024) from abnormal late production (1974–1977)
hLot G4 Aroclor 1254 (GE/118-peak analytical standard)
iMean of three Lots of Aroclor 1260

NM = congener not measured, but present at trace level.
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increased levels of the high TEF (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin (“dioxin”) Equivalency Factor;

“T” often defined as “toxic”) chlorobiphenyls, were produced from 1974 to 1977 (see Section 5.1).

The pyrolysis of technical-grade PCB mixtures produces several PCDFs (Rappe et al. 1979; Schecter and

Charles 1991).  PCDFs are also produced during the commercial production and handling of PCBs.  The

amount of PCDFs formed depends upon the manufacturing conditions.  The concentrations of PCDF

impurities in various commercial Aroclors are shown in Table 4-6.  The impurities 2,3,7,8-tetrachloro-

dibenzofuran and 2,3,4,7,8-pentachlorodibenzofuran were found at concentrations of 0.33 and 0.83 ppm,

respectively, in Aroclor 1248; and at 0.11 and 0.12 ppm, respectively, in Aroclor 1254 (Van den Berg et

al. 1985).  Concentrations of PCDFs in commercial PCB mixtures including Clophen A-60, Pheno-

clor DP-6, and Kanechlor 400 have been reported (De Voogt and Brinkman 1989).

Physical properties such as solubility, vapor pressure, and Henry's law constant have been reported for

individual congeners (Dunnivant and Elzerman 1988; Dunnivant et al. 1992; Falconer and Bidleman

1994; Murphy et al. 1987; Sabljic and Güsten 1989).  Physical and chemical properties for several PCB

congeners are presented in Table 4-7 (Bidelman 1984; Dunnivant et al. 1992; Erikson 1986; Hansch and

Leo 1979;  Hutsinger et al. 1974; Mackay et al. 1992; Murray and Andren 1991; Yalkowsky et al. 1983). 

Experimentally determined log Kow values for 19 congeners and an estimation method for the

determination of log Kow values of other PCB congeners are also available (Sabljic et al. 1993).  The

congeners reported are important due to their toxicity or because they occur in higher concentrations in

the environment. 
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Table 4-6.  Concentrations of Chlorinated Dibenzofurans (CDFs) in Commercial 
Polychlorinated Biphenyl Mixturesa

PCB Tetra-CDF Penta-CDF Hexa-CDF Total (PCDFs)b

Aroclor 1016 (1977) Not detected Not detected Not detected –

Aroclor 1016 Not detected Not detected Not detected –

Aroclor 1242 0.07 0.03 0.003 0.15

Aroclor 1242 0.07 0.03 0.003 0.15

Aroclor 1242 2.3 2.2 Not detected 4.5

Aroclor 1254 (1969) 0.1 0.2 1.4 1.7

Aroclor 1254 (1970) 0.2 0.4 0.9 1.5

Aroclor 1254 0.02 0.2 0.4–0.6 0.8

Aroclor 1254 0.1 3.6 1.9 5.6

Aroclor 1260 (1969) 0.1 3.6 1.9 5.6

Aroclor 1260 (Lot AK3) 0.2 0.3 0.3 0.8

Aroclor 1260 0.3 1.0 1.1 3.8b

Aroclor 1260 0.8 0.9 0.5 2.2

Clopen A-60 1.4 5.0 2.2 8.6

Phenoclor DP-6 0.7 10.0 2.9 13.6

Kanechlor 400 – – – .20.0

Source: Adapted from de Voogt and Brinkman 1989

ain µg/g
bTotal includes quantities of tri-CDF and hepta-CDF isomers that were analyzed.

CDF = chlorodibenzofuran; PCDFs = polychlorinated dibenzofurans
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Table 4-7.  Physical and Chemical Properties of Several Congeners of Polychlorinated Biphenyls

Property PCB 77 PCB 138 PCB 153 PCB 169 PCB 180
Molecular weight 291.98a 360.9b 360.88b 360.86a 395.32b

Molecular formula C12H6CI4b C12H4Cl6b C12H4Cl6b C12H4Cl6b C12H3Cl7b

Melting point EC 173c 78.5–80c 103–104c 201–202c 109–110b

Boiling point EC 360 (calc.)b 400 (calc.)b No data No data 240–280 (20 mmHg)b

Density g/cm3 at 25 EC 1.2024 (20 EC)b No data No data No data No data

Odor No data No data No data No data No data

Solubility:
Water mg/L

Organic solvents

0.175 ppmc;
0.00055e

–

0.0159–0.0159
(calc.)b

–

0.00091 ppmd;
0.00086e

–

0.000036–0.01230
(calc.)b

–

0.00031–0.00656 (calc.)b;
0.00023e

–

Partition coefficients:
Log Kow
Log Koc

6.04–6.63b

4.41–5.75b
6.50–7.44 (calc.)b

5.21–7.3b
8.35e; 6.72b

4.75–7.68b
7.408b

6.60b
6.70–7.21 (calc.)b

5.78–6.9b

Vapor pressure 
mm Hg at 25 EC

4.4x10-7 d 4.0x10-6 f 3.80x10-7 f
9.0x10-7 d

4.02x10-7 b –

Henry’s law constant
atm-m3/mol at 25 EC

0.43x10-4 g

0.94x10-4 i

0.83x10-4 e

1.07x10-4 h
0.21x10-4 b

2.78 (104)g

1.32 (104)i

1.31 (104)e

0.15x10-4 b
0.59x10-4 b

1.07x10-4 e

Explosive limits No data No data No data No data No data

aHSDB 2000
bYalkowsky et al. 1983
cHutsinger et al. 1974
dMackay et al. 1992
eDunnivant et al. 1992
fErikson 1986
gHansch and Leo 1995
hBidelman 1984
iMurray and Andren 1991
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5.1 PRODUCTION

Prior to the public's outcry concerning the apparent link between PCBs and widespread environmental

problems and the discovery of their detrimental health effects, PCBs were produced commercially in the

United States from 1929 until 1977.  Marketed worldwide under trade names such as Aroclor, Askarel,

and Therminol, the annual U.S. production peaked in 1970 with a total production volume of 85 million

pounds (39 million kg) of Aroclors.  Between 1957 and 1971, 12 different types of Aroclors, with

chlorine contents ranging from 21 to 68% were produced in the United States.  The manufacturing

process for Aroclors involved the chlorination of biphenyl with anhydrous chlorine in the presence of a

catalyst, such as iron filings or ferric chloride.  The degree of chlorination, which determines the nature of

the Aroclor, was controlled by the chlorine-contact time (range, 12–36 hours) in the reactor.  Late

production Aroclor 1254 (Aroclor 1254 “Late”) was made by a two-stage chlorination procedure from

1974 to 1977.  In the first stage, biphenyl was chlorinated to 42% chlorine content by weight as for

Aroclor 1242 production.  This was then fractionated to give a distillate that was sold as Aroclor 1016 and

a residue that would have contained mostly the mono-ortho tetrachlorobiphenyls and higher homologs. 

In the second stage, this residue, which contained about 49% chlorine, was further chlorinated to 54%

chlorine by weight, resulting in an Aroclor 1254 lot (Monsanto Lot KI-02-6024) with greatly increased

levels of the high TEF (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin (“dioxin”) Equivalency Factor; “T” often

defined as “toxic”) chlorobiphenyls.  While production records suggest that Aroclor 1254 “Late”

represented <1% of the total Aroclor 1254 production, the availability of this lot during the final years of

production resulted in the disproportionate use of Aroclor 1254 “Late” by standards suppliers and

researchers into Aroclor 1254 toxicity (Brinkman et al. 1995; Durfee 1976; Frame 1999; IARC 1978).

During production, Aroclor mixtures were contaminated by small amounts of polychlorinated

dibenzofurans (PCDFs) as impurities.  Although PCDFs are formed during the pyrolysis of PCBs, in the

absence of fire, PCDF levels do not appear to increase during the normal use of PCBs in electrical

equipment.  PCDFs have their own toxicological properties, which have been summarized in ATSDR

(1994).  The concentration levels for tetra-, penta-, hexa-, and total PCDFs found in commercial PCB

mixtures are shown in Table 4-6 (de Voogt and Brinkman 1989).

Approximately 99% of the PCBs used by U.S. industry were produced by the Monsanto Chemical

Company in Sauget, Illinois, until production was stopped in August 1977.  Prior to 1971, the Monsanto
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Chemical Company produced Aroclors 1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268; however, in

1971, the company voluntarily restricted the uses of PCBs and subsequently produced only Aroclor 1016,

1242, 1254, and small quantities of Aroclor 1221.  In 1974, the Monsanto Chemical Company produced

slightly more than 40 million pounds (18 million kg) of Aroclor mixtures.  Of the total volume of

Aroclors sold in the United States for that year, the percentages of the market for each of the Aroclors

were: Aroclor 1016, 64%; Aroclor 1242, 17.9%; Aroclor 1254, 17.9%; and Aroclor 1221, 0.1%.  The

estimated, cumulative production and consumption volumes (in millions of pounds) of PCBs in the

United States from 1930 to 1975 were:  total production, 1,400 (635 million kg); imports, 3 (1.4 million

kg); domestic sales, 1,253 (568 million kg); and exports, 150 (68 million kg).  Section 5.3 provides

information on amounts estimated for specific locations, as well as estimates of intermedia transfers of

PCBs (Durfee 1976; EPA 1976a; Hatton 1979; IARC 1978; Kimbrough 1987).  

In 1976, the U.S. Congress charged EPA with regulating the manufacture, processing, distribution in

commerce, and use of PCBs.  Currently regulated pursuant to the Toxic Substances Control Act (TSCA)

and the Resource Conservation and Recovery Act (RCRA), the first set of effluent standards for PCBs

was issued by EPA in 1977; manufacturing and importing limitations regarding PCBs were issued in

1979.  After subsequent amendments, the regulations stipulate that the production of PCBs in the United

States is generally banned, the use of PCB-containing materials still in service is restricted, the discharge

of PCB-containing effluents is prohibited, the disposal of materials contaminated by PCBs is regulated,

and the import or export of PCBs is only permitted through an exemption granted from EPA (EPA 1977b,

1979a, 1979f, 1979g, 1988c, 1988e, 1998a).

5.2 IMPORT/EXPORT

Currently, the United States neither imports nor exports PCBs.  Section 6(e)(3)(A) of TSCA (Pub. L.

94-969, 90 stat. 2003, 15 USC 2601 et. seq.) prohibited all manufacture and importation of PCBs after

January 1, 1979.  On January 2, 1979, however, EPA announced that companies that had filed petitions

for exemptions from the PCB manufacturing/importation ban could continue manufacturing or import

activity until EPA acted on the application petition.  As of July 7, 1997, the U.S. Court of Appeals for the

Ninth Circuit overturned the Import for Disposal Rule.  EPA can now only allow imports of PCBs by

issuing exemptions to importers via the petition process under Section 6(e) of TSCA.  See the

June 29, 1998 Federal Register for further discussion of EPA’s PCB export and import regulations (EPA

1979a, 1998a).
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In 1973 and 1974, the United States imported PCBs mainly from Italy as decachlorobiphenyl (Fenclor),

and France (Phenoclor) (Durfee 1976).  It is estimated that 180,000 kg (approximately 400,000 pounds)

of this compound were imported in 1974 (IARC 1978).  The volume of PCBs imported through principal

U.S. custom districts from unspecified countries decreased from 132,000 kg (291,000 pounds) in 1976

(IARC 1978) and 280,867 pounds (127,400 kg) in 1977 to only 11,000 pounds (5,000 kg) in 1981

(USITC 1978, 1979, 1980, 1982).  The Monsanto Chemical Company exported 5.4 million pounds

(2.45 million kg) of Aroclors 1016 and 1242 to unspecified countries in 1974 (Durfee 1976). 

5.3 USE

Prior to 1974, PCBs were used both for nominally closed applications (e.g., capacitor and transformers,

and heat transfer and hydraulic fluids) and in open-end applications (e.g., flame retardants, inks,

adhesives, microencapsulation of dyes for carbonless duplicating paper, paints, pesticide extenders,

plasticizers, polyolefin catalyst carriers, slide-mounting mediums for microscopes, surface coatings, wire

insulators, and metal coatings) (Durfee 1976; EPA 1976a, 1988c; IARC 1978; Orris et al. 1986; Safe

1984; Welsh 1995).  Table 5-1 summarizes the former uses of the various Aroclors.  Currently, under

40 CFR 761.80 (June 29, 1998), individual petitioners are granted 1-year exemptions to manufacture or

import PCB for use solely in the manufacture or importer’s own research for the development of PCB

disposal technologies.  Also under 40 CFR 761.30 (June 29, 1998), individual petitioners are granted

exemptions for the use of PCBs as a mounting medium in microscopy, as an immersion oil in low

fluorescence microscopy, and as an optical liquid, as well as for analytical samples and research and

development use (EPA 1998a). 

Except for the approximate 400,000 pounds (180,000 kg) of decachlorobiphenyl imported from Italy and

France used as filler for investment casting waxes (IARC 1978), most domestic use of PCBs was

restricted to nominally closed applications by 1974 (IARC 1978).  The production of capacitors and

transformers involved filling them with Aroclors through a small hole in the unit and then sealing the

hole.  While smaller capacitors contained smaller amounts, the production of large capacitors generally

required at least 2–3 pounds (1 kg) of Aroclors; many times that amount was required to produce the

transformers.  By 1976, only 5% of the transformers produced in the United States were filled with PCBs,

accounting for 30% of the Monsanto Chemical Company's domestic sales; however, 95% of the

capacitors produced in the United States were filled with PCBs, accounting for 70% of the company's

domestic sales (IARC 1978).  As of January 1979, Aroclors were no longer used in the production of

capacitors and transformers.  Nevertheless, the life expectancy of transformers containing PCBs is greater 
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Table 5-1.  Summary of Former End Uses for Various Aroclors

End use

Aroclor

1016 1221 1232 1242 1248 1254 1260 1262 1268
Capacitors • • • 

Transformers • • •

Heat transfer  • 

Hydraulics/lubricants

Hydraulic fluids  •  •  •  •  • 

Vacuum pumps • •

Gas-transmission turbines   •   • 

Plasticizers:

Rubbers  • • • • •  • 

Synthetic resins • • • • •

Carbonless paper •

Miscellaneous:

Adhesives • • • • •

Wax extenders •  •   •  

Dedusting agents   •  •

Inks •

Cutting oils •

Pesticide extenders •

Sealants and caulking compounds •

Source: IARC 1979



PCBs 471

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL

than 30 years, and the life expectancy of capacitors ranges from 10 to 20 years, depending on the

electrical application (IARC 1978).  In 1981, an estimated 131,200 transformers containing PCBs were in

service in the United States, representing approximately 1% of all operational transformers.  Currently,

the EPA maintains an up-to-date database containing the location and amount of PCBs in transformers

across the United States (EPA 1999b).

5.4 DISPOSAL

According to the Toxics Release Inventory (TRI), >99% of the total PCB wastes produced in the United

States in 1998 were released on-site to land.  About 3,742,000 pounds (1,698,000 kg) of PCB wastes were

released to land in 1998 (see Table 5-2) (TRI98 2000).

The concentration of PCBs in the environment in which some action should be considered (i.e., treatment

or containment) will depend primarily on the exposure estimate determined during the baseline risk

assessment for the site and on EPA’s 1996 cancer slope factor, reference dose (RfD), and exposure-

specific values (EPA 1990e, 1996c). 

PCBs were included among the contaminants of concern at 500 of the 1,598 Superfund sites (29%) as of

May 11, 2000 which were listed on the Final National Priorities List (HazDat 2000).  Remedial actions

taken at Superfund sites must meet the mandates of the National Contingency Plan (NCP), which

implements the requirements of the Comprehensive Environmental Response Compensation and Liability

Act (CERCLA) (EPA 1990e).  CERCLA Section 121 provides specific statutory requirements (cleanup

standards) for remediation that must be addressed when evaluating proposed remedial alternatives (U.S.

Congress 1980).  In order to ensure that the statutory requirements are met, the various proposed

alternatives are evaluated using nine evaluation criteria that reflect these statutory requirements (U.S.

Congress 1980; EPA 1988j, 1989d, 1990e).  The nine criteria are categorized into three groups: threshold

criteria, primary balancing criteria, and modifying criteria.  The threshold criteria include the

requirements to provide overall protection of human health and the environment, and to comply with

applicable or relevant and appropriate (ARARs) federal and state laws (EPA 1988j, 1989d).  The primary

balancing criteria include provisions for evaluating long-term effectiveness and permanence; the

reduction of contaminant toxicity, mobility, or volume; and short-term effectiveness for adverse health

effects from human exposure, implementability, and cost.  The modifying criteria include state acceptance

and community acceptance (EPA 1988j, 1989d).  While the primary balancing criteria are used to weigh

major tradeoffs among the proposed alternatives, and the modifying criteria are not taken into account 
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Table 5-2.  Facilities that Manufacture or Process Polychlorinated Biphenyls

Facility Location
Range of maximum
amounts on-site in
pounds

Activities and uses

Norcross Safety Prods. L.L.C. Rock Island, Illinois 100–999 Produce, by-product

Unison Transformer Services Henderson, Kentucky 1,000–9,999 Ancillary/other use

Noranda Aluminum Inc. New Madrid, Missouri 10,000–99,999 Ancillary/other use

Special Metals Corp. New Hartford, New York 10,000–99,999 Ancillary/other use

Northwest Aluminum Co., Inc. The Dalles, Oregon 10,000–99,999 Ancillary/other use

Source:  TRI96 1998
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until after public comments are received on the proposed remediation plans, an alternative must satisfy

the threshold criteria in order to be eligible for selection (EPA 1988j, 1989d). 

On April 18, 1978, EPA began to regulate the storage and disposal of PCBs.  These regulations specified

incineration as the only acceptable method of PCB disposal unless, by reason of the inability to dispose of

the waste or contaminated materials in this manner, clearance was obtained from EPA to dispose of the

materials in another way.  Although in March 1983 EPA issued a procedural amendment to the PCB rule

to enable new disposal technologies to receive approval on a nationwide basis, EPA's current PCB

disposal rules generally require that PCBs at concentrations of $50 ppm be disposed of in an incinerator

approved for that use (EPA 1998u).  The recommended combustion criteria for the disposal of liquid PCB

wastes by incineration is a 2-second dwell time at 1,200 EC (±100 EC) and 3% excess oxygen in the stack

gas; or a 1.5-second dwell time at 1,600 EC (±100 EC) and 2% excess oxygen (EPA 1979e).  Since

incineration of PCBs will produce chlorine-containing products (e.g., hydrochloric acid), it is required

that water scrubbers be used to remove these products before releasing the emissions into the atmosphere

(EPA 1998u).  Under TSCA (Toxic Substance and Control Act), the combustion efficiency of the

incinerator must be 99.9%  (EPA 1998u).  The general acceptance of incineration as a means of disposal

for PCB-contaminated materials has declined because of concerns about incomplete incineration and the

possible formation of highly toxic dioxins and dibenzofurans if the combustion temperature is not held

sufficiently high (Arbon et al. 1994; Chuang et al. 1995).  An evaluation of the applicability of oxy-fuel

technology to waste incineration conducted by Baukal et al. (1994) reported favorable results.  The test

results indicated that for simulated soils containing 1% PCBs and oil containing up to 40% PCBs, more

than 99.9999% of the PCBs were destroyed.  In controlled experiments conducted by Chuang et al.

(1995), significant dechlorination was noted at 300 EC and a fully dechlorinated product occurred at

400 EC when heating a mixture of PCBs (Aroclor 1221 and 1254) and iron metal powder (Fe0) in a

muffle furnace.

The regulatory requirements implemented pursuant to TSCA also provide that chemical waste landfills

and high-efficiency boilers meeting specified operating requirements are appropriate disposal facilities for

mineral oil dielectric fluid from PCB-contaminated electrical equipment containing PCBs at

concentrations $50 ppm, but <500 ppm.  Under the land disposal restrictions promulgated at 40 CFR part

268 pursuant to RCRA (Resource Conservation & Recovery Act), PCBs are regulated as halogenated

organic compounds (HOCs).  Types of waste for which land disposal is prohibited include liquid

hazardous wastes containing PCBs at concentrations of $50 ppm; nonliquid hazardous waste containing

HOCs in total concentration greater than or equal to 1,000 mg/kg (ppm); and liquid HOC-containing
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waste that are primarily water and contain HOCs in the concentration range 1,000–10,000 mg/L (ppm)

HOCs.  The treatment standards expressed as specified technologies (e.g., chemical reduction, carbon

adsorption, biodegradation) require incineration of liquid hazardous waste containing PCBs at a

concentration of 500 ppm or greater, and HOC-containing waste prohibited from land disposal (EPA

1986i, 1987c, 1987d, 1998u). 

Although not widely adopted, other methods proposed for the destruction of PCBs have included wet air

oxidation, biodegradation, metal-promoted dehalogenation, and electrolytic reduction (Chuang et al.

1995).  Timberlake and Garbaciak (1995) detailed the results of a series of bench-scale tests applying

various technologies (thermal desorption, solvent extraction, wet air oxidation, and an incineration

process known as Anaerobic Thermal Process [ATP]) to PCB-contaminated sediment.  The thermal

desorption and solvent extraction technologies, though not designed to destroy the contaminants,

indirectly separate the contaminants from a solid matrix and concentrate them into smaller volumes of

treatable oily residues.  The removal efficiencies of these technologies when applied to three of the river

sediments tested ranged from 96 to 99%.  The wet air oxidation process, which uses elevated

temperatures and pressure to oxidize the organic constituents, was not very effective in destroying PCBs;

it achieved only a 34% removal efficiency (Timberlake and Garbaciak 1995).  Zhang and Rusling (1995)

investigated electrochemical catalytic dechlorination as a method for decontaminating soils.  The study

achieved a 94% dechlorination level using a lead cathode and a micro emulsion of didodecylmethyl-

ammonium bromide, dodecane, and water for soils containing 6.5% organic matter and contaminated with

14% Aroclor 1260 (84 mg of PCB).

A chemical destruction method that has been used for the treatment of PCBs in contaminated dielectric

liquids or soil is based on the reaction of a polyethylene glycol/potassium hydroxide mixture with PCBs

(De Filippis et al. 1997).  This method can be used successfully for the destruction of higher chlorinated

PCBs with an efficiency of >99%, but was found to be unsuitable for the treatment of di- and

trichlorobiphenyls due to low destruction efficiencies (Sabata et al. 1993).  Irradiation of PCBs in

isooctane and transformer oil by γ-radiation resulted in degradation of PCBs to less chlorinated PCBs and

PCB-solvent adducts (Arbon et al. 1996).  Supercritical fluid technology has shown promise as a method

for extraction of PCBs from soils, coupled with supercritical water oxidation of the extracted PCBs

(Tavlarides 1993, 1998a).  Hofelt and Shea (1997) demonstrated the use of semipermeable membrane

devices to accumulate PCBs from New Bedford Harbor, Massachusetts water.  Another method showing

some promise for the treatment of PCBs in water, soil, and sediment is titanium dioxide-catalyzed

photodecomposition with sunlight (Hong et al. 1998; Huang et al. 1996; Zhang and Rusling 1995; Zhang
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et al. 1993).  PCBs in used lubricating oils were destroyed and petroleum products, including lubricating

oils, were produced with catalytic vacuum distillation/hydrotreatment technology (Brinkman et al. 1995). 

Treatment with metallic sodium has been suggested for PCB wastes because it yields low molecular

weight polypropylene and sodium chloride which are less undesirable than products from incineration

(IRPTC 1985).  Bioremediation of PCB-contaminated soil has been suggested using a combination of

anaerobic and  aerobic treatments.  Aerobic treatments would metabolize the lower chlorinated homologs

(e.g., biphenyl;  mono- and di-ortho chloro-substituted CBs)  produced in soil from anaerobic

dechlorination  processes (Tiedje et al. 1993; see Section 6.3.2.3).  
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6.  POTENTIAL FOR HUMAN EXPOSURE

6.1 OVERVIEW

Polychlorinated biphenyls (PCBs) have been identified in at least 500 of the 1,598 hazardous waste sites

that have been proposed for inclusion on the EPA National Priorities List (NPL) (HazDat 2000). 

However, the number of sites evaluated for PCBs is not known.  The frequency of these sites can be seen

in Figure 6-1.  Of these sites, 499 are located within the United States and 1 is located in the U.S.

Territory of Guam (not shown).

PCBs have been released to the environment solely by human activity.  Aroclors are no longer produced

in the United States, except under exemption (see Section 5.3), and are no longer used in the manufacture

of new products.  Because PCBs are no longer manufactured or imported in large quantities, significant

releases of newly manufactured or imported materials to the environment do not occur.  Rather, PCBs

predominantly are redistributed from one environmental compartment to another (e.g., soil to water, water

to air, air to water, sediments to water) (Eisenreich et al. 1992; Larsson 1985; Larsson and Okla 1989; Lin

and Que Hee 1987; Mackay 1989; Murphy et al. 1985, 1987; Swackhamer and Armstrong 1986).  Thus,

for example, the majority of PCBs in air result from volatilization of PCBs from soil and water.  Some

PCBs may be released to the atmosphere from uncontrolled landfills and hazardous waste sites;

incineration of PCB-containing wastes; leakage from older electrical equipment in use; and improper

disposal or spills (Blumbach and Nethe 1996; Boers et al. 1994; Bremle and Larsson 1998; Eisenreich et

al. 1992; Hansen and O’Keefe 1996; Hansen et al. 1997; Hermanson and Hites 1989; Larsson 1985;

Lewis et al. 1985; Morselli et al. 1985, 1989; Murphy et al. 1985; Oehme et al. 1987; Sakai et al. 1993;

Sawhney and Hankin 1985; Swackhamer and Armstrong 1986; Tiernan et al. 1983; Wallace et al. 1996). 

PCBs may be released to water from accidental spillage of PCB-containing hydraulic fluids; improper

disposal; combined sewer overflows (CSOs) or storm water runoff; and from runoff and lechate from

PCB-contaminated sewage sludge applied to farmland (Crawford et al. 1995; Durell and Lizotte 1998;

Gan and Berthouex 1994; Gunkel et al. 1995; Loganathan et al. 1997; Pham and Proulx 1997; Shear et al.

1996).  PCBs may be released to soil from accidental leaks and spills; releases from contaminated soils in

landfills and hazardous waste sites; deposition of vehicular emissions near roadway soil; and land

application of sewage sludges containing PCBs (Alcock et al. 1995; Benfenati et al. 1992; Choi et al.

1974; Gan and Berthouex 1994; Gutenmann et al. 1994; Liberti et al. 1992; McLachlan et al. 1994;

Morris and Lester 1994; O'Connor et al. 1990; Ohsaki and Matsueda 1994). 
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Figure 6-1.  Frequency of NPL Sites with PCB Contamination

Derived from HazDat 2000
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PCBs are globally circulated and are present in all environmental media.  Atmospheric transport is the

most important mechanism for global dispersion of PCBs.  Biphenyls with 0–1 chlorine atom remain in

the atmosphere, those with 1–4 chlorines gradually migrate toward polar latitudes in a series of

volatilization/deposition cycles, those with 4–8 chlorines remain in mid-latitudes, and those with

8–9 chlorines remain close to the source of contamination (Wania and Mackay 1996).  PCBs enter the

atmosphere from volatilization from both soil and water surfaces (Hansen 1999).  Once in the atmosphere,

PCBs are present both in the vapor phase and sorbed to particles.  PCBs in the vapor phase appear to be

more mobile and are transported further than particle-bound PCBs (Wania and Mackay 1996).  Wet and

dry deposition remove PCBs from the atmosphere (Dickhut and Gustafson 1995; Eisenreich et al. 1981;

Golomb et al. 1997; Hoff et al. 1996; Leister and Baker 1994; Nelson et al. 1998).  The dominant source

of PCBs to surface waters is atmospheric deposition; however, redissolution of sediment-bound PCBs

also accounts for water concentrations (Hansen 1999).  PCBs in water are transported by diffusion and

currents.  PCBs are removed from the water column by sorption to suspended solids and sediments as

well as by volatilization from water surfaces.  Higher chlorinated congeners are more likely to sorb, while

lower chlorinated congeners are more likely to volatilize (Eisenreich et al. 1983, 1992; Pearson 1996). 

PCBs also leave the water column by concentrating in biota.  PCBs accumulate most in higher trophic

levels through the consumption of contaminated food, a process referred to as biomagnification (EPA

1983c; Geyer et al. 1999; Koslowski et al. 1994; Looser and Ballschmiter 1998; Oliver and Niimi 1988;

Porte and Albaiges 1993; Willman et al. 1999; Wilson et al. 1995).  PCBs in soil are unlikely to migrate

to groundwater because of strong binding to soil (EPA 1979h, 1988a; Sklarew and Girvin 1987). 

Volatilization from soil appears to be an important loss mechanism; it is more important for the lower

chlorinated congeners than for the higher chlorinated congeners (Hansen 1999).  Vapor-phase PCBs

accumulate in the aerial parts of terrestrial vegetation and food crops by vapor-to-plant transfer (Bohm et

al. 1999). 

The ability of PCBs to be degraded or transformed in the environment depends on the degree of

chlorination of the biphenyl molecule as well as on the isomeric substitution pattern.  The vapor-phase

reaction of PCBs with hydroxyl radicals is the dominant transformation process in the atmosphere

(Brubaker and Hites 1998), while photolysis appears to be the only viable chemical degradation process

in water (EPA 1979h).  Biodegradation has been demonstrated under both aerobic (Dowling et al. 1993;

EPA 1983c, 1988a; Fava et al. 1993; Gibson et al. 1993; Haluska et al. 1995; Sugiura 1992; Thomas et al.

1992) and anaerobic conditions (Abramowicz 1990, 1995; Anid et al. 1993; Brown et al. 1988; Chen et

al. 1988; EPA 1983c, 1988a; Larsson and Lemkemeier 1989; Pardue et al. 1988; Rhee et al. 1989) and is

the major degradation process for PCBs in soil and sediment.
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Typical atmospheric concentrations of PCBs have been found to be much lower in rural locations

compared to urban locales.  For example, the concentration of PCBs in urban Baltimore, Maryland ranged

from 0.38 to 3.36 ng/m3, while in rural Baltimore, the concentration ranged from 0.02 to 0.34 ng/m3

(Offenberg and Baker 1999).  PCB levels in more remote areas are even lower with mean concentrations

ranging from 0.025 ng/m3 over the Norwegian Sea to 0.074 ng/m3 over the Eastern Arctic (Harner et al.

1998).  Monitoring studies conducted over the years have shown that atmospheric concentrations of PCBs

have decreased since the late 1970s.  Water monitoring studies indicate that PCB concentrations are

generally higher near sites of anthropogenic input and in in-shore waters.  The concentration of PCBs in

the waters of the Great Lakes (Superior, Michigan, Huron, Erie, and Ontario) typically range from

0.070 to 1.6 ng/L (Anderson et al. 1999).  Concentrations of PCBs in drinking water are generally

<0.1 µg/L and thus, drinking water is not considered a significant pathway for exposure.  Concentrations

of PCBs in most soils are generally <100 µg/kg; however, PCB concentrations in contaminated soils can

be several orders of magnitude higher.  Subsurface soil and sludge collected on-site at a New York

hazardous waste site near Akwesasne (a Native American community) had maximum concentrations of

750 mg/kg and 41,500 mg/kg, respectively (ATSDR 1995).  PCB concentrations in fish have been of

particular interest due to their influence on human exposure.  Composite fish samples from the U.S. North

Coast analyzed from 1988 to 1991 had a mean PCB concentration of 1.64 µg/g wet weight (Kennish and

Ruppel 1995).  Chinook salmon sampled from Lakes Ontario and Huron from 1991 to 1994 had mean

concentrations of 0.835 and 0.338 µg/g wet weight, respectively (Feeley and Jordan 1998).  Even in

remote areas, PCBs have been detected in fish tissue.  For example, lake trout caught in the Sierra Nevada

mountains from 1993 to 1994 had PCB concentrations ranging from 0.018 to 0.430 µg/g wet weight

(Datta et al. 1999).

The general population may be exposed to PCBs by ingesting contaminated food, especially fish from

contaminated waters, and by inhaling contaminated air.  Food consumption has and continues to be the

major contributor to body burden of PCBs in the general population.  The estimated dietary intake of

PCBs for an average adult was 0.027 µg/kg/day in 1978 and had declined to <0.001 µg/kg/day by 1991

(Gunderson 1995).  Several studies indicate that diets high in fish, from PCB-contaminated waters, can

significantly increase a persons dietary intake of PCBs.  For example, it was found that the mean

concentration of PCBs in blood of 252 males who frequently consumed contaminated fish was 4.8 ng/mL,

while in 57 males who were infrequent consumers, the mean concentration was 1.5 ng/mL (Hanrahan et

al. 1999).  In child-bearing women, this can be especially important since PCBs can concentrate in breast

milk.  Infants who are breast fed may therefore be at increased risk for PCB exposure if the mother has a

diet high in contaminated fish (Dewailly et al. 1993; Fitzgerald et al. 1998).  PCB exposure has also been
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attributed to inhalation of indoor air especially at locations which still use electrical equipment containing

PCBs. 

The detection of PCBs in blood, adipose tissue, breast milk, and other tissue samples from the general

population indicates widespread exposure to PCBs from environmental sources.  People who live near

hazardous waste sites where PCBs have been detected may be exposed primarily by consuming

contaminated fish from adjacent waterbodies and by breathing air that contains PCBs.  Children playing

near these sites or adults working near these sites may be exposed to additional PCBs by dermal contact

with PCB-contaminated soil and by ingesting contaminated soil from their unwashed hands.  Despite the

prohibition on production and the restrictions regarding PCB use (Section 5.3), occupational exposure to

PCBs can be orders of magnitude higher than general population exposure (Section 6.5).  

6.2 RELEASES TO THE ENVIRONMENT 

From 1929 until 1977, approximately 99% of all PCBs used by U.S. industries were manufactured by the

Monsanto Chemical Company at a production facility in Sauget, Illinois (Durfee 1976; IARC 1978). 

During that period, over 571,000 metric tons (1,250x106 pounds) of PCBs were produced and/or used in

the United States (Erickson 1997; Hansen 1999).  In 1976, the U.S. Congress banned the manufacture,

processing, distribution in commerce, and use of PCBs under the Toxic Substances Control Act (TSCA)

and the Resource Conservation and Recovery Act (RCRA).  Exemptions may be granted to individual

petitioners for use with optical microscopy, and for research and development (see Section 5.3; EPA

1998u).

Because PCBs are no longer manufactured or imported in large quantities, significant releases of newly

manufactured or imported materials to the environment do not occur.  Rather, PCBs predominantly are

redistributed from one environmental compartment to another (e.g., soil to water, water to air, sediments

to water) (Eisenreich et al. 1992; Larsson 1985; Larsson and Okla 1989; Lin and Que Hee 1987; Mackay

1989; Murphy et al. 1985, 1987; Swackhamer and Armstrong 1986).  Thus, for example, the majority of

PCBs in air result from volatilization of PCBs from soil and water.  Some PCBs may be released to the

atmosphere from uncontrolled landfills and hazardous waste sites; incineration of PCB-containing wastes;

leakage from older electrical equipment in use; and improper disposal or spills (Blumbach 1996; Boers et

al. 1994; Bremle and Larsson 1998; Eisenreich et al. 1992; Hansen et al. 1997; Hermanson and Hites

1989; Larsson 1985; Lewis et al. 1985; Morselli et al. 1985, 1989; Murphy et al. 1985; Oehme et al.

1987; Sakai et al. 1993; Sawhney and Hankin 1985; Swackhamer and Armstrong 1986; Tiernan et al.
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1983; Wallace et al. 1996).  PCBs may be released to water from accidental spillage of PCB-containing

hydraulic fluids; improper disposal; CSOs or storm water runoff; and from runoff and lechate from PCB-

contaminated sewage sludge applied to farmland (Crawford et al. 1995; Durell and Lizotte 1998; Gan and

Berthouex 1994; Gunkel et al. 1995; Loganathan et al. 1997; Pham and Proulx 1997; Shear et al. 1996). 

PCBs may be released to soil from accidental leaks and spills; releases from contaminated soils in

landfills and hazardous waste sites; deposition of vehicular emissions near roadway soil; and land

application of sewage sludges containing PCBs (Alcock et al. 1995; Benfenati et al. 1992; Choi et al.

1974; Gan and Berthouex 1994; Gutenmann et al. 1994; Liberti et al. 1992; McLachlan et al. 1994;

Morris and Lester 1994; O'Connor et al. 1990; Ohsaki and Matsueda 1994). 

6.2.1 Air

From 1929 to 1977, unknown quantities of PCBs were released to the air during Aroclor production and

processing and when PCB-contaminated equipment was incinerated (Durfee 1976).  Similarly,

transformer and capacitor producers discharged PCB-containing wastes to air during the various filling

processes (Durfee 1976).  Emissions are no longer discharged into the air through production activities; 

however, emissions may be discharged during the overhaul, repair, or reuse of materials containing PCBs. 

PCBs may have been released to the atmosphere from various past uses containing PCBs, for example,

plasticizers, surface coatings, inks, adhesives, flame retardants, pesticide extenders, paints, and micro-

encapsulation of dyes for carbonless duplicating paper; and, in addition, from the accidental losses of

PCB fluids from capacitors and transformers (EPA 1976a; IARC 1978; Safe 1984; Welsh 1995).

The major source of PCB release to the atmosphere (2 million pounds/year) is the redistribution of the

compounds that are already present in soil and water (Eisenreich et al. 1992; Murphy et al. 1985). 

Smaller amounts of PCBs may be released to the atmosphere from uncontrolled landfills and hazardous

waste sites containing transformers, capacitors, and other PCB wastes (Bremle and Larsson 1998; Hansen

and O’Keefe 1996; Hermanson and Hites 1989; Lewis et al. 1985; Murphy et al. 1985); incineration of

PCB-containing wastes due to incomplete combustion of PCBs (Blumbach 1996; Boers et al. 1994;

Kurokawa et al. 1996; Sakai et al. 1993); leakage from older electrical equipment still in use (Wallace et

al. 1996); explosions or overheating of transformers containing PCBs (Schecter and Charles 1991); and

improper (or illegal) disposal or spills of the compounds to open areas (Larsson 1985; Morselli et al.

1985, 1989; Murphy et al. 1985; Oehme et al. 1987; Sawhney and Hankin 1985; Swackhamer and

Armstrong 1986; Tiernan et al. 1983).  Historically, the amount of PCBs released from landfills and

incinerators have been estimated to be 10–100 kg/year (22–220 pounds/year) and 0.25 kg/stack/year
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(0.55 pounds/stack/year), respectively, and are small compared to the quantity of PCBs released into the

atmosphere through cycling from environmental processes (Murphy et al. 1985).  PCBs have been

identified in 31 air samples collected at 500 of the 1,598 NPL hazardous waste sites where they were

detected in some environmental media (HazDat 2000), as well as in the air surrounding landfills during

fires (Ruokojarvi et al. 1995).  EPA regulations under TSCA regarding the incineration of PCBs requires

that the combustion efficiency should be at least 99.9% (EPA 1998b); however, the small percentage of

the PCBs not destroyed by incineration will be released into the atmosphere.  According to the Toxics

Release Inventory (TRI), a total of 446 pounds of PCBs were directly released into the air by 10 of the

14 RCRA hazardous waste and solvent recovery industries that processed them in 1998 (TRI98 2000). 

The TRI data for 1998 (TRI98 2000) are shown in Table 6-1.  The TRI data should be used with caution

since only certain types of facilities are required to report.

6.2.2 Water

From 1929 to 1977, the Monsanto Chemical Company released some PCB-containing waste water to

municipal sewers during Aroclor production and processing.  Waterborne discharges of PCBs from the

Monsanto plant, estimated to be <1 pound/day (0.45 kg/day) in 1974, were greatly reduced over the years

leading up to production cessation (Durfee 1976).  Similarly, transformer and capacitor producers also

discharged PCB-containing wastes to municipal sewers (Durfee 1976).  High levels of PCBs were also

detected in waste water from the manufacture of carbonless copy papers; from leaking hydraulic fluids

used in, for example, die cast machines in iron, steel, and aluminum foundries; from pulp and paper mill

effluents due to recycling of waste papers containing carbonless copy papers; and from electrical industry

waste water contaminated by, for example, accidental loss of capacitor and transformer fluids.  These

waste waters may also have been discharged directly into surface waters.  Treated waste waters may also

have entered surface waters indirectly via effluents discharged from municipal publicly owned treatment

works (POTWs) and industrial treatment plants.

Currently, the major source of PCB release to surface water is the environmental cycling process (Larsson

1985; Lin and Que Hee 1987; Mackay 1989; Murphy et al. 1985, 1987; Swackhamer and Armstrong

1986).  Small amounts of PCBs may enter surface water by runoff of water from accidental spillage of

PCB-containing hydraulic fluids, disposal of waste oils into street drains, or from farmland to which

sewage sludge containing small quantities of PCBs has been applied (Gan and Berthouex 1994;Gunkel et

al. 1995).  PCBs may also reach surface waters via CSOs or storm water runoff (Crawford et al. 1995;

Loganathan et al. 1997; Shear et al. 1996).  The annual contribution of 26 water pollution control plants
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Table 6-1.  Releases to the Environment from Facilities that Manufacture or Process Polychlorinated Biphenyls

Total reported amounts released in pounds per yeara

Stateb
Number of
facilities Airc Water

Underground
injection Land

Total 
on-site released

Total off-site
releasee 

Total on and  
off-site release

AL 1 5 0 0 579180 579185 0 579185
AZ 1 0 0 0 134160 134160 1 134161
CA 2 5 0 0 1691574 1691579 0 1691579
IL 1 0 0 0 0 0 130 130
KS 1 25 0 0 0 25 4525 4550
MI 2 10 0 0 72000 72010 95 72105
NV 1 0 0 0 5200 5200 0 5200
NY 2 1 1 0 870000 870002 1067 871069
OR 1 0 0 0 151435 151435 0 151435
SC 1 0 0 0 0 0 1 1
TN 1 0 0 0 0 0 0 0
TX 4 178 250 5 46561 46994 47 47041
UT 2 222 0 0 192026 192248 12106 204354
WI 1 0 0 0 0 0 0 0
Total 21 446 251 5 3742136 3742838 17972 3760810

Source:  TRI98 2000

aData in TRI are maximum amounts released by each facility.
bPost office state abbreviations are used.
cThe sum of fugitive and stack releases are included in releases to air by a given facility.
dThe sum of all releases of the chemical to air, land, water, and underground injection wells.
eTotal amount of chemical transferred off-site, including to publicly owned treatment works (POTWs). 
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in New York City and New Jersey to the New York/New Jersey Harbor Estuary is estimated to be 88 kg

(Durell and Lizotte 1998), while the Montreal, Quebec, waste water treatment plant contributed

approximately 1 kg PCBs per year in 1993 to the St. Lawrence River (Pham and Proulx 1997).  PCBs,

particularly the lower chlorinated congeners, may enter groundwater through leaching of land-applied

sewage sludge to soils containing low organic matter or through leaching from soils at hazardous waste

sites (Griffin and Chou 1981).  PCBs have been identified in 93 surface water and 192 groundwater

samples collected at 500 of the 1,598 NPL hazardous waste sites where they were detected in some

environmental media (HazDat 2000).  According to the TRI, 251 and 5 pounds of PCBs were respectively

discharged into surface water and injected into groundwater directly by RCRA hazardous waste and

solvent recovery industries in 1998 (TRI98 2000).  The TRI data for 1998 (TRI98 2000) are shown in

Table 6-1.  The TRI data should be used with caution, however, since only certain types of facilities are

required to report.  This is not an exhaustive list.

6.2.3 Soil

From 1929 to 1977, the Monsanto Chemical Company released some PCB-containing wastes to landfills

as a result of Aroclor production.  Similarly, transformer and capacitor producers disposed of PCB-

containing wastes (e.g., capacitors, solid wastes, Fuller’s earth media) directly into landfills (Durfee

1976).  The amount of PCBs released to soil has decreased over the years due to the prohibition on

production in the United States and the severe restrictions on processing and reuse of existing PCB-

containing materials.  PCBs may have been released to soils from various past uses containing PCBs (e.g.,

plasticizers, surface coatings, inks, adhesives, flame retardants, pesticide extenders, paints, and micro-

encapsulation of dyes for carbonless duplicating paper) and, in addition, from the accidental losses of

PCB fluids from capacitors and transformers (EPA 1976a; IARC 1978; Safe 1984; Welsh 1995).

Currently, the environmental cycling process involving deposition of atmospheric PCBs is expected to be

the major source of surface soil contamination (Larsson and Okla 1989).  Since PCBs are no longer

produced in the United States, accidental leaks and spills from old transformers and capacitors containing

PCBs and releases from containers in landfills and hazardous waste sites may be sources of PCBs in soil. 

Accidental spills of PCBs during transportation of electrical transformers and other PCB-containing

equipment (Liberti et al. 1992); vehicular emissions (Benfenati et al. 1992; Ohsaki and Matsueda 1994)

may also be sources of PCBs in soils.  PCBs accumulation in POTW sewage sludge originates from

domestic sources (e.g., human excretion from the recycling of PCB residues in foodstuffs) and from

industrial facilities (Choi et al. 1974; McIntyre and Lester 1982; Morris and Lester 1994).  Land
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application of municipal sludges results in elevated PCB concentrations in these soils (Alcock et al. 1995;

Gan and Berthouex 1994; Gutenmann et al. 1994; McLachlan et al. 1994; O'Connor et al. 1990).

PCB concentrations in sludge reported in the 1970s and 1980s varied from <0.01 to 1960 mg/kg (ppm)

(dry weight) (Jacobs et al. 1987), but median PCB concentration in municipal sludges was in the lower

end of this range, 0.99 (Clevenger et al. 1983) and 4 mg/kg (Furr et al. 1976).  However, total PCBs were

detected in only 1 out of 16 sewage sludge samples (4.6 ppm dry weight; limit of detection=0.25 ppm dry

weight) taken from large cites in the United States (Gutenmann et al. 1994).  PCBs have been identified in

465 soil samples and 219 sediment samples collected at 500 of the 1,598 NPL hazardous waste sites

where they were detected in some environmental media (HazDat 2000).  The amount of PCBs released to

land by industry has increased from 752 pounds (341 kg) in 1988 (TRI98 2000) to 134,160 pounds

(60,854 kg) in 1998 (TRI98 2000).  An additional 3,607,976 pounds were released to land in 1998 by

RCRA hazardous waste and solvent recovery industries not represented in the 1988 to 1997 TRI data. 

During 1998, PCBs were not discharged by industry into POTWs (TRI98 2000).  The TRI data for

1998 (TRI98 2000) are shown in Table 6-1.  The TRI data should be used with caution since only certain

types of facilities are required to report.  This is not an exhaustive list.

6.3 ENVIRONMENTAL FATE

6.3.1 Transport and Partitioning

PCBs are globally circulated and are present in all environmental media.  Atmospheric transport is the

most important mechanism for global dispersion of PCBs.  Biphenyls with 0–1 chlorine atoms remain in

the atmosphere, those with 1–4 chlorines gradually migrate toward polar latitudes in a series of

volatilization/deposition cycles, those with 4–8 chlorines remain in mid-latitudes, and those with

8–9 chlorines remain close to the source of contamination.  PCBs enter the atmosphere from volatilization

from both soil and water surfaces.  Once in the atmosphere, PCBs are present in both the vapor phase and

sorbed to particles.  PCBs in the vapor phase appear to be more mobile and transported further than

particle-bound PCBs.  Wet and dry deposition remove PCBs from the atmosphere.  The dominant source

of PCBs to surface waters is atmospheric deposition; however, redissolution of sediment-bound PCBs

also accounts for water concentrations.  PCBs in water are transported by diffusion and currents.  PCBs

are removed from the water column by sorption to suspended solids and sediments as well as from

volatilization from water surfaces.  Higher chlorinated congeners are more likely to sorb, while lower

chlorinated congeners are more likely to volatilize.  PCBs also leave the water column by concentrating in
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biota.  PCBs accumulate more in higher trophic levels through the consumption of contaminated food, a

process referred to as biomagnification.  PCBs in soil are unlikely to migrate to groundwater because of

strong binding to soil.  Volatilization from soil appears to be an important loss mechanism; it is more

important for the lower chlorinated congeners than for the higher chlorinated congeners.  Vapor-phase

PCBs accumulate in the aerial parts of terrestrial vegetation and food crops by vapor-to-plant transfer.

Wania and Mackay (1996) report that most PCBs are volatile enough to cycle between the air, water, and

soil at environmental temperatures, and that atmospheric transport is the most important mechanism for

the global movement of PCBs.  These authors further categorized the transport and partitioning behavior

of PCB congeners according to the number of chlorines present on the biphenyl molecule.  Volatile

mono-Bs remain primarily in the atmosphere.  PCBs that have 1–4 chlorines and are ortho-rich (i.e.,

number of ortho chlorines >1) congeners tend to migrate toward polar latitudes by a series of

volatilization/deposition cycles between the air and the water and/or soil.  PCBs with 4–8 chlorines

remain in mid-latitudes, and those with 8–9 chlorines remain close to the source of contamination.  The

more heavily chlorinated and ortho-poor (i.e., number of ortho chlorines #1)/para-rich (i.e., number of

para chlorines >1) PCBs are less volatile and more readily condensed from the atmosphere.  Thus, these

PCBs are considered less mobile (Macdonald et al. 2000; Wania and Mackay 1993, 1996).

The atmosphere is a net recipient of PCBs from soil, water, and (indirect) sediment fluxes (Hansen 1999). 

These fluxes are the highest in summer as a result of warmer temperatures (Hoff et al. 1992).  The

importance of volatilization to atmospheric concentrations of PCBs is well established.  This conclusion

is also supported by the estimated Henry's law constants for Aroclors and PCB congeners, which range

from 2.9x10-4 to 4.6x10-3 atm-m3/mol and 1.5x10-5 to 2.8x10-4 atm-m3/mol, respectively (see

Tables 4-3 and 4-7) (Thomas 1982).  The Great Lakes in particular appear to be a source of PCBs to the

atmosphere (Arimoto 1989; Hornbuckle et al. 1993; Swackhamer and Armstrong 1986).  The estimated

PCB gas fluxes out of the Great Lakes to the atmosphere in 1994 were 1,700, 2,700, 420, and 440 kg/year

for Lakes Superior, Michigan, Erie, and Ontario, respectively (Hoff et al. 1996).  A pseudo first-order rate

constant for the volatilization of total PCBs from Lake Superior is estimated to be 0.4/year (t½=2 years)

(Jeremiason et al. 1994).  This latter estimated rate indicates that approximately one-half of the total

water-borne mass of PCBs in Lake Superior enters the atmosphere over a 7-month period.

PCBs are transported from soil and sediment to the atmosphere.  In the absence of water, the rate of

movement of PCBs from the soil surface to the atmosphere is controlled by diffusive transfer (Cousins

and Jones 1998).  For example, Agrell et al. (1999) demonstrated that diffusive exchange from soils is the
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dominant transport mechanism of PCBs cycling between the atmosphere and terrestrial surfaces along the

Baltic Sea region.  As atmospheric sources of PCBs diminish, the flux between the atmosphere and soil

will eventually achieve equilibrium (i.e., fluxes in and out of soil will be equal).  For instance, Harner et

al. (1995) estimated the net volatilization/accumulation of PCBs from soil for four congeners (PCBs 28,

52, 138, and 153) during the period 1942 through 1992.  Presently, the more mobile PCBs 28 and

52 should have achieved equilibrium between the soil and air.  However, PCBs 138 and 153 are much

slower to volatilize from soil and will continue to slowly out-gas until equilibrium is attained. 

Contaminated sediments exposed directly to the atmosphere during water level changes (e.g., tidal

fluctuations) or during removal to landfills may rapidly transfer the volatile congeners directly to the air

through covaporization with water (Chiarenzelli et al. 1996, 1997).  This is illustrated by Bremle and

Larsson (1998), who studied the concentration of PCBs in air during the landfilling of wet contaminated

sediment.  They found that the overlying air was enriched in the more volatile, lower molecular weight

congeners compared to the deposited sediment, which suggests that volatilization was the major transport

process out of the sediment for these congeners.  However, other studies have demonstrated that once

sediments become dehydrated, the binding of PCBs is tighter and the net volatilization is reduced

(Chiarenzelli et al. 1996, 1997).

PCBs in air are present in both the vapor phase and adsorbed to aerosol particles (Eisenreich et al. 1981;

Hermanson and Hites 1989; Wania and Mackay 1996).  PCBs in the vapor phase appear to be more

mobile and are transported further than particle-bound PCBs, while the heavier and coplanar PCBs tend

to be particle-bound and/or more readily degraded in the atmosphere (Hansen 1999).  PCBs with vapor

pressures >10-4 mm Hg (mono- and di-CBs) appear to exist in the atmosphere almost entirely in the vapor

phase, while PCBs with vapor pressures <10-8 mm Hg appear to exist almost entirely in the adsorbed

phase, and PCBs with vapor pressures #10-4 and $10-8 mm Hg (tri- to hepta-CBs) exist in both the

adsorbed and vapor phase (Eisenreich et al. 1981; Erickson 1992).  The vapor pressures of the Aroclors

and several PCB congeners are found in Tables 4-2 and 4-7.  PCBs in the vapor phase are enriched

(relative to commercial Aroclor mixtures) in di- and tri-ortho congeners within each homolog group due

to their higher vapor pressures and limited tendency to bind to aerosol particulates.  Also, being less

volatile, coplanar non-ortho and higher chlorinated PCBs are present at very low proportions in the vapor

phase, and tend to be associated with aerosols, thereby increasing their chances of removal from the

atmosphere by wet and dry deposition (Falconer and Bidleman 1994; Hippelein and McLachlan 1998;

Jones et al. 1992; Monosmith and Hermanson 1996; Muir et al. 1996a, 1996b; Panshin and Hites 1994;

Simcik et al. 1998; Wania and Mackay 1993).  For example, Falconer and Bidleman (1995) reported
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preferential sorption of non- and mono-ortho PCBs to urban aerosols to a greater extent than multi-ortho

congeners of the same homolog.  

PCBs are physically removed from the atmosphere by wet deposition (i.e., rain and snow scavenging of

vapors and aerosols); by dry deposition of aerosols; and by vapor adsorption at the air-water, air-soil, and

air-plant interfaces (Cousins et al. 1999; Currado and Harrad 1999; Dickhut and Gustafson 1995;

Eisenreich et al. 1981; Franz and Eisenreich 1998; Golomb et al. 1997; Gregor et al. 1996; Hart et al.

1993; Hoff et al. 1996; Leister and Baker 1994; Nelson et al. 1998; Wania et al. 1999).  Wet deposition

occurs episodically by in-cloud scavenging or rain-out of vapor phase PCBs, and by below-cloud

scavenging or wash-out of aerosol PCBs.  At low temperatures, wet deposition may fall as snow.  Franz

and Eisenreich (1998) found that snow can be a very efficient medium for aerosol scavenging to an even

greater extent than for rain; and they found that aerosol washout accounted for between 79 and 88% of

the total PCB content in snow.  However, Wania et al. (1999) recently reevaluated this study and pointed

out that the contribution of gaseous scavenging may have been underestimated by these authors.  Also,

Wania et al. (1998) pointed out that adsorption of PCBs to ice surfaces is a major scavenging mechanism

for gaseous PCBs in the atmosphere.  In contrast to wet deposition, dry removal of PCBs from the

atmosphere results from the gravitational settling of particulate PCBs (i.e., dry particulate deposition) and

by the impaction of vapor phase PCBs on terrestrial or aquatic surfaces (i.e., dry gaseous deposition). 

Dry gaseous deposition is a complex process which depends on the physical-chemical properties of the

PCBs, characteristics of the adsorbing surface, and environmental conditions (e.g., windspeed).  In the

ambient atmosphere, dry particulate deposition is predominantly in the form of fine aerosols (<1 µm),

which deposit on surfaces by rapid, vibratory (Brownian) diffusion (Holsen and Noll 1992).  However, in

urban areas, PCBs are associated with course aerosols (>1 µm), and these particulates represent the

majority of the dry deposition flux even though PCBs are largely in the vapor phase (Holsen et al. 1991). 

PCB inputs into aquatic and marine reservoirs are predominantly from wet and dry deposition and from

the recycling of sediment-sorbed PCBs into the water column.  Eisenreich et al. (1983) demonstrated for

the Great Lakes water column that the concentration of PCBs is elevated at both the air/water and water/

sediment interfaces as a result of inputs from the atmosphere and sediments, respectively.  In addition,

Eisenreich et al. (1992) estimated that the upper Great Lakes receive the majority of the total inputs from

deposition from the atmosphere (Superior 90%, Michigan 58%, Huron 78%), while the lower Great Lakes

receive a lower but significant percentage from these sources (Erie 13%, Ontario 7%).  The lower lakes

receive a large loading of PCBs from the connecting channels (Detroit River and Niagara River) by

neighboring industrial discharges and leakage from waste dump sites.  In another study, Franz et al.
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(1998) concluded that dry deposition dominates atmospheric PCB loadings to Lake Michigan, suggesting

that these loadings are more than 3 times greater than loadings from wet deposition.  Similarities between

the pattern of PCB congeners in the dry deposition and surficial sediments, and also the magnitude of

their fluxes to the water column support their assertion.  However, Pearson et al. (1996) concluded that

input/output budgets for Lake Michigan also showed large imbalances, indicating failure to understand all

of the processes of PCB transport to the water column to this body of water.  For Lake Superior,

Jeremiason et al. (1994) estimated PCBs inputs for 1984 from riverine, wet deposition, dry deposition,

and other sources as 110 (36%), 125 (41%), 32 (10%), and 41 (13%) kg PCBs/year, respectively.  Thus,

wet deposition contributed the largest load of PCBs to this lake.  However, for all of the Great Lakes,

Hoff et al. (1996) noted that wet and dry deposition fluxes into the lakes appear to be getting smaller, and

the net PCB flux is out of the lakes, i.e., volatilization.

Recycling of PCBs, due to volatilization of PCBs from the water column and subsequent release of PCBs

from the sediments, occurs when inputs from the atmosphere decrease (Achman et al. 1996; Sanders et al.

1996).  The process of recycling tends to increase with higher PCB solubility (Sanders et al. 1996).  There

are several mechanisms by which PCBs can exchange between the sediment bed and the overlying water. 

For example, PCBs dissolved or associated with colloidal particles can exchange across the sediment-

water interface by diffusive and/or advective processes (Berner 1980; Formica et al. 1988).  The rate of

redissolution of PCBs from sediment to water will always be greater in summer than in winter because of

more rapid volatilization of PCBs from water with higher summer temperatures (Larsson and Sodergren

1987).  In summer, recycling of PCBs directly to the water column by dissolution appears to be the most

important process (Sanders et al. 1996), while in winter, sediment resuspension is the predominant

mechanism for recycling of PCBs (Sanders et al. 1996).  Environmental redistribution of PCBs from

aquatic sediment is most significant for the top sediment layers, while PCBs in the lower layers may be

effectively sequestered from redistribution (Baker et al. 1985; EPA 1979h, 1988a; Kleinert 1976;

Swackhamer and Armstrong 1986).  In the lower Hudson River estuary, a high surface sediment

concentration of PCBs resulted in the exchange of PCBs from sediment to water (Achman et al. 1996). 

The average fluxes from sediments were between 2 and  100 times more than the flux coming down the

river, and clearly dominated other fluxes from direct atmospheric deposition and waste water treatment

plant discharges. 

PCBs in water are transported by diffusion and currents.  PCBs in surface water essentially exist in three

phases: dissolved, particulate, and colloid associated (Baker and Eisenreich 1990).  The heavier and less

soluble congeners in the water column are more likely to be associated with particulates and colloids, and
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do not freely exchange into the vapor phase.  However, the more water soluble, lower chlorinated (and

ortho-rich) congeners are predominantly in the dissolved state in the water column and can readily

partition into the vapor phase.  In New Bedford Harbor, Massachusetts, Burgess et al. (1996) reported that

the ratio of colloid associated PCBs to freely dissolved PCBs increased from 1.2 to 8.0 (di-CBs to

octa-CBs, respectively) as the degree of chlorination increased.  However, at this site, the majority of the

PCBs were associated with the particulate phase regardless of solubility or chlorination.

Experimental and monitoring data have shown that PCB concentrations in sediment and suspended matter

are higher than in the associated water column (Eisenreich et al. 1983).  In a study of the Saginaw River

in Michigan, Verbrugge et al. (1995) reported that the ratio of the total PCBs bound to suspended

particulates relative to dissolved PCBs, was 2 to 1.  However, in a study examining the water column in

Lake Superior, 75% of PCBs were in the dissolved phase, while 25% exist in the suspended particulate

phase (Eisenreich et al. 1983).  These studies suggest that the partitioning behavior of PCBs in the water

column is location specific.

PCBs leave the water column by partitioning onto sediments and suspended particulates, and by

volatilization at the air/water interface.  PCBs can be immobilized for relatively long periods of time in

aquatic sediments.  The adsorption of dissolved PCBs onto solids (suspended particulates and sediments)

is greatest for solids composed primarily of organic matter and clay (EPA 1980b).  The more highly

chlorinated components (and ortho-poor) PCBs, which have lower water solubilities and higher octanol-

water partition coefficients (Kow), have a greater tendency to bind to solids as a result of strong

hydrophobic interactions (see Table 4-2).  In contrast, the low molecular weight PCBs, which have higher

water solubilities and lower Kows, sorb to a lesser extent on solids and remain largely in the water column

(see Table 4-2).  Volatilization of highly chlorinated PCBs in the water column is reduced significantly by

the sequestration on solids compared to the lightly chlorinated PCBs, in which volatilization may be only

slightly effected (EPA 1985b; Lee et al. 1979).  The estimated residence times (in years) of PCBs in the

water columns of the Great Lakes are: Superior (3.3), Michigan (1.3), Huron (1.0), Erie (0.2), and Ontario

(1.1); and the percent loss of PCBs from these lakes due to sedimentation, volatilization, and outflow to

other water bodies are summarized in Table 6-2 (Arimoto 1989; Eisenreich et al. 1992).  For PCBs in the

Great Lakes, sedimentation and volatilization were the primarily loss mechanisms, while the contribution

of outflow was comparatively low.  For Lake Michigan between 1980 and 1991, the calculated half-lives

for the PCB homologs (assuming a first-order processes; in years) due to both sedimentation and

volatilization were: di- (11), tri- (15), tetra- (10), penta- (12), hexa- (5.3), hepta- (7), and octa- (5)

(Pearson et al. 1996).
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Table 6-2.  Percentage of Loss of Polychlorinated Biphenyls 
from the Great Lakes Waters

Waterbody Volatilization Sedimentation
Outflow to other
bodies of water

Lake Superior 86.6 11.4 2.0

Lake Michigan 68.1 30.6 1.3

Lake Huron 75.3 19.4 5.3

Lake Erie 46.0 45.2 8.8

Lake Ontario 53.4 29.3 17.3

Source:  Eisenreich et al. 1992
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In addition to volatilization and sorption onto sediments, PCBs can leave the water column by

concentrating in biota directly from water (EPA 1983c; Porte and Albaiges 1993).  Bioconcentration is

defined as uptake of a chemical from water alone; and bioaccumulation is the result of combined uptake

via food, sediment, and water.  The bioconcentration factors (BCFs; ratio of the concentration of PCBs in

the organism over the concentration of PCBs in water) of PCBs in aquatic organisms are directly

proportional to partition coefficients and lipid contents of the organism, and are congener specific (Geyer

et al. 1999).  BCFs in various fresh water and marine species are generally in the range of 5x102–4x104

for lower chlorinated PCB congeners and about 1x103–3x105 for tetra- to hexa-PCBs (70, 101, 110, and

136) (Geyer et al. 1999; see Table 6-3).  Median BCFs for accumulation from water by phytoplankton

range from 1x104 to 1x106, and are generally the greatest for the tetra- to hepta-PCBs and for the coplanar

tri-, tetra-, and penta-PCBs (Willman et al. 1999).  Coplanar PCBs and the more highly chlorinated

congeners can have aquatic organism BCFs as high as 2x106 (Hansen 1999).  However, the BCFs for the

higher chlorinated homologs drop off after a certain point because these larger molecules do not readily

pass through biological membranes.  BCFs for freshwater and marine species are illustrated in

Tables 6-4 and 6-5, respectively, for Aroclors mixtures (ASTER 1996).

Bioaccumulation factors (BAFs; the ratio of the concentration of PCBs in the organism over the

combined concentration of PCBs in sediment, food, and water) of PCBs increase with higher chlorination

and lower water solubility (Coristine et al. 1996; Zhang et al. 1983).  In contrast to BCFs, a direct

relationship between bioaccumulation, partition coefficients, and organism lipid content does not always

exist, and other factors (e.g., reproductive cycles) may affect the uptake and accumulation of PCBs

(Hansen 1999; Stow et al. 1997).  Less chlorinated PCBs (1–4 chlorines) are readily taken up by

organisms, but are readily eliminated and metabolized.  Thus, these homologs are not bioaccumulated to a

great extent (see Section 6.3.2; McFarland and Clarke 1989).  The most highly chlorinated congeners

(7–10 chlorines) occur in low concentrations in the environment, and are tightly bound with soil,

sediment, and organic matter.  Thus, these PCBs are also not significantly bioaccumulated (Bergen et al.

1993; Lacorte and Eggens 1993; McFarland and Clarke 1989).  These PCBs, which have log Kow values

>5, appear to enter biota through food-web transfer from sediment, which is less efficient (Koslowski et

al. 1994).  On the other hand, the penta-, hexa-, and hepta-PCBs are both bioavailable and resistant to

degradation in organisms; and these PCB homologs bioaccumulate in organisms to the greatest extent

(see Section 6.3.2; Bremle et al. 1995; Koslowski et al. 1994; McFarland and Clarke 1989; Porte and

Albaiges 1993; Willman et al. 1997).  For example, the PCBs that dominate congener profiles in the

tissues of mussels, crabs, and seals are hexa-PCB isomers 138 and 153 (Hansen 1999; Porte and Albaiges

1993).  The differences in congener retention in organisms apparently accounts for the differences in 
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Table 6-3.  Bioconcentration Factors (BCFs) and Bioaccumulation Factors (BAFs) for Select Congeners and Total
Polychlorinated Biphenyls in Various Aquatic Organisms

PCB Organism
Laboratory 
BCF

Field 
BAF Location Reference

PCB 18 Rainbow trout (Oncorhynchus mykiss) 81,000 590,000 Lake Ontario Oliver and Niimi 1985
PCB 40 Rainbow trout (O. mykiss) 49000 240,000 Lake Ontario Oliver and Niimi 1985
PCB 52 Rainbow trout (O. mykiss) 200,000 1,900,000 Lake Ontario Oliver and Niimi 1985
PCB 101 Rainbow trout (O. mykiss) 200,000 8,400,000 Lake Ontario Oliver and Niimi 1985
PCB 153 Rainbow trout (O. mykiss) 740,000 10,000,000 Lake Ontario Oliver and Niimi 1985
Total Perch  (Perca fluviatilis) 2,050–7,580 Lake Jarnsjon, Sweden Bremle et al. 1995
Total Tilapia 

(Oreochromis mossambicus)
10,000 Shing Mun River, 

Hong Kong
Chui et al. 1991

Total Pumpkinseed (Lepomis gibbonsus) 187,000–
2,079,000

Hudson River, 
New York

Sloan et al. 1985

Total Amphipods (Pontoporeia affinis) 718,000 Lake Ontario Oliver and Niimi 1988
Total Oligochaetes (Tubifex tubifex and

Limnodrilus hoffmeisteri)
164,000 Lake Ontario Oliver and Niimi 1988

Total Slimy sculpin (Cottus cognatus) 1,450,000 Lake Ontario Oliver and Niimi 1988
Total Alewife 

(Alosa pseudoharengus)
1,180,000 Lake Ontario Oliver and Niimi 1988

Total Rainbow smelt (small) (Osmerus mordax) 564,000 Lake Ontario Oliver and Niimi 1988
Total Rainbow smelt (large) (O. mordax) 1,272,000 Lake Ontario Oliver and Niimi 1988
Total Salmonids 3,910,000 Lake Ontario Oliver and Niimi 1988
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Table 6-4.  Bioconcentration Factors (BCFs) for Various Aroclors 
in Fresh Water Species

Species BCF Duration (days)
Aroclor 1232

White sucker  (Catostomus commersoni) 5,500 30

Aroclor 1242

Scud (Gammarus pseudolimnaeus) 36,000 60

Fathead minnow (male) (Pimephales promelas) 274,000 255

Atlantic salmon (Salmo salar) 600 4

Aroclor 1248

Scud (G. pseudolimnaeus) 108,000 60

Fathead minnow (female) (P. promelas) 120,000 240

Channel catfish (Ictalurus punctatus) 56,400 77

Bluegill (Lepomis macrochirus) 52,000 77

Aroclor 1254

Cladoceran (Daphnia magna) 3,800 4

Scud (G. pseudolimnaeus) 6,200 21

Crayfish (Orconectes nais) 750 21

Dobsonfly (Corydalus cornutus) 1,500 7

Stonefly (Pteronarcys california) 740 21

Mosquito (Culex tarsalis) 3,500 7

Phantom midge (Chaoborus punctipennis) 2,700 14

Fathead minnow (female) (P. promelas) 238,000 240

Rainbow trout (Oncorhynchus mykiss) 46,000 30

Brook trout (Salvelinus fontinalis) 47,000 118

Brook trout (S. fontinalis) 42,000 500

Brook trout (S. fontinalis) 3,000a 500

Steelhead trout (Salmo gairdneri) 38,000 24

Channel catfish (I. punctatus) 61,200 77

Aroclor 1260

Fathead minnow (female) (P. promelas) 270,000 240

Source:  ASTER 1998

aFillet sample rather than whole body sample
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Table 6-5.  Bioconcentration Factors (BCFs) for Various Aroclors 
in Salt Water Species

Species BCF Duration (days)

Aroclor 1016

Eastern oyster (Crassostrea virginica) 13,000 84

Horseshoe crab (Limulus polyphemas) 1,298 96

Sheepshead minnow (adult) (Cyprinodon variegatus) 25,300 28

Sheepshead minnow (juvenile) (C. variegatus) 43,100 28

Sheepshead minnow (fry) (C. variegatus) 14,400 28

Pinfish (Lagodon rhomboides) 17,000 21–28

Aroclor 1242

Diatom (Cylindrotheca closterium) 1,000 14

Aroclor 1254

Ciliate protozoans (Tetrahymena pyriformis) 60 7

Eastern oyster (C. virginica) 8,100 2

Eastern oyster (C. virginica) 101,000 245

Polychaete (Arenicola marina) 236 5

Polychaete (Nereis diversicolor) 373 5

Grass shrimp (Palaemonetes pugio) 27,000 16

Pink shrimp (Penaeus duorarum) 140 2

Spot (Leiostomus xanthurus) 37,000 28

Sheepshead minnow (adult) (C. variegatus) 30,000 28

Pinfish (L. rhomboides) 980 2

Source:  ASTER 1996
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congener concentration profiles seen in the higher trophic levels.  PCB bioaccumulation is also effected

by the stereochemistry of the congener; optimal bioaccumulation occurs for planar molecules substituted

with 5 or 7 chlorines (Koslowski et al. 1994).  For instance, median BAFs for zooplankton and zebra

mussels ranged from 1x104 to 1x106, and were the greatest for the planar tetra- to hepta-PCBs, which had

54% larger BAFs compared to values for the non-coplanar homologs (Willman et al. 1999).  Typical

field- measured BAFs range from 2.1x103 to 3.9x106 for total PCBs (Table 6-3).  BAFs for PCB isomer

groups in a Lake Ontario food web ranged from 4.2x104 to 1.3x107 (Table 6-6).  The highest BAFs occur

at the lower end of the food chain.  For example, Oliver and Niimi (1988) determined that the water-

plankton-mysid food chain had the highest bioaccumulation of PCBs in the Lake Ontario trophic system. 

Bioaccumulation of PCBs in aquatic animals depends on the water zone in which the animals

predominantly reside and feed.  Certain benthic organisms, such as crabs, clams, sandworms, and grass

shrimp, accumulate PCBs from water at the water/sediment interface (PCB concentration is higher at this

interface than in the surrounding water column, see above) and via intake of phytoplankton and

zooplankton, which contain higher levels of PCBs than the water (Porte and Albaiges 1993; Pruell et al.

1993; Secor et al. 1993).  When airborne PCBs are deposited onto the surface of water, lower chlorinated

and ortho-rich congeners, especially, become enriched in the surface microlayer which results in

concentrations that are 500 times higher than the average concentration in water.  As a result,

bioaccumulation by fish is several orders of magnitude higher in this zone (Sodergren et al. 1990). 

Greater bioaccumulation will occur in the fatty tissues (lipids) than in the muscle or whole body of

aquatic organisms (EPA 1980b).  Thus, organisms with higher lipid concentrations will accumulate a

greater burden of PCBs via tropic transfer.  Fish species, such as lake trout (Salvelinius namaycush) and

coho salmon (Oncorhynchus kisutch), with high lipid contents, have a net trophic transfer efficiency from

food ranges of 75–89 and 38% (average for tetra-CBs; however, higher chlorinated congeners ranged

from 43 to 56%), respectively (Madenjian et al. 1999).  In addition, insects that have lipid-rich cuticular

(skin) layers can capture significant amounts of vapor-phase PCBs in their tissues and enter these PCBs

into the food chain (Saghir and Hansen 1999).

Biomagnification of PCBs within the aquatic food chain results from higher trophic transfer and has been

observed in aquatic organisms (Koslowski et al. 1994; Looser and Ballschmiter 1998; Oliver and Niimi

1988; Wilson et al. 1995).  Biomagnification is apparent in shellfish that accumulate PCBs from the

consumption of phytoplankton and zooplankton, and in marine mammals (seals, dolphins, and whales)

that accumulate PCBs from plankton and fish (Andersson et al. 1988; Kuehl and Haebler 1995; Lake et

al. 1995a; Salata et al. 1995; Schantz et al. 1993c; Secor et al. 1993).  Food chain biomagnification also 
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Table 6-6.  Field Measured Bioaccumulation Factors for Isomeric Groups 
of Polychlorinated Biphenyls

PCB Group

Organism Tri- Tetra- Penta- Hexa- Hepta- Octa-

Amphipods 387,000 667,000 615,000 938,000 2,400,000 1,400,000

Oligochaetes 127,000 180,000 154,000 150,000 259,000 310,000

Slimy sculpin 87,000 633,000 1,490,000 3,125,000 5,185,000 7,500,000

Alewife 173,000 833,000 1,380,000 2,125,000 2,960,000 3,100,000

Rainbow smelt

Small 42,000 367,000 590,000 1,063,000 1,590,000 1,600,000

Large 93,000 933,000 1,380,000 2,375,000 3,148,000 3,300,000

Salmonids 293,000 2,170,000 4,100,000 8,125,000 11,300,000 13,000,000

Source: Oliver and Niimi 1988
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occurs in several species of fish-consuming birds (Ankley et al. 1993; Hebert et al. 1994; Mackay 1989;

Metcalfe and Metcalfe 1997; Shaw and Connell 1982; Winter and Streit 1992).  Biomagnification of

PCBs in the aquatic food chain is congener specific and is more predominant for congeners with Kow

values between 5 and 7 (Koslowski et al. 1994; Metcalfe and Metcalfe 1997).  For example, in the food

web of the western basin of Lake Erie, concentrations of PCB 138 increased from plankton (14 µg/kg) to

piscivores (1.4x103 µg/kg in silver bass muscle tissue) to herring gulls (3.0x104 µg/kg) (Koslowski et al.

1994).  However, no biomagnification was observed for PCBs 77, 126, and 169 (Koslowski et al. 1994). 

As previously observed for bioaccumulation, differences in retention also account for differences in

congener biomagnification in higher trophic levels.

PCBs are strongly sorbed to soils as a result of low water solubility and high Kow (see Table 4-2), and will

not leach extensively (EPA 1979h, 1988a; Sklarew and Girvin 1987).  The tendency to leach will be

greatest among the least chlorinated congeners and is expected to be greatest in soil with low organic

carbon (Sklarew and Girvin 1987; Strek and Weber 1982a).  Leaching of PCBs in most soils should not

be extensive, particularly for the more highly chlorinated congeners.  However, PCBs will leach

significantly in the presence of organic solvents that may be present at municipal landfills or hazardous

waste sites (Griffin and Chou 1981).  Partition coefficients (Kd) for PCBs 8, 52, and 153 for sorption onto

soil with variable organic carbon content (0.2–2.3 by weight percent) are 74–825, 533–5,508, and

14,258–68,485 L/kg, respectively (Girvin and Scott 1997).  Soil and sediment sorption coefficients (Koc)

for biphenyl and PCB congeners are listed in Table 6-7.

Soils received net PCB inputs from water and air during the peak emissions of the 1960s and early 1970s. 

However, at present, soils appear to be reservoirs for releasing PCBs into the atmosphere (Hansen 1999). 

The mechanisms involved in the soil-to-air transfer of PCBs will involve a combination of direct soil

organic matter-to-air transfer and soil pore water-to-air transfer (Cousins et al. 1997).  Wicking (i.e., the

movement of a compound in solution to replace evaporative surface water loss) has been demonstrated as

a process that can increase the volatilization of PCBs from soil; thus, volatilization rates will be greatest

in moist soils from the co-vaporization of PCBs and water (Bushart et al. 1998; Chiarenzelli et al. 1996,

1997, 1998).  For example, Chiarenzelli et al. (1996, 1997) demonstrated that for small amounts of

St. Lawrence River solids originally contaminated with Aroclor 1248, several ortho-chlorinated

congeners were preferentially lost by volatilization, which could be positively correlated with water loss

by vaporization.  Soils with low organic carbon will have the greatest rate of volatilization of PCBs (Shen

and Tofflemire 1980).  For example, researchers at General Electric demonstrated that the rate of

volatilization of Aroclor 1242 from soil is much less from the organic topsoil than from the course sand 
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Table 6-7.  Observed Soil and Sediment Sorption Coefficients (Koc) 
for Polychlorinated Biphenyls Congeners

Compound Log Koc Reference(s)

Biphenyl 3.27 Meylan et al. 1992

2-CB 3.47 Chiou et al. 1983

2,2'-CB 3.92 Chiou et al. 1983

2,4'-CB 4.13

4.57, 4.56

Chiou et al. 1983

Girvin and Scott 1997

2,2',4-CB 4.84 Chiou et al. 1987

2,2',5-CB 4.57 Chin and Weber 1989

2,4,4'-CB 4.62 Chiou et al. 1983

2,2',5,5'-CB 3.43

4.23–5.15

4.97

5.42, 5.38

Haque and Schmedding 1976

Hassett et al. 1984

Chin and Weber 1989

Girvin and Scott 1997

2,2',6,6'-CB 5.11 Steen et al. 1978

2,3',4',5-CB 5.02 Steen et al. 1978

2,2',4,5,5'-CB 5.79, 5.93 Gschwend and Wu 1985

2,2',3,4,4',5'-CB 6.16 Gschwend and Wu 1985

2,2',4,4',5,5'-CB 5.62

4.78–6.87

6.85, 6.47

Karickhoff 1981

Horzempa and Di Toro 1983

Girvin and Scott 1997

2,2',4,4',6,6'-CB 6.08 Karichoff 1981

Sources: Saçan and Balcioğlu (1996); Sklarew and Girvin (1987); McGroddy et al. (1996)
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fraction (Shen and Tofflemire 1980).  In another study, Grundy et al. (1996) examined nine soil plots

treated with Aroclors 1254 and 1260 representing dry barren, dry moss, and wet grass cover in the

Canadian Arctic (Northwest Territory).  Rate constants (first-order processes) for loss of total PCBs of

approximately 0.5/year (t½ =1.1 year), with a range of 0.3–1.0/year for individual congeners, was

estimated.  For the dry barren area, loss was correlated with vapor pressure.  For the two vegetated areas,

the volatilization rate appeared to be reduced by organic matter from both living and dead vegetation. 

PCBs accumulate in terrestrial vegetation by the following possible mechanisms: (1) uptake from soil

through the roots; (2) dry deposition on aerial parts (particle-bound or gaseous); and (3) wet deposition on

aerial parts (particle-bound or solute).  The primary mode of uptake for total PCBs in terrestrial

vegetation is by vapor-to-plant transfer (Bohm et al. 1999; Lober et al. 1994; O’Connor et al. 1990;

Schönherr and Riederer 1989).  However, Bohm et al. (1999) reported that vapor-to-plant partioning is

most important for tri-CBs, while aerial dry deposition is most important for hepta- and octa-CBs.  For

example, Ye et al. (1992b) found that the more highly chlorinated congeners ($7 -chlorines) are adsorbed

by aerial plant tissues (e.g., tomato plant leaves) primarily by vapor-to-plant transfer, while the lower

chlorinated congeners (3–6 -chlorines) are both adsorbed on and absorbed in aerial plant tissues.  The

lower chlorinated (and ortho-enriched) congeners, which have the highest concentrations in the

atmosphere, are the most efficiently scavenged by terrestrial vegetation by vapor-to-plant transfer (Jones

and Duarte-Davidson 1997; Thomas et al. 1998); and leafy vegetation (e.g., lettuce, grass) appears to

accumulate the highest levels of total PCBs by this mechanism (Cullen et al. 1996).  The air-to-grass

transfer is the first link in the grass-to-cattle-to-human food chain, and this food chain provides an

appreciable fraction of human exposure to PCBs (Currado and Harrad 1999; see Section 6.4).  Strong

sorption of PCBs to soil organic matter and clay inhibits the uptake of PCBs in plants through the roots

(Bacci and Gaggi 1985; Chu et al. 1999; Gan and Berthouex 1994; Paterson et al. 1990; Strek et al.

1982b; Webber et al. 1994; Ye et al. 1992a).  As a result, below-ground vegetation, such as potatoes, will

accumulate the lowest levels of total PCBs, lower proportions of the more lightly chlorinated congeners,

and will predominately accumulate the moderately chlorinated congeners (e.g., penta-CBs 99, 101, and

110) directly from soil (Cullen et al. 1996).  However, higher uptake from soil can occur in certain root

crops (e.g., carrots) by the partitioning of PCBs into the lipid-rich epidermal layer (skin) or by soil

particles adhering to the root (Cullen et al. 1996; O’Connor et al. 1990; Pal et al. 1980).  Plants grown on

PCB-contaminated sludge or sludge-amended soils will be free of vapor-phase PCB contamination as a

result of strong sorption of PCBs to sludge organic matter (Gan and Berthouex 1994; O’Connor et al.

1990).  For example, Gan and Berthouex demonstrated that for corn grown on PCB contaminated sludge-

amended farmland, bioconcentration of PCBs did not occur in either the grain or stover.  Plant BCFs of
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PCBs from soil are summarized in Table 6-8, and are estimated to be <0.02 for most terrestrial plant

species (Cullen et al. 1996; O’Connor et al. 1990; Pal et al. 1980).

6.3.2 Transformation and Degradation

The ability of PCBs to be degraded or transformed in the environment depends on the degree of

chlorination of the biphenyl molecule as well as on the isomeric substitution pattern.  The vapor-phase

reaction of PCBs with hydroxyl radicals is the dominant transformation process in the atmosphere, while

photolysis appears to be the only viable abiotic degradation process in water.  Biodegradation in the

environment, although slow, occurs under both aerobic and anaerobic conditions.  In sediments, aside

from the aerobic surface layer, anaerobic microbial degradation will be primarily responsible for

transformation, particularly of the more highly chlorinated congeners.  Aerobic biodegradation in soil,

surface water, and sediments is limited to the less chlorinated congeners.

6.3.2.1  Air

In the atmosphere, the vapor-phase reaction of PCBs with hydroxyl radicals (photochemically formed by

sunlight) is the dominant transformation process (Brubaker and Hites 1998).  The calculated tropospheric

lifetime values for this reaction increases as the number of chlorine substitutions increases.  The

tropospheric lifetime values (determined using the calculated OH radical reaction rate constant and

assuming an annual diurnally averaged OH radical concentration of 5x105 molecule/cm3) are: 5–11 days

for monochlorobiphenyls, 8–17 days for dichlorobiphenyls, 14–30 days for trichlorobiphenyls,

25–60 days for tetrachlorobiphenyls, and 60–120 days for pentachlorobiphenyls (Atkinson 1987).  In

another study, the estimated tropospheric lifetimes of PCBs (calculated using the estimated OH radical

reaction rate constant and assuming a 24-hour average OH radical concentration of 9.7x105 molecule/cm3)

range from 2 days for biphenyl to 75 days for hexachlorobiphenyl, and a total global PCB loss rate of

8,300 tons/year was estimated (Anderson and Hites 1996; Atkinson 1996).  Rate constants for PCBs more

chlorinated than hexa are not easily measured due to their low vapor pressures.  It is difficult to introduce

a significant amount of these PCBs into the gas phase and to collect their gas phase reaction products

which could have even lower volatilities.  For the PCBs that do react with OH radicals, a possible reaction

scheme is the formation of a 2-hydroxybiphenyl intermediate, which quickly degrades by a series of dark

reactions to chlorinated benzoic acid (see Figure 6-2; Brubaker and Hites 1998).  The little information

available suggests that photolysis of gas-phase PCBs in the troposphere will be negligible for those PCBs

with #4 chlorine atoms, and this may be the case for the more chlorinated PCBs as well (Atkinson 1996). 
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Table 6-8.  Plant Uptake (Bioaccumulation) of PCBsa

Crop (growth media) Application rate BAFb Referencea

Carrot
(soil)

Aroclor 1254 at 100 ppm mixed
in top 6 inches of soil

<1 (Aroclor 1254)
#0.16 (roots)

Iwata et al. 1974

Carrot
(acid soil and brown
sand)

Aroclor 1254 at 0.05, 0.5, and
5 ppm (acid soil);
0.5 ppm (brown sand)

0, << 1, <1, 0.16
(roots)

<1, 0.16 (roots
peels)

Wallnöfer et al. 1975

Carrot
(soil)

PCB 4 at 1 ppm in dry soil,
mixed in top 10 cm

<1 (di-PCB)
0.25 (roots)
0.25 (leaves)

Moza et al. 1976

Carrot
(soil)

None 1.5 (PCB 52)
0.35 (PCB 101)
0.38 (PCB 138)
0.28 (PCB 153)

Cullen et al. 1996

Corn
(field)

Aroclor 1254 and 1260
contaminated sludge
(92–144 µg PCBs/L sludge)

<1 Lawrence et al. 1977

Lettuce
(soil)

None 6.0 (PCB 52)
1.5 (PCB 101)
1.1 (PCB 138)
0.74 (PCB 153)

Cullen et al. 1996

Potato
(soil)

None 0.29 (PCB 52)
0.01 (PCB 101)
0.17 (PCB 138)
0.28 (PCB 153)

Cullen et al. 1996

Radish
(acid soil and brown
sand)

Aroclor 1254 at 0.05 ppm (acid
soil or brown sand), 0.5 ppm
(acid soil); Aroclor 1224 at
0.2 ppm (brown sand);

Aroclor 1254 at 5 ppm (acid
soil) with moisture 40% of
maximum water holding
capacity

0, 0, 0.02

0.005

Wallnöfer et al. 1975

Soybean sprouts
(sandy soil)

Aroclor 1242 at 100 ppm 0.002 Suzuki et al. 1977

Sugarbeet
(brown soil)

Aroclor 1254 at 0.3 ppm in soil 0.01 (leaves) to
0.5 (whole plant)
0.17 (root peels)
0.03 (peeled root)

Wallnöfer et al. 1975

Sugarbeet
(field soil)

PCB 4 at 0.24 ppm in 0–10 cm
soil layer and 0.17 ppm in
10–20 cm soil layer

0.07 (roots)
0.03 (leaves)

Moza et al. 1976

Tomato
(soil and vermiculite)

PCB 4; PCB 7; PCB 18; PCB
52; PCB 101 (concentration not
specified)

0 for all PCBs 
(mature plants)

Pal et al. 1980
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Table 6-8.  Plant Uptake (Bioaccumulation) of PCBsa (continued)

Crop (growth media) Application Rate BAFb Referencea

Tomato None 0.64 (PCB 52)
0.23 (PCB 101)
0.15 (PCB 138)
0.01 (PCB 153)

Cullen et al. 1996

aSources: Cullen et al. 1996; Pal et al. 1980
bBAF = bioaccumulation factor; concentration of PCBs in plant tissue divided by the concentration in growth medium
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At the present time, insufficient data are available to assess the importance of photolysis and/or chemical

reactions of particle phase congeners, although studies of Tysklind and Rappe (1991) and Koester and

Hites (1992) on the photodegradation of polychlorinated dioxins and furans suggest that photolysis for

particulate phase PCBs is not important (Atkinson 1996).

6.3.2.2  Water

In water, abiotic transformation processes such as hydrolysis and oxidation do not significantly degrade

PCBs (EPA 1979h).  Photolysis appears to be the only significant abiotic degradation process in water

(EPA 1979h).  Photolysis of PCBs occurs by photolytic cleavage of a carbon-chlorine bond followed by a

stepwise replacement of chlorine with hydrogen which degrades PCBs (Barr et al. 1997; EPA 1979h).  In

all cases, the ring with the greatest degree of chlorination is the primary ring where dechlorination occurs. 

These dechlorination reactions have been reported to proceed by the loss of chlorine in the order of

ortho>para>meta (Barr et al. 1997).  Lepine et al. (1991) reported that for dechlorination of

Aroclor 1254 (in cyclohexane) under natural sunlight, preferential removal of ortho chlorines led not only

to decreases in many of the highly chlorinated PCB congeners but also to an increase in the

concentrations of the toxic non-ortho coplaner congeners, PCBs 77 and 126.  The estimated photolysis

half-lives of mono- through tetrachlorobiphenyls with summer sunlight at a shallow water depth (<0.5 m)

range from 17 to 210 days (EPA 1979h).  Photolysis rates with sunlight are slower during winter (EPA

1979h).  Nonetheless, as the number of chlorine substitutions increases, the light absorption band shifts

toward longer wavelengths, and the photolysis rate for hepta- through deca-chlorinated biphenyls

increases (EPA 1979h).  The estimated photolysis half-lives (first-order) of 4-monoCB, 2,4-diCB,

2,4,6-triCB, 2,2',5,5'-tetraCB, and decachloro-CB (in 75% acetonitrile) were 210, 17, 53, 180, and

<0.06 days, respectively (EPA 1983c).  Bunce et al. (1978) predicted that for PCBs in shallow waters, on

average up to 5% of the lightly chlorinated PCBs might lose a chlorine atom each year, but that at least

one chlorine should be lost from every highly chlorinated PCB molecule annually.  However, because the

conditions of their experiments do not represent actual conditions in the environment, the PCB photolysis

rate may be significantly lower. 

The rate of PCB biodegradation in water is dependent on both individual congener structure and

environmental conditions, as is explained in more detail in Section 6.3.2.3.  Biodegradation in surface

waters is primarily an aerobic process; in some, particularly oligotrophic waters, a substantial percentage

of the total PCB concentration can be found in the dissolved phase (see Section 6.3.1; Eisenreich et al.

1983).  The less chlorinated mono- and dichlorobiphenyl congeners are more likely to dissolve in water
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than the more chlorinated congeners.  These congeners are also more likely to biodegrade under aerobic

conditions (Bailey et al. 1983; Wong and Kaiser 1975).  In a river die-away study using filtered river

water, the individual monochlorobiphenyl congeners were degraded by 50% within 2–5 days (Bailey et

al. 1983).  However, 2,2',4,4'-tetrachlorobiphenyl was not degraded over the 98-day study.  The

biodegradation of Aroclor 1221 proceeded rapidly in unfiltered lake water after a 4-day lag phase; within

1 month, the original mixture was completely degraded into metabolites of lower molecular weight

(Wong and Kaiser 1975).  However, Aroclor 1260 was not degraded over a 12-week period in three

different unfiltered natural water samples (Oloffs et al. 1972).  An Aroclor 1254 mixture was not

mineralized over 96 days in a fresh water study; a further study using individual congeners,

2-chlorobiphenyl and 2,4'-dichlorobiphenyl, showed that the former was degraded to chlorobenzoic acid,

a common intermediate in the aerobic biodegradation of PCBs, while the latter was not biodegraded

(Shiarls and Sayler 1982).  In general, these results are similar to those reported in aerobic soil and

sediment studies where mono-, di-, and trichlorobiphenyl structures are fairly readily biodegraded,

biphenyl rings containing five or more chlorine substituents are considered to be persistent, and

tetrachlorobiphenyl congeners exhibit an intermediate persistence (Abramowitz 1990; Alcock et al. 1996;

EPA 1979i; Gan and Berthouex 1994).  Biodegradation rates in marine water may be slower than those

reported in freshwater.  The monochlorobiphenyl congeners had half-lives of approximately 8 months in

sea water incubated at 10 EC (Carey and Harvey 1978).  Aroclors 1221 and 1254 were individually added

to sea water and exposed for 4–8 weeks in enclosures in the North Sea; no degradation of either PCB

mixture was reported over this time (Kuiper and Hanstveit 1988).  Biodegradation is potentially a more

important process in soil and sediment than in water, particularly for the more highly-chlorinated

congeners, for at least three reasons: the higher numbers of microorganisms present, the opportunity for

anaerobic biodegradation, and the preferential partitioning of PCBs to soil and sediment (see

Section 6.3.2.3). 

6.3.2.3  Sediment and Soil

PCBs, particularly the highly chlorinated congeners, adsorb strongly to sediment and soil where they tend

to persist with half-lives on the order of months to years (see Section 6.3.1; Gan and Berthouex 1994;

Kohl and Rice 1998).  There is no abiotic process known that significantly degrades PCBs in soil and

sediment.  However, photolysis of PCBs from surface soil may occur, and PCBs may also undergo base-

catalyzed dechlorination (Chiarenzelli et al. 1995; Taniguchi et al. 1997); albeit, both of these processes

are likely to be insignificant removal mechanisms. 
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Biodegradation has been shown to occur under both aerobic and anaerobic conditions and is a major

degradation process for PCBs in soil and sediment, as reviewed by Higson (1992), Robinson and Lenn

(1994), Bedard and Quensen (1995), and most recently by Wiegel and Wu (2000).  While photolysis of

PCBs from soil surfaces may also occur, and PCBs may also undergo base-catalyzed dechlorination

(Chiarenzelli et al. 1995; Taniguchi et al. 1997), neither of these processes is likely to be a significant

removal mechanism in soil and sediment.

Numerous bacterial and some fungal isolates have been reported to aerobically biodegrade PCBs in the

literature (Abramowicz 1990).  Experiments with both pure and mixed microbial cultures show that some

congeners of PCBs, usually containing from one to four chlorine substituents, are readily biodegraded

aerobically (Abramowitz 1990), although biodegradation of congeners containing up to six or seven

chlorine atoms has been shown under enrichment conditions (Abramowitz 1990; EPA 1983c; Gibson et

al. 1993).  The most common process for the aerobic degradation of PCBs by bacterial cultures proceeds

in two distinct steps: first bioconversion to the corresponding chlorinated benzoic acid and secondly,

mineralization of the chlorobenzoate to carbon dioxide and inorganic chlorides (Robinson and Lenn

1994; Thomas et al. 1992).  Each step requires a separate group of genes (Afghan and Chau 1989;

Robinson and Lenn 1994; Sondossi et al. 1992; Unterman et al. 1989).  This pathway is further detailed in

Figure 6-3 (Abramowicz 1990; Robinson and Lenn 1994).  The initial attack of the biphenyl structure

involves addition of O2 by a biphenyl 2,3-oxygenase forming the corresponding unstable dihydro-

dihydroxybiphenyl, subsequent dehydrogenation to the dihydroxybiphenyl, followed by meta ring

cleavage to the corresponding chlorinated benzoic acid and a 5-carbon hydroxy-acid (Abramowicz 1990;

Flanagan and May 1993; Robinson and Lenn 1994; Sylvestre and Sondossi 1994; Thomas et al. 1992). 

Steric hindrance of 2,3-dioxygenation, where the chlorine substituents prevent access of the 2,3 carbon

atoms to the enzyme’s active site is believed to be responsible for the inability of many higher chlorinated

congeners to be oxidized (Abramowitz 1990; Sylvestre and Sondossi 1994).  Aerobic oxidation of PCBs

has been identified in the environment.  A study by Flanagan and May (1993) reported the presence of

chlorobenzoic acids, as well as other metabolites where the biphenyl ring is retained and in contaminated

sediment cores taken from the Hudson River, but not in uncontaminated cores obtained upstream from the

site of contamination.  2,3-Dioxygenase attack can also result in the formation of ring-chlorinated

acetophenone from 3-chlorophenyl, 2,5- or 2,4,5-chlorophenyl PCB rings (Bedard 1990; Bedard et al.

1987). 

Aerobic biodegradation of PCBs in the environment occurs mainly in soils and surficial sediments.  PCB

congeners with three or less chlorine substituents (major components in Aroclors 1221 and 1232) are
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considered to be non-persistent, while those with five or more chlorines (major components in

Aroclors 1248, 1254, and 1260) are not readily degraded and considered to be persistent (Abramowitz

1990; Alcock et al. 1996; EPA 1979i; Gan and Berthouex 1994; Iwata et al. 1973).  Tetrachlorobiphenyls

(major components in Aroclors 1016 and 1242) are intermediate in persistence.  Thus, the addition of a

PCB mixture to an aerobic environment results in a fractionating effect where the less chlorinated species

biodegrade first and leave behind, for long-term build-up, the more highly chlorinated species.  For

example, Williams and May (1997) report that the addition of Aroclor 1242 to aerobic Hudson River

sediment samples and incubated at 4 EC for several months resulted in biodegradation following an initial

lag phase of 1.4 months.  More than 50% loss was reported in 5 months, particularly among specific di-

and trichlorobiphenyls.  A single added hexachlorobiphenyl congener (2,2',4,4',6,6'-hexachlorobiphenyl)

was not degraded over 300 days.  In sludge-amended soil, the dissipation half-lives (first-order kinetics)

of PCB 18 and 28, and total PCBs were reported to be on the order of <1–8.5 years (Alcock et al. 1996). 

Gan and Berthouex (1994) reported that the disappearance of PCBs in farmland soil amended with PCB-

contaminated sludge was slow with half-lives (first-order kinetics) of di-CBs ranging from 7 to

11 months, while the half-lives of the tri-CBs and tetra-CBs ranged from 5 to 17 months and from 11 to

58 months, respectively.  The mineralization of 2-, 3-, 4-, 2,2',5,5'-, 2,2',4,4'-, 2,2',3,3',5,5'-, and

2,2',4,4',5,5'-chlorobiphenyl was measured in a Flanagan silt loam containing 3% organic material; after

98 days, 19.7, 16.5, 16.1, 0.7, 0.4, 0.8, and 0.1% of the initially added radiolabel was found as CO2 (Fries

and Marrow 1984).  In addition to the degree of chlorination, the chlorine substitution pattern affects the

biodegradation rate of PCBs.  For example, Afghan and Chau (1989) and Furukawa and Matsumura

(1976) demonstrated that PCBs containing chlorine substituents on only one ring are degraded more

quickly than PCBs containing an equivalent number of chlorine substituents distributed between both

rings. Additionally, PCBs with chlorines found in ortho positions, such as 2,2'- and 2,6-dichlorobiphenyl,

are more resistant to aerobic biodegradation than those with chlorines found in either the para or meta

positions (Bedard and Haberl 1990; Furukawa et al. 1978; Robinson and Lenn 1994).  The incubation of

Aroclor 1242 in aerobic Hudson River sediment resulted in an enrichment of di- and trichlorobiphenyl

congeners with di-ortho chlorines on one ring or di-para chlorines; other di- and trichlorobiphenyls in the

mixture were readily degraded (Williams and May 1997).

Aerobic degradation rates of PCBs can be highly variable, depending not only on structural characteristics

as outlined above, but also on a number of other factors including previous exposure to PCBs or PCB-like

compounds, bioavailability, initial concentration, moisture, temperature, available nutrients such as

carbon sources, and the presence of inhibitory compounds.  Biodegradation of PCBs in aerobic soil is

slow, especially in soils that have a high organic carbon content.  PCBs that remain firmly bound in soil
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and sediment may not be bioavailable to the degrading organisms at sufficient concentrations.  For

example, in two soils containing >10% organic matter, only 5% biodegradation of Aroclor 1254 was

observed after 1 year (Iwata et al. 1973).  However, >25% biodegradation was observed after 1 year in a

loamy, sandy soil containing only 0.1% organic carbon.  In this study, the authors also observed that the

less chlorinated PCB congeners were biodegraded more rapidly than the more highly chlorinated and

tightly bound congeners (Iwata et al. 1973).  Temperature also influences the rate of aerobic degradation.

Williams and May (1997) evaluated the low temperature (4 EC) aerobic degradation of PCBs in sediment

using Aroclor 1242-spiked samples of PCB-contaminated sediment from the Hudson River for several

months.  A 3- to 4-fold decrease in the rate of degradation was noted for sediment samples incubated at

4 EC versus those incubated at 25 EC.  The aerobic biotransformation and biodegradation of PCBs can be

enhanced by the use of adapted (pre-exposed) microbial populations and the addition of amenable

substrates for co-metabolic and co-oxidative biotransformation.  In a controlled laboratory aerobic

microcosm sediment/water system, the half-lives (first-order kinetics) of Aroclors 1232, 1248, and

1254 were 61, 78, and 82 days, respectively, with no addition of substrates; 33, 39, and 36 days,

respectively, with the addition of an amenable substrate; and 27, 32, and 36 days, respectively, with the

addition of an amenable substrate and adapted microbes (Portier and Fujisaki 1988).  Biphenyl or

monochlorobiphenyls are commonly added as both growth substrates; they act to increase degradation

rates through a cometabolic effect (Hurme and Puhakka 1997), as well as to induce the catabolic pathway

required to sustain the growth of the PCB-degrading microbial population (Abramowicz 1990).  Other

studies report enhanced degradation rates in the presence of an added carbon source, such as sodium

acetate, due to cometabolism (Pal et al. 1980).  The efficiency of PCB degradation may also be controlled

by the metabolite production pattern.  Mono- and dichlorobenzoates, and possibly other higher

chlorobenzoates formed from aerobic degradation of PCBs, have been shown to act as inhibitors towards

further degradation of higher chlorinated PCBs (Guilbeault et al. 1994; Hickey et al. 1993; Robinson and

Lenn 1994). 

PCBs are slowly biodegraded in anaerobic environments by reductive dechlorination resulting in the

formation of less toxic mono- and dichlorobiphenyl congeners, which are aerobically biodegradable

(Abramowicz 1990, 1995; Anid et al. 1993; Brown et al. 1988; Chen et al. 1988; EPA 1983c; Larsson and

Lemkemeier 1989; Pardue et al. 1988; Rhee et al. 1989).  Until the 1980s, PCBs were not believed to be

susceptible to anaerobic biodegradation based on studies measuring total PCB concentrations over time. 

Previous studies measured PCB loss as the change in total number of moles of PCBs over time.  This

generally remained the same as the biphenyl ring is not metabolized and only chlorine is released during

reductive dechlorination.  However, the overall congener distribution profile is markedly different
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following anaerobic biodegradation.  The profile shows a decrease in concentration of the more highly

chlorinated congeners and a corresponding increase in overall proportion of the less chlorinated

congeners (Bedard and Quensen 1995).  For example, Aroclor 1242 added to anaerobic Hudson River

sediment was incubated for 73 weeks; at the end of this period, di-, tri-, tetra-, penta-, and hexachlorinated

congeners were reduced by 11, 73, 66, 73, and 94%, respectively, while the concentration of

monochlorobiphenyl congeners increased by 76% (Anid et al. 1993).  The original homolog distribution

of Aroclor 1254 versus that after 13 months incubation in anaerobic sediment (100 mg/L treatment) is as

follows (in mole percent):  tri-, 2 versus 18%; tetra-, 22 versus 51%; penta-, 48 versus 22%; hexa-,

21 versus 8.5%; hepta-, 6 versus 0.5% (Hurme and Puhakka 1997).  Microbial PCB dechlorination is

widespread in many anaerobic environments, including freshwater (pond, lake, and river) (Bedard and

Quensen 1995; Wiegel and Wu 2000), estuarine (Brown and Wagner 1990; Tiedje et al. 1993), and

marine sediments (Ofjord et al. 1994) for congeners with up to 10 chlorine substituents (Hartcamp-

Commandeur et al. 1996), although other authors report dechlorination occurring for up to 7 (Quensen et

al. 1990), 8 (Abramowitz 1990; Kuipers et al. 1999), or 9 (Kuipers et al. 1999) chlorines only.  During

reductive dechlorination, anaerobic bacteria use chlorine as the terminal electron acceptor in a two-

electron transfer reaction involving the addition of the electron to the carbon-chlorine bond, followed by

chlorine (Cl-) loss and subsequent hydrogen abstraction.  The process of reductive dechlorination is

illustrated in Figure 6-4 (Abramowicz 1990).  Hydrogen (H2) is assumed to be directly or indirectly the

electron donor and water the source of protons (Nies and Vogel 1991), although other sources are

possible.  For reductive dechlorination to occur, a low redox potential similar to methanogenesis

(Eh <-400 mV) and the absence of oxygen are thought to be required (May et al. 1992; Oremland 1988;

Ye et al. 1992a), although some studies have shown that sulfidogenic redox conditions may also allow

reductive dechlorination to proceed, but at a comparatively slower rate (Bedard and Quensen 1995;

Hartkamp-Commandeur et al. 1996).  

The most important structural factors determining whether a chlorine atom will be removed from a

particular congener during anaerobic biodegradation include the position of the chlorine in relation to the

opposite phenyl ring, the configuration of the surrounding chlorine atoms, the chlorine configuration of

the opposite ring and, as summarized above, the total number of chlorine atoms.  There are at least eight

distinct, documented, reductive dechlorination pathways or processes, each resulting in a different

congener distribution profile.  These processes, M, Q, H, H’, P, and N (and LP and T as in Wiegel and

Wu 2000) are summarized in Table 6-9 (Bedard and Quensen 1995; Wiegel and Wu 2000; Wu et al.

1997).  In any particular anaerobic environment, one or several of these processes may be occurring

depending on the specificity that is developed by the adapted microbial population for dechlorination at a 
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Table 6-9.  Positions of Chlorines Removed by Each Dechlorination Processa

Dechlorination
process

Characteristic
dechlorination
productsa Susceptible chlorines Susceptible Aroclors

Source of
microorganisms

M 2
2, 2N / 2, 6b

2, 4N
2, 2N,4
2, 4, 4N
2, 2N, 6

Flanked and unflanked meta 1242
1248a

1254a

Upper Hudson
Silver Lake

Q 2
2, 2N / 2, 6b

2, 3N
2, 2N, 5
2, 2N, 6
2, 3N, 6

Flanked and unflanked para

Meta of 2, 3 group

1242
1248
1254

Upper Hudson

H ! 2, 3N
2, 4N
2, 2N, 4
2, 2N, 5
2, 3N, 4
2, 3N, 5
2, 3N, 6
2, 4, 4N / 2, 4N, 5b

2, 2N, 4, 4N c

2, 2N, 4, 5N
2, 2N, 5, 5N
2, 2N, 3, 4N, 5c

2, 2N, 3, 5, 5Nc
2, 2N, 3, 4N, 6c

2, 2N, 3, 5N, 6c

Flanked para

Meta of 2, 3 and 2, 3, 4 groups

1242
1248
1254
1260

Upper Hudson
Lower Hudson
New Bedford
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Table 6-9.  Positions of Chlorines Removed by Each Dechlorination Processa (continued)

Dechlorination
process

Characteristic
dechlorination
productsa Susceptible chlorines Susceptible Aroclors

Source of
microorganisms

H 2, 3N
2, 3N, 4
2, 3N, 5
2, 3N, 6
2, 4, 4N/ 2, 4N, 5c

2, 2N, 4, 4N
2, 2N, 4, 5N
2, 2N, 5, 5N
2, 2N, 2, 4N, 5
2, 2N, 3, 5, 5N
2, 2N, 3, 4N, 6
2, 2N, 3, 5N, 6

Flanked para

Doubly flanked meta

1242
1248
1254
1260

Upper Hudson
Lower Hudson
New Bedford
Silver Lake

P 2, 2N, 3, 5N
2, 2N, 4, 5N
2, 2N, 5, 5N
2, 2N, 3, 3N, 5
2, 2N, 3, 5, 5N

Flanked para 1254a

1260
Woods Pond
Silver Lake

N 2, 4, 4N
2, 2N, 4, 4N
2, 2N, 4, 5N
2, 2, 4, 6N
2, 2N, 4, 4N, 6
2, 2N, 3, 4N, 5, 6

Flanked meta 1254
1260

Upper Hudson
Silver Lake
Woods Pond

LP 2, 2N, 4
2, 2N, 5
2, 2N, 6

Flanked and unflanked para 1260 Woods Pond

T 2, 2N, 4, 4N, 5, 5N
2, 2N, 3N, 4, 4N, 5
2, 2N, 3, 4, 4N, 5N, 6

Flanked meta of 2, 3, 4, 5 group

in hepta- and octa-CBs

1260 Woods Pond

Source: Wiegel and Wu 2000; Wu et al. 1997; Bedard and Quensen 1995
aProducts will vary depending on the congener composition of the PCB mixture being dechlorinated.
bOverlapping gas chromatograph peaks
cProposed products from Aroclors 1254 and 1260
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Source: Abramowicz 1990

Ar-Cl + e- + R-H
(H2O)
(H2)

Ar-H + Cl- + R
(HO )
(H )

ArCl Ar-Cl- Ar Ar-H + R

e- Cl-

R-H

microorganism

Figure 6-4.  Possible Mechanism for Reductive Dechlorination by Anaerobic Microorganisms
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particular position or dechlorination of a particular type of PCB (Alder et al. 1993; Bedard and Quensen

1995; Kuipers et al. 1999; May et al. 1989; Morris et al. 1992; Quensen et al. 1998; Robinson and Lenn

1994; Sokol et al. 1994; Tiedje et al. 1993; Wiegel and Wu 2000; Ye et al. 1992a; Zwiernik et al. 1998).  

These processes can be combined at a single site producing different distribution profiles; combinations

of M and H or M and H’ have been observed (Bedard and Quensen 1995) as well as a combination of

processes M and Q commonly called process C (Bedard and Quensen 1995).  For example, it was

observed that chlorine substituents were removed from only meta and para positions in Hudson River

sediment contaminated with Aroclor 1242 resulting in a high proportion of ortho substituted mono- and

di-chlorinated PCBs.  The distribution profile of this sediment was believed to be due to dechlorination

processes M, Q, and H or H’ (Abramowicz et al. 1995; Bedard and Quensen 1995; Brown et al. 1984,

1987a, 1987b).  In Silver Lake sediment contaminated with both Aroclor 1254 and 1260, meta and para

chlorines were also preferentially removed (Williams 1994).  However, ortho dechlorination of 2,4,6-CB

was observed in cultures of Silver Lake sediment, suggesting a combination of dechlorination processes

H, P, N, M, and Q (Bedard and Quensen 1995; Brown et al., 1984, 1987a, 1987b).  While ortho

dechlorination has been shown in the environment (Berkaw et al. 1996; Van Dort and Bedard 1991; Wu

et al. 1998), most of the commonly reported processes outlined in Table 6-9 do not dechlorinate ortho

chlorines resulting in the accumulation of less chlorinated, primarily ortho-substituted, PCB congeners

due to anaerobic biodegradation (Abramowicz 1990, 1995; Bedard and May 1996; Berkaw et al. 1996;

Brown et al. 1987; David et al. 1994; Morris et al. 1992; Nies and Vogel 1990; Rhee et al. 1993a, 1993b;

Robinson and Lenn 1994; Tiedje et al. 1993; Van Dort and Bedard 1991; Wiegel and Wu 2000; Ye et al.

1992a). 

The rate, extent, and specificity of anaerobic dechlorination can vary greatly even in the same sediment

based on a number of environmental factors (Wiegel and Wu 2000).  These include previous exposure to

PCB or PCB-like compounds, electron acceptor availability, bioavailability, presence of co-contaminants,

oxygen tension, redox level, temperature, pH, salinity, inhibitory compounds, available carbon and

nutrients, and trace metals.  Optimum rates of PCB dechlorination usually occur in the concentration

range of 100–1,000 ppm (wet weight).  Below a certain threshold concentration (<50 ppm), the rate of

dechlorination is often very slow or non-quantifiable (Quensen et al. 1988; Rhee et al. 1993a; Robinson

and Lenn 1994; Sokol et al. 1995, 1998).  For example, Abramowicz et al. (1995) found that 93% of

sediment samples containing >100 µg/g PCBs were extensively dechlorinated compared with only 63%

of samples containing 5–10 µg/g.  However, it should be noted that the reductive dechlorination of many

PCB congeners in Aroclor mixtures has been observed even when their individual concentrations were
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<1 µg/g (Quensen et al. 1990; Schultz et al. 1989).  PCBs generally remain tightly bound in soil and

sediment, and may not be bioavailable to the biodegrading organisms even at optimum concentrations. 

The requirement of an optimum concentration (>50 ppm) may make this bioavailability factor critical for

dechlorination of PCBs (Robinson and Lenn 1994; Tiedje et al. 1993).  Bimodal desorption kinetics with

both PCB-spiked and environmental sediments has been observed; approximately 50% of the initially

present PCB mixture was found to be resistant to desorption with 50% of the resistant fraction desorbed

over the following 6 months (Carroll et al. 1994; Harkness et al. 1993).  Other authors report that

desorption may not be as important given the slow rate of dechlorination of the more chlorinated

congeners (Alder et al. 1993; Bedard et al. 1993).  Addition of compounds, such as sodium lignisulfonate,

that can increase the solubility of PCBs in soil and sediment has been shown to increase the rate of

biodegradation (Sugiura 1992).  Temperature is also an important factor controlling the rate of microbial

dechlorination (Tiedje et al. 1993; Wiegel and Wu 2000; Wu et al. 1996, 1997).  Temperatures in the

range of 12–25 EC supported dechlorination, while dechlorination was not observed at temperatures

>37 EC (Tiedje et al. 1993).  Wu et al. (1997) reported optimal temperatures for overall chlorine removal

of 20–27 EC in Woods Pond sediment contaminated with Aroclor 1260.  Acid/base conditions may also

affect the reductive dechlorination process.  For example, the optimal pH for removal of chlorines in

Woods Pond sediment contaminated with Aroclor 1260 and spiked with 2,3,4,6-tetraCB was

approximately 7.0–7.5 (Wiegel and Wu 2000).  The stereospecificity of dechlorination also varied as a

function of pH with flanked meta dechlorination (Process N) occurring at pH 5.0–8.0, unflanked para

dechlorination (Process LP) at pH 6.0–8.0, and ortho dechlorination at pH 6.0–7.5 (Wiegel and Wu

2000).  As PCB-dechlorinating microorganisms are not able to cleave and utilize the biphenyl ring as a

carbon and electron source, other compounds (e.g., mineral nutrients, electron donors, and carbon

compounds) are required to help co-metabolize PCBs (Alder et al. 1993; Klasson et al. 1996; Sugiura

1992; Tiedje et al. 1993; Wiegel and Wu 2000).  Alder et al. (1993) demonstrated that repeated addition

of fatty acids (e.g., acetate, propionate, butyrate, and hexanoic acid) stimulated dechlorination of PCBs in

carbon-limited sediment slurries, but not in sediment slurries with higher organic carbon contents.  The

omission of trace metals resulted in a slight reduction in the rate and extent of Aroclor 1242

dechlorination by Hudson River microorganisms (Abramowicz et al. 1993).  Inhibition of PCB

dechlorination can occur in the environment.  Sokol et al. (1994) reported that high concentrations of co-

contaminants at a site in the St. Lawrence River prevented dechlorination from occurring.  Electron

acceptors present in the environment may influence PCB reductive dechlorination.  While most studies

show reductive dechlorination of PCBs only under methanogenic and sometimes sulfidogenic conditions

(Kuo et al. 1999; Ye et al. 1999), Morris et al. (1992) reports that dechlorination was shown under
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denitrifying and iron(III) reducing conditions as well (Bedard and Quensen 1995).  Rates of

dechlorination have been shown to be fastest in methanogenic (the most reducing) environments. 

In the environment, aerobic and anaerobic biodegradation processes are often not readily separated and a

combination of the two may be fairly common in aquatic environments.  Hudson River sediment

microcosms, spiked with Aroclor 1242, were designed with an aerobic surface sediment layer overlying a

deeper anaerobic layer (Fish and Principe 1994).  The distribution profile of congeners following

degradation, was characterized by the authors as corresponding to a combination of process M

dechlorination and aerobic biodegradation.  Total PCB concentration decreased from 64.8 to

18.0 µmol/kg sediment in 140 days.  More recent studies have examined the potential of sequential

anaerobic-aerobic treatment to degrade PCBs.  As shown above, reductive dechlorination of PCBs in the

environment often results in the accumulation of mono- and dichlorobiphenyls, the most commonly

reported being the ortho-substituted congeners: 2-chlorobiphenyl, and 2,2'-, 2,4'-, 2,6-, 2,4-, and

2,3-dichlorobiphenyls (Adriaens and Grbic-Galic 1994).  Hudson River sediment, containing 700 µg/g

Aroclor 1242, showed 55% removal of total chlorine after 16 weeks, but only from meta and para

positions; the percentage of mono- and dichlorobiphenyls increased from 9 to 88% (Quensen et al. 1988). 

In a 73-day field study, aerobic biodegradation of a anaerobic sediment previously contaminated with

Aroclor 1242 (upon release containing 9%, but at the time of the study containing 62–73%, mono- and

dichlorobiphenyls) resulted in 35–55% further degradation of the less chlorinated PCBs, particularly

when oxygen, biphenyl, and inorganic nutrients were provided (Harkness et al. 1993).  However, the

extent and type of dechlorination is not predictable from site to site, and congeners remaining from

anaerobic biodegradation may also be resistant to aerobic biodegradation.  For example, dechlorination of

Aroclor 1254 in sediment resulted in the accumulation of tri- and tetrachlorobiphenyl congeners; they

were not dechlorinated further to mono- and dichlorobiphenyls in this sediment and would be expected to

be comparatively more resistant to aerobic biodegradation (Hurme and Puhakka 1997).   The reductive

dechlorination of Aroclor 1254 in a marine sediment system resulted in the accumulation of ortho tetra-

and pentachlorobiphenyls.  When this culture was then subjected to aerobic biodegradation, no

biodegradation was shown over 2 months.  Many of the remaining congeners had either two ortho or two

para groups, making them resistant to aerobic biodegradation as well (Mannisto et al. 1997).

Biodegradation of PCBs in aerobic or anaerobic groundwater has not been studied, although PCBs have

been reported in groundwater environments (Section 6.4.2).  In aerobic groundwater, the less-chlorinated

PCB congeners, which would be more likely to leach, would presumably degrade based on studies in

aerobic surface waters and soil.  However, groundwater is also commonly anaerobic and, as is covered in
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this section, microbial degradation under this oxygen condition proceeds for even the more highly

chlorinated congeners.  In a contaminant plume, as might be seen at a landfill site, sequential

dechlorination of the more highly chlorinated PCB congeners may occur in the anaerobic plume while

aerobic biodegradation at the anaerobic/aerobic interface of the plume edge may degrade some of the less

chlorinated PCBs. 

6.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

Reliable evaluation of the potential for human exposure to PCBs depends in part on the reliability of

supporting analytical data from environmental samples and biological specimens.  With respect to PCB

analysis, comparisons among various studies are complicated by the fact that authors may report PCB

concentrations as Aroclors, as homologs, or as congeners.  Historically, Aroclor analysis has been

performed by most laboratories.  This procedure can, however, result in significant error in determining

total PCB concentrations (Schwartz et al. 1987) and in assessing the toxicological significance of PCBs

because it is based on the assumption that distribution of PCB congeners in environmental samples and

parent Aroclors is similar.  The distribution of PCB congeners in Aroclors is, in fact, altered considerably

by physical, chemical, and biological processes after their release into the environment, particularly when

the process of biomagnification is involved (Oliver and Niimi 1988; Smith et al. 1990).  Only recently has

it become more common to determine the concentration of individual PCB congeners.  However, major

problems have been associated with the identification of the individual congeners, as only a limited

number of standards have been available (Larsen 1995).  In addition, in those studies that report results as

total PCBs, the definition of what constitutes total PCBs (i.e., how many and which congeners are

summed) is often not the same in the various studies.  Problems related to chemical analysis procedures

and reporting of total PCBs are discussed in greater detail in Chapter 7.  In reviewing data on levels

monitored or estimated in the environment, it should be noted that the amount of the chemical identified

analytically is not necessarily equivalent to the amount that is bioavailable.  Monitoring studies indicate

that atmospheric concentrations of PCBs tend to be dominated by lower chlorinated, more volatile

congeners, especially at northern latitudes (Halsall et al. 1999; Harner et al. 1998; Ockenden et al. 1998). 

Concentrations in soils and sediments, which are dominated by highly chlorinated congeners, have

followed a downward trend over time and appear to have reached a steady state concentration in several

locations (Bopp et al. 1998; Lead et al. 1997; Van Metre et al. 1998).  Water monitoring studies indicate

that PCB concentrations have also decreased since the late 1970s due to the cessation of production and

manufacturing (Anderson et al. 1999; Jeremiason et al. 1998).  Aquatic species, including fish and sea

mammals, have shown a similar downward trend in PCB contamination with highly chlorinated
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congeners being preferentially bioconcentrated (Troisi et al. 1998; Ylitalo et al. 1999; Young et al. 1998). 

Studies indicate that PCB concentrations increase with respect to trophic level; organisms that reside

higher on the food chain tend to have higher concentrations of PCBs (Kucklick and Baker 1998; Letcher

et al. 1998).

6.4.1 Air

PCB atmospheric concentrations have been detected in all areas of the world due to the high amount of

past usage and their great persistence.  Because of variations of several orders of magnitude, units in the

following section will vary; caution is recommend.  Based on several observations, atmospheric

concentrations of PCBs are generally higher during summer than winter months due to higher rates of

vaporization associated with higher summer temperatures (Franz and Eisenreich 1993; Haugen et al.

1999; Ockenden et al. 1998).  In studies that have consistently monitored PCB concentrations in a single

location, researchers have noticed a decreasing trend.  Due the high degree of PCB contamination, the

Great Lakes region of the United States has been closely monitored.  From 1991 to 1997, scientists

studied the change in atmospheric PCB concentration at the city of Chicago and Lakes Superior,

Michigan, and Erie (Simcik et al. 1999).  Gas-phase concentrations were found to have decreased in

Chicago and near Lake Michigan and Erie, but remained fairly constant near Lake Superior.  Atmospheric

half-lives for all individual congeners near Lake Michigan ranged from 0.5 to 5.9 years and averaged

2.1±0.1 years; half-lives at Lake Erie ranged from 0.7 to 7.5 years and averaged 2.6±0.1 years, while half-

lives at Chicago ranged from 0.6 to 5.6 years and averaged 2.7±1.3 years (Simcik et al. 1999).  In another

study, high volume air samples collected in Green Bay in 1989 and from several Great Lakes in

1990 were analyzed for PCB concentrations (McConnell et al. 1998).  The concentration of PCBs over

Green Bay ranged from 0.060 to 0.560 ng/m3, while over Lakes Michigan, Huron, Erie, and Ontario,

concentrations ranges were 0.17–0.44, 0.16–0.20, 0.12–1.30, and 0.24–0.37 ng/m3, respectively.  Air

concentrations of PCBs over Lake Huron were consistently lower than the other Great Lakes, while the

highest PCB concentrations were detected in the eastern- and western-most regions of Lake Erie, with

1.30 ng/m3 observed near Detroit, Michigan and 1.10 ng/m3 observed near Buffalo, New York

(McConnell et al. 1998).  Overall, the mean total concentration of PCBs over all five Great Lakes was

0.385 ng/m3.  Interestingly, the relative composition of PCBs detected over Green Bay was dominated by

tri- and tetrachlorinated biphenyls with these two homologs representing approximately 70–85% of total

PCBs.  Over the Great Lakes, however, researchers noticed a shift towards the higher chlorinated

congeners with tri-, tetra-, and pentachlorinated biphenyls contributing 25–35% each to total PCBs

(McConnell et al. 1998).  The difference in congener speciation in air samples is explained by increased
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air temperatures during air sampling done in summer over the Great Lakes compared to the measurements

taken during the winter and spring at Green Bay.  Wind direction has also been shown to play a role in

atmospheric PCB concentrations over the Great Lakes.  Atmospheric concentrations were measured from

1994 to 1995, 15 km from Chicago above Lake Michigan (Zhang et al. 1999).  Researchers found that the

concentration of PCBs ranged from 0.132 to 1.120 ng/m3.  During periods of southerly winds from urban

Chicago, researchers noticed that the average concentration of PCBs in the atmosphere became 5 times

higher (Zhang et al. 1999).  The same phenomenon was observed in Green Bay where atmospheric

concentrations of PCBs were elevated in samples taken closest to the city of Green Bay, Wisconsin. 

From late 1989 to mid 1990, air samples collected over water and nearby land in the Green Bay region

were analyzed for PCBs (Hornbuckle et al. 1993).  Researchers found that PCB concentrations were

greater in air samples collected from southern Green Bay (0.670–2.200 ng/m3) than over northern Green

Bay (0.160–0.520 ng/m3).  PCB concentrations detected over land ranged from 0.070 to 0.760 ng/m3.  At

all sites, tri-, tetra-, and pentachlorinated biphenyls were detected most frequently and at the highest

concentrations (Hornbuckle et al. 1993).  Analysis of Green Bay water samples revealed that the congener

distribution in the atmosphere directly correlated  with the congener distribution in adjacent water

samples.  

Inputs of PCBs to the Great Lakes region is influenced heavily by atmospheric transport and deposition

(Franz et al. 1998, Jeremiason et al. 1998).  Based on current and temporal studies, it appears that the

amount of PCBs being added to the Great Lakes region through dry deposition has decreased over time. 

From 1993 to 1995, the dry deposition of PCBs was studied for the Lake Michigan Air Basin (Franz et al.

1998).  The geometric mean fluxes of total PCBs at Chicago (Illinois), over Lake Michigan, South Haven

(Michigan), and Sleeping Bear Dunes (Michigan) were 0.21, 0.079, 0.14, and 0.057 µg/m2-day,

respectively.  Annually, PCB input to Lake Michigan by dry deposition is expected to be approximately

1,100 kg.  This is approximately 3 times less compared to measurements conducted in 1979.  The study

also found a strong correlation between sediment accumulation of PCBs and dry deposition to Lake

Michigan.  It suggests that dry deposition may account for most of the particulate PCBs accumulating in

the sediments of Lake Michigan (Franz et al. 1998).

The atmospheric concentration of PCBs in various geographic locations worldwide are summarized in

Table 6-10.  In general, atmospheric levels of PCBs appear to be decreasing over time with higher levels

of PCBs being detected in urban sites compared to rural locations.  For example, the atmospheric

concentrations of PCBs measured in urban and rural Baltimore locations in June of 1996 were

0.38–3.36 and 0.02–0.34 ng/m3, respectively (Offenberg and Baker 1999).  The study found that total 
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Table 6-10.  Atmospheric Concentrations of Polychlorinated Biphenyls

Locationa Year Concentrationb (ng/m3) Reference
URBAN AREAS
Urban areas Late 1970s–early 1980s 5–10 (0.5–30) Eisenreich et al. 1981
Boston, MA 1978 7.1 Bidleman 1981
Columbia, SC 1978 4.4 Bidleman 1981
College Station, TX 1979–1980 0.29 (0.11–0.48) Atlas and Giam 1987
Columbia, SC 1985 2.3 Foreman and Bidleman 1987
Bloomington, IN 1986–1988 Summer: 1.74–3.84c, Winter: 0.31–0.62 Hermanson and Hites 1989
Newport News, VA 1988 0.39±0.434d Knap and Binkley 1991
Chicago, IL 1988 1.3 (geometric) (0.3–9.9) Cotham and Bidlemen 1995
Chicago, IL 1989–1990 13.5 (7.55–20.26) Holsen et al. 1991
Urban areas Late 1980s–early 1990s 5 (1–10) Eisenreich et al. 1992
Manchester, England 1991–1992 1.160 (0.223–2.260) Halsall et al. 1999
Cardiff, England 1991–1992 1.490 (0.415–3.710) Halsall et al. 1999
Chicago, IL 1994 (0.27–14) Simcik et al. 1997
New Bedford, MA 1994–1995 0.4–5.3, near harbor sediment remediation

0.1–8.2 background reference 
Vorhees et al. 1997

Baltimore, MD 1996 (0.38–3.36) Offenberg and Baker 1999
New Brunswick, NJ 1997 0.482 (0.092–3.200) Brunciak et al. 1999
Sturgeon Point, NY 1997 0.369 Brunciak et al. 1999

RURAL AREAS
Rural areas Late 1970s–early 1980s 0.8 (0.1–2) Eisenreich et al. 1981
Adirondack, NY 1985 0.95±0.277d Knap and Binkley 1991
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Table 6-10.  Atmospheric Concentrations of Polychlorinated Biphenyls (continued)

Locationa Year Concentrationb (ng/m3) Reference
RURAL AREAS (contd)
Ontario, Canada 1988–1989 0.2 (0.55–0.823) Hoff et al. 1992
Continental areas Late 1980s–early 1990s 0.5 (0.2–1.5) Eisenreich et al. 1992
Northwest England 1990–1991 (0.0463–0.471) Halsall et al. 1999
Lista, Norway 1992–1995 0.114 Haugen et al. 1999
Arctic Sites (Canada, Siberia) 1993 0.17, 0.34 Stern et al. 1997
Lake Tahoe Basin, CA, NV 1995 average 0.072 Datta et al. 1998a
Lancaster University, UK 1995 0.190 (summer), 0.080 (winter) Ockenden et al. 1998
Baltimore, MD 1996 (0.02–0.34) Offenberg and Baker 1999

MARINE/COASTAL AREAS
Marine Late 1970s–early 1980s 0.5 (0.05–2) Eisenreich et al. 1981
Bermuda 1986 0.2±0.175d Knap and Binkley 1991
Chesapeake Bay 1990–1991 0.21 (0.017–0.508) Leister and Baker 1994
Marine/coastal Late 1980s–early 1990s 0.1 (0.01–0.7) Eisenreich et al. 1992
Green Bay, WI 1989–1990 (0.070–0.760) Hornbuckle et al. 1993
Baltic Sea 1990–1993 0.057 (0.032–0.080) Agrell et al. 1999
Chesapeake Bay 1996 (0.21–0.74) Offenberg and Baker 1999
Chesapeake Bay 1997 0.210 Brunciak et al 1999

GREAT LAKES REGION
Great Lakes Late 1970s–early 1980s 1 (0.4–3.0) Eisenreich et al. 1981
Lake Superior 1986 1.25 Baker and Eisenreich 1990
Green Bay 1989 0.330 McConnell et al. 1998
Great Lakes Late 1980–early 1990s 1 (0.2–4.0) Eisenreich et al. 1992
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GREAT LAKES REGION (contd)
South Green Bay 1989–1990 (0.670–2.200) Hornbuckle et al. 1993
North Green Bay 1989–1990 (0.160–0.520) Hornbuckle et al. 1993
Lake Michigan 1990 (0.170–0.440) McConnell et al. 1998
Lake Huron 1990 (0.160–0.200) McConnell et al. 1998
Lake Erie 1990 (0.120–1.300) McConnell et al. 1998
Lake Ontario 1990 (0.240–0.370) McConnell et al. 1998
Great Lakes 1990 (0.089–0.370)e Hillery et al. 1997
Southern Lake Michigan 1994 (0.014–1.1) Simcik et al 1997
Lake Michigan 1994–1995 (0.132–1.120) Zhang et al. 1999

REMOTE AREAS
Remote areas Late 1970s–early 1980s 0.1 (0.02–0.5) Eisenreich et al. 1981
Antarctica 1981–1982 (0.02–0.18) Tanabe et al. 1983
Arctic 1986–1987 0.02 Baker and Eisenreich 1990
Barents Sea 1996 0.126 Harner et al. 1998
Eastern Arctic 1996 0.074 Harner et al. 1998
Norwegian Sea 1996 0.025 Harner et al. 1998

aPost office state abbreviations used
bValues are given as mean concentrations.  The ranges are given in parentheses unless otherwise noted.
cValues at three different sites
dStandard deviation
eValues for three sites 
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PCBs detected in air were dominated by tri- and tetrachlorinated congeners.  Atmospheric deposition of

PCBs to the New York/New Jersey Bight area were monitored in 1997 (Brunciak et al. 1999).  The

average atmospheric concentrations of total PCBs at New Brunswick New Jersey, Sturgeon Point, New

York, and Chesapeake Bay, Maryland were 0.482, 0.369, and 0.210 ng/m3, respectively.  From 1991 to

1992, air samples from the urban cities of Manchester and Cardiff, England and from three rural sites

located in northwestern England were analyzed for PCBs (Halsall et al. 1999).  As was expected, urban

locations had much higher PCB concentrations than rural sites.  The cities of Manchester and Cardiff had

average PCB concentrations of 1.160 ng/m3 (range, 0.223–2.360) and 1.490 ng/m3 (range, 0.415–3.710),

respectively, while rural sites had average PCB concentrations ranging from 0.0463 to 0.471 ng/m3. 

Irrespective of location, air samples were dominated by tri- and tetrachlorinated biphenyls (Halsall et al.

1999).  Air samples at a semirural site near Lancaster University, United Kingdom were monitored for

PCBs in 1995 (Ockenden et al. 1998).  The mean concentration of PCBs during the summer and winter

months were 0.190 and 0.080 ng/m3, respectively.  Concentrations of trichlorobiphenyls dominated both

the winter and summer sampling months.  A 4-year study monitored atmospheric concentrations each

week in Lista, Norway from 1992 to 1995 to determine temporal and seasonal changes in PCB

concentrations (Haugen et al. 1999).  The geometric mean concentration of PCBs was 0.114 ng/m3 with

concentrations approximately 3 times higher during summer than winter season.  The congeners found in

the highest concentrations were PCBs 101 (30.5% at 0.0482 ng/m3), 138/163 (33.2% at 0.0484 ng/m3),

and 153 (23.8% at 0.0373 ng/m3) (Haugen et al. 1999).  Overall, there was no significant change in total

PCB concentrations from 1992 to 1995.  

Even in remote areas of the world, atmospheric concentrations of PCBs have been observed.  From

1986 to 1987, the mean concentration of PCBs was 0.02 ng/m3 in the Arctic while from 1981 to 1982,

PCBs ranged from 0.02–0.18 ng/m3 in the Antarctic (Baker and Eisenreich 1990; Tanabe et al. 1983) (see

Table 6-10).  From 1988 to 1990, atmospheric levels of two pentachlorobiphenyls (PCBs 101 and 110) in

Antarctic air were 0.0025 and 0.0022 ng/m3, respectively, while two hexachlorobiphenyls (PCBs 135 and

153) were 0.0021 and 0.0023 ng/m3, respectively (Lohmann and Jones 1998).  Stern et al. (1997)

measured PCB levels in air at five Arctic locations in 1993 and reported that, while there was no

correlation with temperature, the atmospheric trichlorinated PCB congeners tended to be lower during the

warmer months than during colder months.  In the summer of 1996, researchers analyzed Arctic air

samples for PCB concentrations (Harner et al. 1998).  Average concentrations in the Barents Sea, eastern

Arctic, and Norwegian Sea were 0.126, 0.024, and 0.075 ng/m3, respectively.  The study also monitored

the levels of some of the more toxic coplanar PCBs.  It was found that the concentrations of PCBs 77 and

126 in Arctic air samples were 3–40 and 0.3–8 fg/m3, respectively.  These values were approximately an
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order of magnitude lower than levels found in urban areas.  For example, air samples obtained from

Chicago in 1995 had mean concentrations of PCBs 77 and 126 of 420 and 63 fg/m3, respectively (Harner

et al. 1998).  Interestingly, the northeast Arctic Ocean profile was dominated by lower molecular weight

tri- and tetrachlorinated biphenyls, while the more southern Barents Sea air samples were enriched in the

higher penta- and hexachlorinated biphenyls.

Several studies have indicated that indoor air concentrations of PCBs are generally greater than outdoor

concentrations.  In 1984, indoor air samples from seven public buildings in Minnesota were monitored for

several Aroclors (Oatman and Roy 1986).  The mean total Aroclor concentration in indoor air of the

three buildings using PCB transformers (457±223 ng/m3) was found to be nearly twice as high as that in

the air of the four buildings not using PCB transformers (229±106 ng/m3).  The Aroclor levels detected in

the indoor air of all seven buildings were significantly higher than those detected in ambient outdoor air

(Balfanz et al. 1993; Eisenreich et al. 1992; MacLeod 1981; Oatman and Roy 1986).  When the indoor air

in a number of laboratories, offices, and homes was monitored for various Aroclors, the "normal" indoor

air concentrations of PCBs were at least one order of magnitude higher than outdoor levels (MacLeod

1981).  For example, average PCB levels were 100 ng/m3 inside an industrial research building and

210 ng/m3 inside the laboratories themselves, compared to <20 ng/m3 in air samples from outside the

facility.  The mean PCB indoor air concentration in one home was 310 ng/m3, while the average air

concentration outside the home on the same day was 4 ng/m3.  Indoor air PCB concentrations measured in

public buildings in Bloomington, Indiana were 5–300 times greater than outdoor air concentrations

(6–310 ng/m3 indoor air averages, 1.5 ng/m3 outdoor air), with indoor air concentrations highest in older

buildings (Wallace et al. 1996).  It has been suggested that certain electrical appliances and devices (e.g.,

fluorescent lighting ballasts) and building materials (elastic sealant), which have PCB-containing

components, may emit PCBs into the indoor air, thereby elevating indoor PCB levels significantly above

outdoor background levels (Balfanz et al. 1993).  

Indoor air concentrations of PCBs in 34 homes near New Bedford Harbor, Massachusetts were measured

between April 1994 and April 1995 during the dredging of contaminated river sediments.  PCB levels in

indoor air samples ranged from 7.9 to 61 ng/m3 in homes closest to the dredging operation compared to

more distant houses which had levels ranging from 5.2 to 51 ng/m3 (Vorhees et al. 1997).  However, these

indoor concentrations exceeded outdoor concentrations by an average ratio of 32, indicating the

importance of indoor air concentrations to human exposures.  House dust was also analyzed for PCB

contamination at these homes (Vorhees et al. 1999).  House dust samples had PCB concentrations ranging

from 260 to 23,000 ng/g, but did not differ significantly between houses closest to the dredging operation
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and those a few miles away from the dredging operation.  In general, the house dust samples contained

higher concentrations of the more volatile, less chlorinated PCBs.  The results of the house dust data were

then compared to house dust samples from homes that were not located near known PCB sources.  In nine

Seattle, Washington homes, house dust had PCB concentrations ranging from 240 to 760 ng/g and in

eight Columbus, Ohio homes, concentrations ranged from 210 to 1,900 ng/g (Vorhees et al. 1999).  It

appeared that PCB concentrations were generally lower in these locations compared to the New Bedford

Harbor neighborhood homes. 

In 1987, PCB concentrations in the workplace air of unspecified PCB disposal facilities in the United

States ranged from 850 to 4,000 ng/m3; in 95 of the 96 air samples collected for analysis, PCB

concentrations exceeded the NIOSH-recommended exposure limit of 1,000 ng/m3 (Bryant et al. 1989;

NIOSH 1992).  The average PCB concentration (Aroclors 1242 and 1260) emitted from gas vents at a

hazardous waste landfill in North Carolina was 126,000 ng/m3 (Lewis et al. 1985).  The maximum total

PCB concentration detected in air samples collected at Raquette Point within the Mohawk Nation

Reservation at Akwesasne, New York (adjacent to a Superfund site) was 50 ng/m3 (ATSDR 1995).

Even though the production and use of PCBs has been discontinued in the United States, PCBs are still

released during some industrial processes.  It is well known that PCBs may be formed whenever a carbon

source and chlorine are combusted together, such as during municipal and hazardous waste incineration

(Alcock et al. 1999; Bergman et al. 1984; Brown et al. 1995).  However, depending upon the combustion

conditions, the distribution of PCB congeners can vary greatly.  For example, some combustion

conditions support the production of the lower chlorinated congeners, while other conditions mainly

produce nona- and decachlorobiphenyls (Brown et al. 1995).  PCB concentrations ranged from 0.01 to

1.5 µg/m3 in fly ash from five municipal incinerators operating under different technological and working

conditions (Morselli et al. 1985).  Stack effluents from several Midwest municipal refuse and sewage

incinerators contained PCB concentrations of 0.3–3.0 µg/m3 (Murphy et al. 1985).  The total PCB

concentration measured in the flue gas effluent from a municipal waste incinerator in Ohio was

0.26 µg/m3 (Tiernan et al. 1983).  PCB concentrations ranged from 0.002 to 0.010 µg/m3 in effluents from

coal and refuse combustion in Ames, Iowa (EPA 1988a).  From 1995 to 1997, atmospheric PCB

concentrations were measured from cement kilns and sinter plant operations located in the United

Kingdom (Alcock et al. 1999).  Emissions from cement kilns contained PCB concentrations ranging from

1.3x10-5 to 2.5x10-5 µg/m3, while from sinter plants, the mean PCB concentration was 1.9 µg/m3.  Tri-,

tetra-, and pentachlorinated congeners contributed between 65 and 85% of total PCBs in sinter plant

emissions with PCB 28 being detected at the highest concentrations.
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6.4.2 Water

Assessing the PCB contamination of surface waters has been of great interest due to the environmental

and health risks PCBs present for the human populations living near them.  Countless studies have been

conducted that describe the ambient levels found in aquatic systems across the United States.  The Great

Lakes, in particular, have been monitored extensively due to the widespread PCB contamination and

proximity to residential areas.  Several studies indicate that PCB concentrations have continued to

decrease in the Great Lakes since the early 1980s.  Table 6-11 displays the change in PCB concentrations

in water over time in several of the Great Lakes.  In those lakes with water analyses over several years,

PCB concentrations appear to be decreasing over time.  In the spring of 1993, water samples were

collected and analyzed for PCB concentrations from all five Great Lakes (Anderson et al. 1999).  It was

found that Lake Erie had the highest degree of contamination with total PCB concentrations ranging from

0.20 to 1.6 ng/L, while Lake Superior had the lowest concentrations ranging from 0.070 to 0.10 ng/L.  In

1980, the average PCB concentration measured in Lake Michigan was 1.8 ng/L, with higher levels in

near-shore samples (3.2 ng/L) than in open lake samples (1.2 ng/L) (Swackhamer and Armstrong 1987). 

Comparison of Lake Michigan water samples from 1980 to 1993 indicated a decline in PCB

concentrations according to a first-order rate constant of 0.078/year.  Average total PCB concentrations in

water decreased from 1.2 ng/L in 1980 to 0.47 ng/L in 1991 and ranged from 0.17 to 0.27 ng/L in

1993 (Anderson et al. 1999; Pearson et al. 1996).  Mean PCB concentrations of 0.63–3.3 ng/L were

detected in the waters of western Lake Superior during 1978–1983 (Baker et al. 1985).  PCB

concentrations in Lake Superior surface waters decreased from 2.4 to 0.18 ng/L at a first-order rate of

0.20/year between 1980 and 1992 (Jeremiason et al. 1998).  Volatilization was the dominant removal

mechanism over this time period, while permanent sediment burial was of minor importance (Jeremiason

et al. 1998).  Sediment traps were also used to study the flux of PCB deposition in Lake Superior from

1987 to 1991.  Total PCB settling fluxes from the upper 35 m of water averaged 121± 40 ng/m2Cd in

1987 and 48±23 ng/m2Cd in 1991 (Jeremiason et al. 1998).  The major PCB congeners detected in settling

solids were tri- to pentachlorobiphenyls.  A mean concentration of 0.49 ng/L was detected in the water

column of Lake Huron in 1981 (Rodgers and Swain 1983).  For the San Francisco Bay and estuary, water

samples collected from 1993 to 1995 had total PCB concentrations ranging from 340 to 1,600 ng/L in

combined dissolved and particulate fractions (Jarman et al. 1997).  Total PCB concentrations studied from

1990 to 1991 in the Saginaw River ranged from 11 to 31 ng/L, with 1.9–16 ng/L detected in the dissolved

phase (Verbrugge et al. 1995).
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Table 6-11.  PCB Concentrations in Water Samples Collected from the Great Lakes

Great
Lake Year

Dissolved
(ng/g)

Particulate
(ng/g)

Total
(ng/L)a Source

Huron 1981
1993 44–92 37–60

0.49
(0.12–0.16)

Rodgers and Swain 1983 
Anderson et al. 1999

Michigan 1980
1980
1991
1993

0.34–0.56
110–140

142–431
48–100

1.8 (1.2–3.2)
1.2
0.47
(0.17–0.27)

Swackhamer and Armstrong 1987
Pearson et al. 1996
Pearson et al. 1996
Anderson et al. 1999

Superior 1978–1983
1980
1992
1993 56–160 28–93

(0.63–3.3)
2.4
0.18
(0.070–0.10)

Baker et al. 1985
Jeremiason et al. 1994
Jeremiason et al. 1994
Anderson et al. 1999

Erie 1993 52–330 45–250 (0.20–1.6) Anderson et al. 1999

Ontario 1993 110–190 75–160 (0.19–0.25) Anderson et al. 1999

aRanges presented in parenthesis
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The world’s oceans have also been monitored for PCB concentrations.  PCB levels reported in sea water

from various oceans include 0.04–0.59 ng/L in the north Pacific, 0.02–0.20 ng/L in the north Atlantic, and

0.035–0.069 ng/L in the Antarctic (Giam et al. 1978; Tanabe et al. 1983, 1984).  PCB levels were several

orders of magnitude higher in sea-surface microlayer samples taken from industrial areas, compared to

sites further offshore (Cross et al. 1987).  PCB concentrations of 0.3–3 ng/L, have been detected in sea

water from the North Sea (Boon and Duinker 1986).

Although PCBs are widely found in surface waters, their low solubility generally prevents them from

reaching high concentrations, especially in groundwater (EPA 1980b).  However, under extreme

conditions, such as at hazardous waste sites, PCB contamination of groundwater can occur.  A maximum

total PCB concentration of 1,200 µg/L was detected in groundwater samples collected on-site at the

General Motors Foundry Operation, a Superfund site only 100 yards from the boundary of the Mohawk

Nation Reservation at Akwesasne.  The maximum off-site groundwater concentration of PCBs (3 ppb)

was collected at nearby Raquette Point, New York, which is within the Mohawk Nation Reservation at

Akwesasne (ATSDR 1995).  In the Mezquital Valley of Mexico, untreated waste water from Mexico City

is used to irrigate croplands (Downs et al. 1999).  Excess irrigation, however, has resulted in recharging

near-surface aquifers used as domestic water supplies.  To determine the potential for PCB exposure,

researchers analyzed groundwater samples and found that levels of PCBs were #36 pg/L.  In general,

groundwater is not expected to be significantly impacted by PCB contamination.

Due to the presence of PCBs in the atmosphere, they are often associated with precipitation.  In

Table 6-12, typical mean PCB concentrations in rain water from various locations are presented.  PCB

concentrations measured in the late 1970s to early 1980s declined by a factor of 4–10 compared to those

measured in the late 1980s and early 1990s (Eisenreich et al. 1981, 1992).  Although PCB levels appear to

have decreased during this time, more recent studies show both decreasing and steady state conditions. 

Precipitation sampled from the Great Lakes region from 1991 to 1997 was studied for temporal trends in

PCB concentrations (Simcik et al. 2000).  It was found that PCB concentrations decreased in precipitation

collected over Lakes Michigan and Ontario; data collected for Lakes Michigan and Ontario showed half-

lives of 6.9±3.5 and 4.0±1.4 years, respectively.  Lakes Erie, Huron, and Superior, however, did not show

any significant decrease in PCB concentrations in precipitation.  The study also compared its results to

other research that has monitored temporal trends in PCB concentrations over the Great Lakes.  It was

determined that the deposition rate of PCBs from the atmosphere to the Great Lakes is approximately

equal to the amount evaporating from the lakes to the atmosphere.  This suggests that a steady state

equilibrium of PCBs has developed in the Great Lakes ecosphere (Simcik et al. 2000).
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Table 6-12.  Comparison of PCB Levels (ng/L) in Rainwater Samples 
from the 1970s to the 1990s

Location
1970s–1980sa 
mean (range)

1980s–1990sb 
mean (range)

Remote 5 (1–30) No data

Rural/continental 20 (1–50) 5 (0.5–20)

Great Lakes 20–50 (10–150) 5 (0.5–20)

Urban 50 (10–250) 10

Marine/coastal 1–5 (0.5–10) 0.5 (0.1–1.0)

alate 1970s to early 1980s (Eisenreich et al. 1981)
blate 1980s to early 1990s (Eisenreich et al. 1992)
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Some recent studies have reported the following mean concentrations of total PCBs in rain water: sites

along the eastern shore of Green Bay had a mean PCB concentration of 2.2 ng/L (range, 0.9–11.7 ng/L)

(Franz and Eisenreich 1993); on Lake Michigan near Chicago, 4.1–189 ng/L in 1994/1995 (Offenberg

and Baker 1997); Chesapeake Bay, 1.6 ng/L (range, 0.04–34 ng/L) (Leister and Baker 1994); and Pelee

Island on the western end of Lake Erie, 10.2 ng/L, and Wolfe Island on the eastern end of Lake Ontario,

8.7 ng/L from 1986 to 1991 (Chan et al. 1994).  Concentrations of PCBs have also been determined in

remote regions of the world.  In snow collected from the Antarctic, PCB concentrations ranged from 

0.16 to 1.0 ng/L (Tanabe et al. 1983).  In a study conducted in 1996, PCB concentrations in snow samples

from western Canada’s mountain ranges were twice as high in higher altitudes compared to lower

altitudes (Blais et al. 1998).  For example, the concentrations of di-, tri-, tetra-, penta-, hexa-, and

heptachlorobiphenyls in snow samples from Saskatchewan River Crossing (elevation of 1,402 meters

above sea level (masl)) in Alberta, Canada were 0.05, 0.15, 0.25, 0.35, 0.15, and 0.10 ng/L, respectively. 

At Parker Ridge, which has an elevation of 2,011, the concentrations for di-, tri-, tetra-, penta-, hexa-, and

heptachlorobiphenyls were 0.30, 0.25, 0.15, 0.15, 0.10, and 0.05 ng/L, respectively (Blais et al. 1998).  It

was also noted that at higher elevations, di- and trichlorinated congeners dominated total PCBs while at

lower altitudes, tetra- and pentachlorinated congeners were higher.

In a literature review of 140 articles containing information on urban storm water quality, Makepeace et

al. (1995) reported that total PCB concentrations in urban storm water ranged from 27 to 1,100 ng/L. 

From 1995 to 1996, PCB concentrations in water samples collected from the Trenton Channel stretch of

the Detroit River, Michigan, ranged from <5 to 22 ng/L in particulate and from <5 to 13 ng/L in dissolved

fractions of water (Froese et al. 1997).  It was estimated that 600 kg of PCBs passed through the Channel

in 1995.  A maximum total PCB concentration of 15,000 ng/L was detected in surface water samples from

the St. Lawrence River downstream from a Superfund site (General Motors Foundry Division) (ATSDR

1995).  Based on large-volume water sampling from the ship canal between Hamilton Harbor and the start

of the St. Lawrence River, an annual PCB loading of 2.8 kg/year was estimated for Lake Ontario (Fox et

al. 1996).

6.4.3 Sediment and Soil

PCB levels in soils and sediments have decreased in many areas across the United States since its ban in

the late 1970s.  Sediment core samples were used to study the temporal change of PCB deposition at

11 riverine systems located in Texas, Florida, Iowa, Virginia, New Mexico, and Georgia (Van Metre et al.

1998).  In almost every sediment core sample, PCB concentrations peaked around 1970 and decreased
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linearly afterwards.  The only sediment sample that did not have a downward trend in PCB concentration

was at Lake Seminole in Florida, where the PCB concentration did not decrease or increase significantly

from 1955 to 1995.  Overall, the mean half-life of PCBs in riverine sediments was calculated to be

9.5 (±2.2) years.  To determine the temporal change in PCB concentrations within the Hudson River

basin, researchers obtained sediment core samples from 18 locations and analyzed them for PCBs (Bopp

et al. 1998).  The study found that from the mid-1960s to early 1990s, PCB concentrations decreased

significantly over time.  For example, PCB concentrations in the upper Hudson River were 350 ppm in

the mid-1960s compared to 34 ppm in 1991.  In sediment samples taken from the base of the Hudson

River, sediment core samples had a mean concentration of 3.03 ppm in the mid-1960s which decreased to

0.80 ppm by 1992 (Bopp et al. 1998).  The historic profiles of PCB concentrations in sediments of the

lower Passaic River, New York were also studied.  The authors concluded that total PCB sediment

concentrations peaked in the 1970s and that PCB concentrations declined dramatically from 4.7 mg/kg

(dry weight) in the 1970s to 1.1 mg/kg (dry weight) in the 1990s (Wenning et al. 1994).  A similar study

of dated sediments from the Newark Bay Estuary, New Jersey (including the Passaic River), also reported

that the highest concentration of PCBs occurred in buried sediments (0–140 cm) from the Passaic River

and Newark Bay at depths corresponding to historic deposition during the 1960s and 1970s, the peak

manufacturing period for Aroclors (Iannuzzi et al. 1995).  Surficial sediments were analyzed for PCBs

from Lake Ontario from 1982 to 1986 (Oliver et al. 1989).  Concentrations decreased from

1,300–1,900 ng/g in 1982/1983 to 80–290 ng/g in 1985/1986.  Researchers determined that the

percentage of lower chlorinated congeners (tri to penta) decreased with depth, while hexachlorobiphenyls

remained fairly constant throughout and the concentration of highly chlorinated congeners increased with

depth (Oliver et al. 1989).  Archived soil samples collected in the United Kingdom between 1951 and

1968 were analyzed for PCB concentrations and compared to soil samples from the same region collected

in 1993 (Lead et al. 1997).  The study found that in 9 out of 10 cases, PCB concentrations decreased over

time.  Differences in concentrations ranged from 3.6 ng/g measured in 1953 to 1.1 ng/g in 1993 as well as

1,400 ng/g measured in 1966 to 2.6 ng/g in 1993 (Lead et al. 1997).  While the tri-chlorinated congeners

decreased by a factor of approximately 1,000 between 1968 and 1993, octachlorinated biphenyls only

decreased by a factor of approximately 5 over the same time period.  The researchers contributed the high

degree of loss for the lower chlorinated biphenyls to higher rates of volatilization and biodegradation

(Lead et al. 1997).  These decreasing trends in sediment and soil samples, however, have not been

observed in all parts of the world.  PCB concentrations in sediment samples taken from the Seine River in

France were studied from 1984 to 1992 to determine temporal changes (Chevreuil et al. 1998).  In

Europe, the Seine River is known for having some of the highest levels of PCBs.  During the course of

the 9-year study, no significant change in PCB concentration was observed.
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The concentrations and congener profile of PCBs in sediments depend on the depth at which the samples

are collected (Lake et al. 1992; Pereira et al. 1994).  In 1988, the concentration of PCBs in surface core

sediments (0–2.5 cm) from heavily contaminated upper New Bedford Harbor, Massachusetts, ranged

from 1.02x106 to 9.12x106 ng/g (Lake et al. 1992).  At a depth of 15–17.5 cm, PCB concentrations ranged

from 7.53x106 to 2.96x107 ng/g.  At greater depths, however, the concentration of PCBs in sediment cores

decreased.  The concentration range of surficial bed sediments collected from San Francisco Bay ranged

from 1.3 to 8.1 ng/g dry weight (Pereira et al. 1994).

In 1972, upper sediment layers from the Hudson River and New York Harbor contained PCB

concentrations ranging from 560 to 1,950 ng/g (Aroclor 1254) and from 3,950 to 33,300 ng/g

(Aroclor 1242), respectively (Bopp et al. 1982).  From 1968 to 1975, surface sediments from the Great

Lakes contained Aroclor 1254 concentrations ranging from 2.5 to 251.7 ng/g, with the highest

concentrations detected in Lake Erie (Thomas and Frank 1981).  In 1976, PCB concentrations monitored

in sediments from 13 streams in the Potomac River Basin ranged from 10 to 1,200 ng/g (Feltz 1980). 

Sediment samples collected in 1979 from Gill Creek adjacent to a hazardous waste site near Niagara

Falls, New York contained 1.0x106 ng/g dichloro-, 3.0x106 ng/g trichloro-, 6.0x106 ng/g tetrachloro-,

3.0x106 ng/g pentachloro-, and 3.0x106 ng/g hexachlorobiphenyl (Elder et al. 1981).  In 1980, an average

Aroclor 1260 concentration of 120 ng/g was detected in sediment samples from eight sites along the coast

of Maine (Ray et al. 1983).  The mean concentrations of PCBs (ng/g dry weight) measured from 1980 to

1982 in sediments from the Great Lakes were as follows: southern Lake Huron, 34; Lake St. Clair, 29;

western Lake Erie, 300; central Lake Erie, 131; and eastern Lake Erie, 91 (Oliver and Bourbonniere

1985).  From 1987 to 1990, approximately 1,000 sediment samples from Green Bay, Lake Michigan,

were analyzed to map the areal distribution of PCBs in the bay sediments (Manchester-Neesvig et al.

1996).  The Bay sediments were estimated to contain a total of 8,500 kg of PCBs.  The PCBs in these

sediments are not evenly distributed, and an estimated 50% of the total PCB mass is located in the

southern portion of the Bay (closest to the city of Green Bay) in an area representing 3% of the total area. 

An analysis of PCB homolog groups revealed that tri-, tetra-, and pentabiphenyls represented 30.8, 40.6,

and 13.5%, respectively, of total PCBs detected in Green Bay sediments (Manchester-Neesvig et al.

1996).

Sediments downstream from highly contaminated sites may also be affected by PCB residues.  Maximum

total PCB concentrations of 5,700,000 and 36,000 ng/g were detected in sediments from the St. Lawrence

River and Raquette River, respectively; these sites are within the boundaries of Akwesasne, New York, a

Native American community downstream from a Superfund site (ATSDR 1995).  Vanier et al. (1996)



PCBs 535

6.  POTENTIAL FOR HUMAN EXPOSURE

measured PCB concentrations at three sites along the St. Lawrence River exposed to high potential PCB

contamination, including two in urban Montreal, Quebec.  PCB concentrations in the top 10 cm of the

sediment were 3,800–16,000 ng/g dry weight Aroclor 1254 equivalent.  In the most contaminated site,

located in an industrial area, PCB inputs appear to have been relatively constant since about 1982.  Di-

and tri-chlorinated congeners make up more than 70% of the profile in the more concentrated area and

less elsewhere along the river.

Although the use of PCBs has been discontinued by many countries, they are still detected in sediments

from around the world.  In September of 1994, researchers obtained sediment core samples along the

Dnipro River in the Ukraine and analyzed them for PCB residues (Lockhart et al. 1998).  In two core

samples, one from the Zaporizhzhia reservoir and one from the Kakhovka reservoir along the Dnipro

River, the total concentrations of PCBs were 48.1 and 30.6 ng/g, respectively.  The study also found that

penta- and hexachlorobiphenyls were detected more frequently than any other PCB congeners at both

sites.  In 1996, sediment samples from 17 sites within the Bay of Chetumal, Mexico, were analyzed for

PCBs (Norena-Barroso et al. 1998).  Concentrations of total PCBs ranged from 1.23 to 9.28 ng/g with a

median value of 2.96 ng/g.  In North Vietnam, sediment samples from the Red River Delta and the coastal

area of the Thai Binh province were analyzed for PCB residues from 1995 to 1996 (Nhan et al. 1998). 

The mean concentration of total PCBs detected for all sediment samples was 2.12 ng/g dry weight.

In arctic regions, PCB concentrations are highest in surface sediments representing inputs from the 1980s

and early 1990s.  These observations support the hypothesis of a gradual movement of contaminants

northward, caused by temperature-dependent partitioning (Wania and Mackay 1996).  PCB

concentrations ranging from 98 to 540 ng/g were detected in sediments from four remote, high-altitude

lakes in Rocky Mountain National Park (Heit et al. 1984).  Considering that there were no anthropogenic

sources of PCBs in the vicinity, PCBs most likely accumulated via atmospheric deposition.  The same

phenomenon was observed in four lakes located in remote areas of Alaska where the concentration of

total PCBs averaged 0.12 ng/g dry weight (Allen-Gil et al. 1997). 

In contrast to sediment, PCB concentrations in soil have not been closely monitored.  Of soil samples

collected from three unspecified PCB disposal facilities, 74% had PCB concentrations >100 µg/m2

(NIOSH 1977).  The PCB concentrations at these sites ranged from 4 to 180,000 µg/m2 (Bryant et al.

1989).  Subsurface soils and sludges collected on-site at the General Motors Foundry Operation (a

Superfund site in New York) had maximum concentrations of 750 and 41,500 ppm, respectively (ATSDR

1995).  In the Canadian Arctic, a string of 21 radar stations called The Distant Early Warning (DEW)
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Line stretches along 3,000 km and has been in operation since the 1950s.  These radar stations have been

associated with former PCB use and contamination (Bright et al. 1995a, 1995b).  Site samples from the

21 DEW Line facilities, plus 3 additional Arctic radar installations, were collected from 1989 to 1992. 

PCBs were detected in undisturbed soils near the 21 DEW Line sites and as far as 5 km, but were not

detected in soil 20 km from site.  Concentrations ranged from not detected (detection limit=0.1–5.3 ng/g)

to 45 ng/g in soil.  These data indicate short-range redistribution of PCBs in a terrestrial environment.

6.4.4 Other Environmental Media

In order to fully assess human exposure to PCBs, several human diet studies have been conducted to

monitor for PCB residues.  In some cases, the analytical methodology and detection limits rendered these

results inconsistent with more recent studies and some judgement is necessary.  A 10-year study of ready-

to-eat foods conducted by the U.S. Food and Drug Administration (FDA) from 1982 to 1991 found PCB

residues 27 times out of 17,050 foods sampled (KAN-DO Office and Pesticides Team 1995).  The study

included 234 food items that represented about 5,000 food types in American diets covering all age

groups.  The average concentration of PCBs in those foods with detectable quantities was 0.0179 µg/g

wet weight.  The concentration of dioxin-like PCBs (including PCBs 77, 105, 118, 126, 156, 157, and

169) was studied in composite pasteurized milk samples collected in the United States from 1996 to

1997 (Lorber et al. 1998).  The study found that out of a total of 48 samples, the average PCB

concentration was 0.50 pg/g lipid weight.  An earlier study conducted from 1969 to 1976 monitored PCBs

in raw foods.  They were analyzed as part of a federal monitoring programs conducted by the FDA and

the U.S. Department of Agriculture (USDA).  Data from this study can be found on Table 6-13.  Based on

this report, fish products clearly contained the highest levels of PCBs.  Food either grown or processed

abroad and imported into the United States is another potential source of human exposure (Kannan et al.

1997).  Various fish oils used as dietary supplements were collected from around the world and analyzed

for PCB levels (Jacobs et al. 1998).  Researchers found that PCB congeners 138, 153, and especially

118 were detected most frequently and in the highest concentrations.  None of the samples, however,

exceeded the FDA regulatory limit of 2.0 mg/L for total PCBs for animal feed.  In fact, total PCB

concentrations ranged from not detected to 1.132 mg/L with a mean value of 0.332 mg/L (Jacobs et al.

1998).  PCB concentrations measured in Australian crop products were <0.01–11 ng/g wet weight and

dairy products, were 1.2–8.2 ng/g wet weight.

As previous monitoring sections have demonstrated, PCBs can be found throughout the world. 

Consequently, this has led to significant levels of PCBs bioaccumulating in aquatic organisms exposed to 
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Table 6-13.  Polychlorinated Biphenyl Residues in Domestic
Raw Foods for Fiscal Years 1969–1976

Commodity

Number of 
samples
analyzed

Percent of sample
with positive
detections

Average 
concentration
(ppm)a

Fish 2,901 46.0 0.892

Shellfish 291 18.2 0.056

Eggs 2,303 9.6 0.072

Red meatb 15,200 0.4 0.008

Poultryb 11,340 0.6 0.006

Fluid milk 4,638 4.1 0.067

Cheese 784 0.9 0.011

Source: derived from Duggan et al. 1983

aAverage of all samples, both positive and negative (zero values were used for all
samples not containing polychlorinated biphenyls).  Detection limit is 0.001 ppm.
bFiscal years 1972–1976
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PCB-contaminated waters (EPA 1980b).  PCB concentrations in seafood have therefore been closely

monitored over the years.  Although, in the past, PCB monitoring consisted of comparing PCB residues to

Aroclor mixtures, more recent studies have concentrated on determining PCBs on a congener-specific

basis (Bush et al. 1989; Huckins et al. 1988; Maack and Sonzogni 1988).  Overall, the most commonly

detected PCB congeners in fish samples are PCBs 138, 153, 180, 118, 110, 101, and 95 (Giesy et al.

1997; Hansen 1999; Hilbert et al. 1998; Jacobs et al. 1998; Qi et al. 1997; Ylitalo et al. 1999).  Due to

their high persistence and low potential for biodegradation, these PCB congeners are generally detected in

the highest concentrations in biological tissues.  In general, fish bioconcentrate more highly chlorinated

congeners, such as penta-, hexa-, and heptachlorinated biphenyls (Datta et al. 1999, Qi et al. 1997, Ylitalo

et al. 1999).  In a study of bullhead fish from Bear Lake, researchers found that the relative concentrations

of di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, and nonachlorobiphenyls were 0.003, 0.019, 0.015, 0.165,

0.085, 0.075, 0.018, and 0.002 µg/g dry weight, respectively (Qi et al. 1997).  The same distribution of

PCB homolog groups was also observed in Northern Pike and Walleye from the same lake.  Similarly,

rats have been shown to preferentially bioconcentrate highly chlorinated PCBs.  In rats given gavage

doses of Aroclor 1254 (comprised of 2.1% mono-, di-, and tri-chlorinated PCB congeners, 19.1% tetra-,

49.6% penta-, 25.9% hexa-, 2.9% hepta-, and 0.5% octa- and nona-chlorinated PCB congeners), heavily

chlorinated congeners (with 6–9 chlorines) accounted for greater percentages of total PCBs in analyzed

tissues than in Aroclor 1254 itself (Kodavanti et al. 1998).

The dioxin-like PCB congeners, such as PCBs 77, 126, and 169, generally make up <1% of the total

amount of PCBs detected in fish (Ylitalo et al. 1999).  For instance, of the three dioxin-like PCB

congeners (77, 126, and 169), PCB 169 was not detected in fish and mussels collected in 1990 from

marine and estuarine waters from New York State, and the sum of the concentrations of the other two

congeners was <1% of the total PCB concentration (Hong et al. 1992b).  In another study, PCB congeners

were detected in oysters (Crassostrea virginica) from Galveston and Tampa Bays, but the sum of their

concentrations represented <1.5% of the total PCB concentration (Sericano et al. 1992).  Two of these

coplanar PCB congeners (77 and 126) were retained longer than those corresponding to different PCBs

within the same group when the oysters were moved to a clean water site.  Because of their dioxin-like

toxicity, these PCB congeners could constitute a potential health hazard to humans.  These studies

illustrate the importance of determining the concentration of specific congeners, in addition to the

concentration of total PCBs, in fish and shellfish tissues.

Using more complete congener profiles, including PCBs 95, 101, and 110 (see below), levels of PCBs

have been shown to increase with respect to the trophic level of the organism being studied.  In 1994,
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researchers monitored the concentration of PCBs in Lake Superior’s food web to determine differences in

accumulation between trophic levels (Kucklick and Baker 1998).  The concentration of total PCBs ranged

from 0.0056 µg/g wet weight in Mysis relicta to 0.180 µg/g wet weight in bloater fish.  Total PCBs in all

biota were dominated by hexa-, penta-, and heptachlorobiphenyl congeners, with only minor

contributions from the di-, tri-, and tetrachlorobiphenyl congeners that dominate the lake’s water column

(Kucklick and Baker 1998).  Based on their observations, researchers discovered that the increase in total

PCB residues was influenced both by the organisms lipid content and trophic position.  It was also noted

that the relative percentage of PCB congeners did not vary significantly between trophic levels.  When

comparing the levels of PCBs detected in sediment to the levels found in benthic organisms, researchers

found that the amount of PCBs accumulated by the benthic organisms could not be solely explained by

exposure to contaminated sediments, but was also influenced by PCB concentrations in feed and water

(Kucklick and Baker 1998).  The same increase in PCB concentration with respect to trophic level was

observed in the remote regions of the Canadian Arctic.  Researchers analyzed several animals from the

Canadian Arctic in April 1993 to determine the relative concentrations of PCBs stored in lipid tissues

(Letcher et al. 1998).  As in other food chains, PCB concentrations appeared to increase at higher trophic

levels.  The study found that the concentrations of total PCBs in Arctic cod, female ringed seal, male

ringed seal, and polar bear were 0.0718, 0.387±73, 0.447±92, and 6.207±948 µg/g lipid weight (Letcher

et al. 1998).  Of the 72 PCB congeners that were analyzed for in polar bear fat samples, only 20 were

found above the detection limit (5.0x10-5 µg/g lipid weight).  Of these, PCBs 153, 180, and 138 were

found in the highest concentrations.  Interestingly, cod and ringed seal contained 47 and 53 congeners,

respectively, above the detection limit.  For Arctic cod, PCBs 110, 101, 153, and 95 were detected in high

concentrations, while ringed seal contained high levels of PCBs 153, 138, and 101.  On a PCB congener-

specific basis, the concentration of PCBs decreased from cod to seal and finally to polar bear, revealing

an increasingly simplified number of PCB congeners bioaccumulating (Letcher et al. 1998).

Eight commercially and recreationally important marine species were collected in 1993 and 1994 from

30 locations along the Atlantic and Pacific coastal regions of the contiguous United States and analyzed

only for dioxin-like PCB residues (Ylitalo et al. 1999).  All marine species analyzed contained 1, often

$6, dioxin-like PCB congeners.  Researchers noted that higher concentrations were detected in marine

species collected near urban areas (Ylitalo et al. 1999).  The total mean concentration of PCBs in marine

tissues ranged from 0.0035 to 8.800 µg/g, wet weight.  The most commonly detected PCB congeners

were PCBs 153, 138, and 128.  For example, in fish species, PCB 153 represented 9.3–22% of the mean

total amount of PCBs detected in muscle (Ylitalo et al. 1999).  Dioxin-like PCBs that were detected most

frequently included PCBs 118, 105, 170, and 180.  Certain dioxin-like congeners (PCBs 77 and 126) were
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also detected in several tissues containing high lipid levels such as crab and lobster hepatopancrease

(Ylitalo et al. 1999).  However, these congeners were minor contributors to total PCB concentrations and

were usually <1% of the total.  The di-ortho-substituted congeners comprised 0.70–26% of the total PCB

concentrations while mono-ortho-substituted PCBs contributed 4.8–31% (Ylitalo et al. 1999).  Although

PCBs were the most frequently detected contaminant in environmental samples, the concentrations

usually fell well below the FDA tolerance limit of 2.0 µg/g wet weight in edible tissues of fish and

shellfish from the United States (Ylitalo et al. 1999).  The highest levels of PCBs occurred in

hepatopancreas samples from crustaceans, which are typically not consumed.

The Great Lakes region has accumulated persistent toxic substances, including PCBs, to the extent that

fish, other wildlife, and human populations face potentially high exposures to these constituents (Hicks

1996).  The concern for potential exposures of human populations to PCBs as well as other persistent

constituents in fish has spawned a number of studies of fish PCB body-burdens.  A survey of salmonid

species (chinook salmon, coho salmon, lake trout, brown trout, rainbow trout, and brook trout) in the

sport catch from western Lake Michigan showed significant interspecies differences in PCB residues

(Miller et al. 1993a).  When standardized to fish length, the maximum PCB concentration in muscle was

found in lake trout, followed by brown trout, chinook salmon, brook trout, rainbow trout, and coho

salmon.  However, in all species of fish surveyed, the levels of PCBs in 1990 declined 20–50% from

levels found in 1985.  Stow (1995a) evaluated data for these same five species, collected from Lake

Michigan from 1972 through 1992 and found that PCB levels have remained fairly constant since the

early 1980s when corrected for differences in species, location, and length.

Other studies support the downward trend in PCB concentration in fish from the Great Lakes region. 

Total PCB concentrations were studied from 1985 to 1992 in Coho salmon and rainbow trout caught near

various Wisconsin Lake Michigan fishing ports (Eggold et al. 1996).  The mean PCB concentrations in

Coho salmon in 1985, 1990, and 1992 were 0.99±0.6, 0.83±0.25, and 0.78±0.29 µg/g wet weight,

respectively while the mean PCB concentrations in rainbow trout in 1985, 1990, and 1992 were

1.13±1.38, 0.61± 0.33, and 0.44±0.19 µg/g wet weight, respectively.  One study followed the change in

PCB concentrations in sport fish and juvenile forage fish in the Canadian waters of the Great Lakes over a

15–20 year period (Scheider et al. 1998).  According to the study, the concentrations of PCBs in sport fish

declined in both Lake Huron and Lake Ontario from 1976 to 1994.  Mean concentrations of PCBs in

65 cm lake trout from southern Lake Huron declined from 8.07 ppm in 1976 to 0.47 ppm in

1994 (Scheider et al. 1998).  The same pattern was observed in 60 cm rainbow trout from Lake Ontario

where PCB concentrations declined from 3.9 ppm in 1976 to 0.97 ppm in 1994.  Among trout from Lake
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Ontario, PCB concentrations (total and individual congeners) have decreased by as much as 80% between

1977 (9.06 µg/g) and 1993 (1.72 µg/g) (Huestis et al. 1996).  For more information concerning PCB

concentrations in fish from the Great Lakes region, refer to Table 6-14.

A study was begun in 1975 by the New Jersey Department of Environmental Protection (NJDEP) to

monitor the concentration of PCBs in fish from the estuarine and coastal marine waters of New Jersey

(Kennish and Ruppel 1996).  The NJDEP monitored the concentration of PCB congeners exclusively

found in Aroclors1248, 1254, and 1260.  Although their studies indicate that PCB contamination is

highest in the Hudson-Raritan estuary, there is evidence that PCB concentrations are declining in some

fish species.  For example, the mean PCB level for striped bass and white perch decreased from 2.14 to

1.80 ppm wet weight and from 2.06 to 1.28 ppm wet weight, respectively, between the 1986–1987 and

1988–1991 survey periods (Kennish and Ruppel 1996).  However, the proportion of striped bass in the

1986–1987 study that exceeded the U.S. proposed action level of 2.0 ppm was 38%, while the

1988–1991 study showed relatively the same result with 36% exceeding 2.0 ppm.  The mean PCB

concentration for composite fish samples from the North Coast region also declined.  While the

1986–1987 study found a mean concentration of 2.33 ppm wet weight, the 1988–1991 study had a mean

concentration of 1.64 ppm wet weight.  Also, the percentage of samples with concentrations exceeding

2.0 ppm was lower in the 1988–1991 (33%) study than in the 1986–1987 (70%) study.  The Belgian

Fisheries Research Station monitored PCB concentrations in marine samples from 1983 to 1993 and

noticed a similar downward trend in PCB contamination (Roose et al. 1998).  The study followed four

different species: cod, flounder, blue mussel, and brown shrimp.  All species, except blue mussel, showed

a statistically significant decrease in PCB concentration.  In 1983, the median PCB concentration in cod

muscle tissue was 0.81±0.34 µg/g, while by 1993, the median concentration declined to 0.40±0.15 µg/g;

flounder muscle tissue had a median concentration of 3.3±0.8 µg/g in 1983, while by 1993, the median

concentration declined to 0.9±2.0 µg/g; blue mussel had a median PCB concentration of 2.4±0.3 µg/g in

1983, while by 1993, the median concentration declined to 1.6±0.1 µg/g; and for brown shrimp, the

median PCB concentration was 0.49±0.08 µg/g in 1983, while by 1993, the median concentration

declined to 0.28±0.05 µg/g (Roose et al. 1998).  Several studies support a gradual decrease in PCB

concentrations in fish tissue over time.  For more information concerning PCB concentrations in fish

species, refer to Table 6-15.

Decreasing PCB concentrations in fish, however, has not always been observed.  For instance, cod liver

oil samples from the Baltic Sea, were collected and analyzed for PCB concentrations every 5 years from

1971 to 1989 (Falandysz 1994).  Researchers found that PCB concentrations did not decline from the 
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Table 6-14.  Mean PCB Concentrations in Fish from the Great Lakes Region

Species Location Year
PCB concentration
µg/g (wet weight)a Source

Coho salmon Lake Michigan, Wisconsin 1985
1990
1992

0.99±0.6
0.83±0.25
0.78±0.29

Eggold et al. 1996

Rainbow trout Lake Michigan, Wisconsin 1985
1990
1992

1.13±1.38
0.61±0.33
0.44±0.19

Eggold et al. 1996

Lake trout Lake Huron 1976
1994

8.07
0.47

Scheider et al. 1998

Rainbow trout Lake Ontario 1976
1994

3.9
0.97

Scheider et al. 1998

Trout Lake Ontario 1976
1994

9.06
1.76

Huestis et al. 1996

Forage fish Tittabawassee River 1990 (0.408–3.445) Giesy et al. 1997

Forage fish Saginaw River 1990 (0.452–1.875) Giesy et al. 1997

Forage fish Saginaw Bay 1990 (0.349–0.523) Giesy et al. 1997

Forage fish Lower Green Bay 1991 (0.048–0.458)b Brazner and De Vita 1998

Forage fish Middle Green Bay 1991 (0.040–0.078)b Brazner and De Vita 1998

Forage fish Upper Green Bay 1991 (0.003–0.011)b Brazner and De Vita 1998

Chinook salmon Lake Huron 1991–1994 0.338 Feeley and Jordan 1998

Chinook salmon Lake Ontario 1991–1994 0.835 Feeley and Jordan 1998 

Whitefish Lakes Superior, Huron, and Michigan 1994 (0.0711–0.2025) Dellinger et al. 1996

Lake trout Lakes Superior, Huron, and Michigan 1994 (0.378–0.158) Dellinger et al. 1996

aRanges in parenthesis
bLipid weight
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Table 6-15.  Mean PCB Concentrations in Fish

Species Location Year
PCB concentration
µg/g (wet weight)a Source

Fish U.S. national rivers and lakes 1976–1977
1978–1979
1980–1981
1984

0.88
0.85
0.53
0.38

Schmitt et al. 1985

Cod Belgian fisheries 1983
1993

0.81±0.34
0.40±0.15

Roose et al. 1998

Flounder Belgian fisheries 1983
1993

3.3±0.8
0.9±2.0

Roose et al. 1998

Striped bass New York Harbor/Long Island
Sound

1984
1990

4.13
1.30

NYSDEC 1991

Striped bass Eastern Long Island 1985 1.8±0.4 Bush et al. 1989

Striped bass Western Long Island 1985 1.9±0.2 Bush et al. 1989

Striped bass Eastern Atlantic Shore 1985 3.0±0.5 Bush et al. 1989

Striped bass Western Atlantic Shore 1985 7.5±1.9 Bush et al. 1989

Striped bass Hudson River 1985 15.0±3.0 Bush et al. 1989

Striped bass Hudson-Raritan Estuary 1986–1987
1988–1991

2.14
1.80

Kennish and Ruppel 1996

White perch Hudson-Raritan Estuary 1986–1987
1988–1991

2.06
1.28

Kennish and Ruppel 1996

Composite fish samples U.S. North Coast 1986–1987
1988–1991

2.33
1.64

Kennish and Ruppel 1996

Young carp Buffalo River 1991 2.40 Loganathan et al. 1995

Middle-aged carp Buffalo River 1991 4.30 Loganathan et al. 1995

Old carp Buffalo River 1991 5.00 Loganathan et al. 1995

Herring Baltic Sea 1991–1992 (0.688–1.555)b Strandberg et al. 1998
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Table 6-15.  Mean PCB Concentrations in Fish (continued)

Species Location Year
PCB concentration
µg/g (wet weight)a Source

Perch Baltic Sea 1991–1992 (1.034–5.418)b Strandberg et al. 1998
Deep sea fish Suruga Bay, Japan 1993 0.910 Takahashi et al. 1998
Deep sea velvet fish Nordfjord, Norway 1993 2.39b Berg et al. 1998
Deep sea tusk fish Nordfjord, Norway 1993 11.7b Berg et al. 1998
Fish Kremenchuck Reservoir, Ukraine 1994 (0.0107–0.0196) Lockhart et al. 1998
Fish Kakhovka Reservoir, Ukraine 1994 (0.0437–0.0767) Lockhart et al. 1998
Northern pike Bear Lake, Michigan 1995 (0.161–0.275)c Qi et al. 1997
Walleye Bear Lake, Michigan 1995 (0.156–209)c Qi et al. 1997
Bullhead Bear Lake, Michigan 1995 (0.0727–0.473)c Qi et al. 1997
Brook trout Kaweah River, California 1996 (0.0049–0.0081) Datta et al. 1998a
Fish Brunswick River 1996 (0.0025–0.48) Maruya and Lee 1998
Bullhead Lac St-Louis/St Lawrence Seaway 1996–1997 0.029 Chan et al. 1999
Perch Lac St-Louis/St Lawrence Seaway 1996–1997 0.070 Chan et al. 1999
Pike Lac St-Louis/St Lawrence Seaway 1996–1997 0.050 Chan et al. 1999
Smallmouth bass Lac St-Louis/St Lawrence Seaway 1996–1997 0.115 Chan et al. 1999
Sturgeon Lac St-Louis/St Lawrence Seaway 1996–1997 0.154 Chan et al. 1999
Walleye Lac St-Louis/St Lawrence Seaway 1996–1997 0.067 Chan et al. 1999

aRanges in parenthesis
bLipid weight
cdry weight
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early 1970s to the late 1980s and that they appeared to have been in a steady state condition.  For

example, the concentration of hexachlorobiphenyls in cod-liver oil were 3.2 (1971), 2.5 (1975),

7.3 (1980), 3.3 (1985), 4.0 (1986), and 3.8 µg/g (1989).  In general, the hexa- and pentachlorobiphenyls

were most predominant in the cod liver oil samples (Falandysz 1994).

Proximity to industrialized regions has been shown to influence PCB concentrations in fish.  Forage fish

collected in 1991 from coastal wetlands and beaches in Green Bay, Lake Michigan were analyzed for

PCB concentrations (Brazner and DeVita 1998).  The concentration of PCBs in fish species appeared to

vary spatially within Green Bay, according to proximity to the city.  For example, PCB concentrations in

fish (lipid normalized) ranged from 0.048 to 0.458 µg/g in the lower bay (closest to the city),

0.040–0.078 µg/g in middle bay, and 0.003–0.011 µg/g in the upper bay (furthest from the city).  Mean

levels of PCBs were also measured in fish above and below dams on rivers that feed into Lakes Michigan

and Huron (Giesy et al. 1995).  Researchers found that concentrations were higher downstream from the

dams than upstream.  For example, mean PCB concentrations in fish below dams found along the

Manistee, Muskegon and Au Sable Rivers were 1.90, 3.40, and 1.10 µg/g wet weight, respectively, while

above the dam, mean concentrations were 0.020, 0.195, and 0.061 µg/g wet weight, respectively.  In a

National Study of Chemical Residues in Fish conducted by EPA between 1986 and 1989, PCBs were

detected at a mean concentration of 1.90 µg/g in bottom-feeding and game fish collected from 91% of

362 sites surveyed (EPA 1992c; Kuehl et al. 1994).  Fish collected from 26% of the sites contained PCB

residues >1 µg/g, and fish from 2.5% of the sites contained PCB residues at >10.0 µg/g.  Fish collected at

sites near wood-preserving facilities, industrial/urban areas, pulp and paper mills, refineries/other

industrial sites, and Superfund sites were more highly contaminated with PCBs than fish collected near

agricultural areas, near POTW sites, or at U.S. Geologic Survey (USGS) National Stream Quality

Accounting Network sites (EPA 1992c; Kuehl et al. 1994).  Concentration patterns of various homologs

in fish tissues were as follows: mean concentrations of total mono-, di-, octa-, nona-, and

decachlorobiphenyl were <0.025 ppm; mean concentrations of total tri- and heptachlorobiphenyl were

<0.150 ppm; and mean concentrations of total tetra-, penta-, and hexachlorobiphenyl were 0.699, 0.565,

and 0.356 ppm, respectively (EPA 1992c).  Table 6-16 compares PCB concentrations in tissues of

six species of fish collected near the Mohawk Reservation at Akwesasne adjacent to the PCB

contaminated General Motors Foundry site and downstream in the St. Lawrence River and its tributaries

(ATSDR 1995).  The highest mean concentration of PCBs in standard fillet tissues (20.55 µg/g) was

detected in brown bullheads collected at the General Motors Corporation site.  These values are far higher

than the background concentrations of <0.100 µg/g for the total PCBs in fish fillets in New York State

(Sloan and Jock 1990). 
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Table 6-16.  Mean Total PCB Levels in Standard Fillets of Fish Collected 
from the Vicinity of a Superfund Site

Species
CM-CFDa site
mean (range)b

St. Lawrence River and tributariesc

mean (range)b

Brown bullhead 20.55 (<0.15–81.49) 1.82 (<0.15–10.73)

Northern pike 2.73 (0.48–5.12) 0.42 (<0.15–3.52)

Rock bass 1.04 (<0.15–4.02) 0.18 (0.15–0.86)

White sucker 6.39 (0.29–11.0) 0.17 (<0.15–0.63)

Yellow perch 3.41 (0.20–12.26) 0.61 (0.15–0.86)

Source: ATSDR 1995

aGeneral Motors Corporation/Central Foundry Division, Massena, New York, plant is a Superfund site adjoining
the Mohawk Indian Nation at Akwesasne.  Fish and wildlife studies and human health studies have been
conducted at this site.
b(ppm, wet/weight)
cPCB contamination has been detected within the Akwesasne reservation boundaries in the St. Lawrence River
and several tributaries downstream from the General Motors Corporation site.
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Fish that inhabit remote areas of the world have also been shown to bioaccumulate PCBs.  From 1993 to

1994, PCB residues were evaluated in Kokanee fish and lake trout from the Sierra Nevada ecosystem to

determine the extent of organochlorine pollution in high altitude, alpine regions (Datta et al. 1999). 

Analysis of fish muscle revealed that the concentration of total PCBs ranged from 0.018 to 0.430 µg/g

wet weight for lake trout.  Compared to trout, Kokanee fish generally had lower PCB concentrations

ranging from 0.013 to 0.044 µg/g wet weight.  Residue analysis indicated that the congeners most

commonly found ranged from penta- to heptachlorobiphenyls (Datta et al. 1999).  Although Lake Tahoe

does not have any known point sources of pollution from industry or agriculture, the levels of PCBs in

lake trout samples were approximately equal to or slightly lower than those found in lake trout from Lake

Superior.  This suggests that PCBs have been introduced to Lake Tahoe through atmospheric deposition. 

For further information, refer to Table 6-17.   

The remediation of contaminated sediments has been shown to decrease PCB concentrations in fish

inhabiting contaminated rivers.  For example, one study monitored PCB concentrations in fish before and

after remediation of PCB contaminated sediment (Bremle and Larsson 1998).  It was found that PCB

concentrations in lake water decreased from 0.0086 to 0.0027 µg/L, while concentrations in fish were

halved after remediation was completed.  Although concentrations of PCBs in fish decreased after

remediation, the relative composition of PCB congeners remained relatively the same as before

remediation.  Fish still concentrated higher chlorinated congeners relative to levels detected in lake water

(Bremle and Larsson 1998).

PCB concentrations have also been monitored in zebra mussels collected from the lower Saginaw River

and Saginaw Bay, Michigan in the winter of 1991 (Endicott et al. 1998).  The results indicated that the

concentration of PCBs decreased in zebra mussels collected further away from the mouth of the Saginaw

River.  For example, the PCB concentration in zebra mussels from the mouth of the river was

approximately 1.1 µg/g, while concentration in zebra mussels collected 20 km away was approximately

0.45 µg/g.  The same concentration gradient was also observed in water samples taken from the zebra

mussel collection sites.  This suggests that PCB levels in zebra mussels are directly related to PCB

concentrations in water (Endicott et al. 1998).  Data from the Mussel Watch, plus additional data on

shellfish (oysters) from North and South American coastal locations, indicate PCB congeners in shellfish

were highest from South American locations and lowest in Central America (Sericano et al. 1995). 

Among 51 sites along the north Gulf of Mexico coast, samples with concentrations >0.100 µg/g were

reported from 15 sites.  Nevertheless, average concentrations of PCBs in shellfish from these 51 Gulf of 
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Table 6-17.  Mean PCB Concentrations in Fish from Remote Areas

Species Location Year

PCB concentration

µg/g (wet weight)a Source

Char Arctic Quebec, Canada 1989–1990 0.152 ± 0.042b Dewailly et al. 1993

Trout Schrader Lake in the Alaskan Arctic 1992 0.0066 Wilson et al. 1995

Grayling Schrader Lake in the Alaskan Arctic 1992 0.0013 Wilson et al. 1995

Lake trout Sierra Nevadas 1993–1994 0.018–0.430 Datta et al. 1999

Kokanee fish Sierra Nevadas 1993–1994 0.013–0.044 Datta et al. 1999

Lake trout Siskiwit Lake 1996–1997 (0.040–0.460) Kannan et al. 2000

aRanges in parenthesis
bLipid weight
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Mexico sites decreased between 1986 and 1993.  For more information on PCB concentrations in

crustaceans, refer to Table 6-18.

PCB concentrations in the tissues of edible turtles, and in some cases frogs, are also of concern with

respect to human exposure, particularly for populations engaged in recreational and subsistence hunting. 

Hebert et al. (1993) evaluated the concentrations of PCBs in muscle tissue of 78 adult snapping turtles

collected from 16 sites in southern Ontario, Canada.  Mean concentrations (wet weight) of PCBs from all

16 sites ranged from <0.200 to 0.655 µg/g.  Skinner (1992) also reported concentrations of PCBs in fat,

liver, and muscle tissue from snapping turtles collected near Akwesasne, where turtles are a source of

food for a Native American community of nearly 10,000 people.  This author reported concentrations of

total PCBs (wet weight) ranging from 36.10 to 1,347 ppm in fat, 2.85–94.77 ppm in liver tissue, and not

detected to 2.98 ppm in muscle tissue of snapping turtles.  Northern leopard frogs from six wetlands

located along the Fox River and around Green Bay were collected from 1994 to 1995 and analyzed for

total PCB concentrations (Huang et al. 1999).  PCB levels in frog tissues ranged from 0.002 to 0.200 µg/g

wet weight with the highest concentrations found in frogs from the upper Fox River, furthest away from

Green Bay, Wisconsin.  Mean residues of Aroclors 1254 and 1260 in tissues of frogs, collected along the

Canadian shores of Lakes Erie and Ontario, and the St. Lawrence River, ranged from 0.310 to 1.699 µg/g

lipid weight in green frogs and 0.276–1.566 µg/g lipid for leopard frogs (Gillan et al. 1998).  Based on

frog tissue content and sediment PCB content, biota-sediment accumulation factors of 33.28–1.06 and

23.02–0.42 were calculated for leopard frogs and green frogs, respectively.

PCB concentrations were analyzed in fat, liver, and muscle tissue of commonly hunted red and grey

squirrels, beaver, muskrat, snowshoe hares, cottontail rabbits, and white-tailed deer (Skinner 1992). 

PCBs were typically found only in fatty tissues and occasionally in liver tissues, but were not detected in

muscle tissue.  Only two liver-tissue samples from muskrats contained detectable concentrations of PCBs. 

The highest concentration 0.7 µg/g wet weight was detected in a male muskrat.  Total PCBs were above

detection limits more frequently in mammalian fatty tissues, but only in muskrat and cottontail rabbits. 

Maximum concentrations of 0.8 µg/g wet weight and 4.0 µg/g lipid weight occurred in male muskrat

from the St. Lawrence River near Raquette Point and the St. Regis River, respectively (both sites are

within the New York State portion of the Mohawk Nation Reservation at Akwesasne).  Wild game

provides an important food source for both recreational and subsistence hunters; eating wild game is also

a significant cultural activity for many Native Americans (Skinner 1992). 
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Table 6-18.  Mean Concentration of PCBs in Crustaceans

Species Location Year
PCB concentration
µg/g (wet weight)

PCB concentration
µg/g (lipid weight) Source

Blue mussel Belgian Fisheries 1983
1993

2.4±0.3
1.6±0.1

Roose et al. 1998

Brown shrimp Belgian Fisheries 1983
1993

0.49±0.08
0.28±0.05

Roose et al. 1998

Oysters Galveston Bay, Texas 1986
1988
1990
1992
1993

0.098a

0.100a

0.099a

0.058a

0.036a

Jackson et al. 1998

Mussels/Oysters U.S. Nationwide 1986 (0.009–6.808)a Sericano et al. 1995

Blue mussels Nordic Seas 1989–1990 (0.038–3.3) Gustavson and
Jonsson 1999

Zebra mussels Mouth of Saginaw
River

1991 1.1 Endicott et al. 1998

Zebra mussels Saginaw Bay 
(59 km from mouth of
Saginaw River)

1991 0.076 Endicott et al. 1998

Flat tree oysters Morrocoy National
Park, Venezuela

1991 (0.0006–0.012) Jaffe et al. 1998

Zebra mussels Saginaw Bay 1991 0.45 Endicott et al. 1998

Grass shrimp Coastal Georgia 1996 0.33 Maruya and Lee 1998

Gei wai shrimp Mai Po, Hong Kong 1997 0.0064 Liang et al. 1999

Caridean shrimp Mai Po, Hong Kong 1997 0.0046 Liang et al. 1999

aDry weight; Ranges in parenthesis
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Waterfowl may also be an important source of human exposure, especially for avid hunters.  Table 6-19

presents temporal PCB concentrations found in several species.  Tissues of fish- and shellfish-eating

waterfowl (i.e., goldeneye and mergansers) contained significantly higher PCB concentrations than

tissues of dabbling ducks (i.e., black ducks and mallards), which, in turn, contained higher concentrations

of PCBs than tissues of grazers (i.e., Canada geese) whose food preferences include aquatic vegetation,

upland grass, and grain (Rathke and McRae 1989).  The concentration of total PCBs was determined in

breast meat of Canadian geese collected from northeastern Illinois in 1994 (Levengood et al. 1999). 

Breast meat samples were baked, allowing fat to drip free, and assayed for PCB residues.  Overall, PCBs

were detected in only 5 of 87 tissue samples in baked breast meat (detection limit 0.01 µg/g) with residues

occurring more frequently in muscle than in skin.  PCB concentrations ranged from 0.114 to 0.480 µg/g

(Levengood et al. 1999).

 

Herring gull eggs have routinely been collected by the Canadian Wildlife Service since 1974 to monitor

contaminant trends.  The PCB concentrations in eggs taken from several nesting colonies on the Great

Lakes decreased from 1974 to 1986 (Rathke and McRae 1989).  The trend analysis determined that the

PCB concentration in herring gull eggs taken from two colonies on Lake Ontario was .140 mg/kg wet

weight in 1974 and fell to approximately 40 mg/kg in 1986.  Similarly, the concentration of PCBs in eggs

from a colony on Lake Erie was 60 mg/kg in 1974, but fell to <40 mg/kg in 1986.  An analysis of PCB

concentration in gull eggs in the Great Lakes from 1978 to 1992 indicates that egg concentrations have

stabilized (Stow 1995b).  Similar conclusions have been determined by other research efforts.  Levels of

PCBs in herring gull eggs from Great Lakes breeding colonies declined rapidly following the ban of

PCBs in 1972.  Since the mid 1980s, however, the concentration of PCBs in gull eggs has essentially

stabilized in Lakes Superior, Michigan, Huron, and Ontario (Donaldson et al. 1999).  In Lake Ontario,

herring gull egg PCB concentrations show annual variation due to increased feeding on alewives during

colder weather when alewives are particularly abundant (Hebert et al. 1997).  Unhatched eggs and plasma

samples from prefledged bald eagles were analyzed for PCB concentrations in the Canadian Great lakes

Basin (Donaldson et al. 1999).  The study found the mean PCB concentration in unhatched bald eagle

eggs collected along Lake Erie from 1974 to 1980 was 84 mg/kg wet weight and decreased to 26.4 mg/kg

wet weight from 1989 to 1994.  From 1990 to 1996, however, no significant decrease in plasma residue

levels was observed from either Lake Erie or Lake Superior (Donaldson et al. 1999).

Bottlenose dolphins (Tursipos truncatus) collected during a 1990 mortality event along the Gulf Coast of

the United States contained mean PCB concentrations of 93, 7.2, 49, 21, and 4 µg/g lipid basis in adult

males, adult females, immature dolphins, suckling dolphins, and fetuses, respectively (Kuehl and Haebler 
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Table 6-19.  Mean PCB Concentrations in Animals

Species Location Year

PCB
concentration
µg/g (wet weight)a Source

Bufflehead
duck

New York State 1983–1984 0.15±0.19 Foley 1992

Scaup duck New York State 1983–1984 0.13±0.12 Foley 1992

Mallard duck New York State 1983–1984 0.08±0.06 Foley 1992

Black duck New York State 1983–1984 0.07±0.07 Foley 1992

Wood duck New York State 1983–1984 0.05±0.01 Foley 1992

Canada
geese

New York State 1983–1984 0.05±0.01 Foley 1992

Waterfowl Eastern Lake Ontario/
St. Lawrence River

1983–1985 (<0.01–0.27) Rathke and McRae
1989

Mallard duck Wisconsin 1984–1989 (ND–0.021) Botero et al. 1996

Grebe duck British Columbia 1989 0.542 (liver tissue) Elliott and Martin
1998

Seaduck British Columbia 1989 1.770 (liver tissue) Elliott and Martin
1998

Polar bear Arctic Quebec 1989–1990 7.002±1.276
(lipid weight)

Dewailly et al. 1993

Mink Georgia 1989–1991 0.154 (liver tissue) Osowski et al. 1995

Mink South Carolina 1989–1991 0.219 (liver tissue) Osowski et al. 1995

Mink North Carolina 1989–1991 0.216 (liver tissue) Osowski et al. 1995

Mallard duck Hamilton Harbor,
Canada

1990 0.161 Gebauer and
Weseloh 1993

Mink Northwest Territories,
Canada

1991–1995 0.007–0.0731
(liver tissue)

Poole et al. 1998

Sea otters Aleutian Islands 1992–1998 0.310±0.480 Bacon et al. 1999

Sea otters California Coast 1992–1998 0.190±0.350 Bacon et al. 1999

Sea otters Southeast Alaska 1992–1998 0.008±0.014 Bacon et al. 1999

aRanges in parenthesis

ND = not detected
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1995).  This trend generally reflects increased accumulation with age, with the exception of the adult

females.  The lower PCB residues in adult females are possibly due to the loss of PCBs via placental

transfer and via lactation by the adult females who are suckling their young (Kuehl and Haebler 1995).  In

a similar study with stranded bottlenose dolphins, Salata et al. (1995) reported a mean total PCB

concentration of 36.1 µg/g.  The mean concentrations of homolog groups di-, tri-, tetra-, penta-, hexa-,

hepta-, octa-, nona-, and decachlorobiphenyls were 0.046, 1.1, 2.2, 6.16, 15.1, 8.58, 2.23, 0.42, and

0.264 µg/g, respectively.  Similar to what is observed in other aquatic organisms, highly chlorinated PCB

congeners are preferentially bioconcentrated.  Blubber and liver samples from six striped dolphins found

dead in the Mediterranean sea from 1989 to 1990 were analyzed for PCBs (Reich et al. 1999). 

Researchers found that the mean concentration of total PCBs in dolphin blubber was 35.6±47.7 µg/g wet

weight and in liver samples was 8.74±11.7 µg/g wet weight.  Of the 37 congeners monitored in dolphin

tissue, PCBs 138, 153, 170, and 180 comprised approximately 60% of total PCBs (Reich et al. 1999). 

Non-ortho and mono-ortho PCB congeners, however, contributed <1% of total PCBs in blubber and liver

tissues.  Of these, PCB 77 was detected most frequently and in the highest concentrations.

By comparing concentrations of PCBs in a mother dolphin and her unborn calf, the authors determined

that the mother transferred 3.7% of her total PCB body burden to the calf during her pregnancy.  It was

also found that the lower molecular weight PCB congeners were more easily transferred than the higher

molecular weight congeners and that congeners with 9 or 10 chlorine atoms may not have been

transferred at all transplacentally.  PCB concentrations were measured in milk from five captive

bottlenose dolphins originally collected in the Gulf of Mexico (Ridgway and Reddy 1995).  Maximum

concentrations of PCBs in the milk were 4.45 ppm wet weight (14.1 ppm lipid weight) as Aroclor 1254,

found in the milk produced by a 34-year-old female, the oldest of the population sampled.  The lowest

concentration, 0.281 ppm wet weight (1.38 ppm lipid weight), was in milk from one of the youngest, a

16-year-old female.  For more information concerning PCB concentrations detected in blubber of several

sea mammals, see Table 6-20.  Based on a review of the literature on PCB residues in mammalian

species, Kamrin and Ringer (1994) concluded that the lowest residues were found in the Antarctic, while

the highest were in northern latitudes, particularly the Baltic Sea, with overall trends showing decreasing

residues of PCBs over the past 10–15 years.  Among male beluga whales from the St. Lawrence River

estuary, tissue PCB concentrations decreased by a factor of 1.9 from 1982 to 1994 (Muir et al. 1996a).  In

the 1993–1994 samples, male and female beluga whales had geometric mean total PCB concentrations of

29.6 and 78.9 µg/g lipid basis, respectively (Muir et al. 1996b).  PCB 126 was detected most often and in

the highest concentrations of the four coplanar PCBs (77, 81, 126, and 169).
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Table 6-20.  Mean PCB Concentrations in Blubber of Sea Mammals

                                       

Species

                                 

Location

                   

Year

PCB
concentration
µg/g wet weighta

PCB
concentration
µg/g lipid weight

                                          

Source

Harbour porpoise Kattegat-Skagerrak
Seas, Norway

1978–1981
1989–1990

40±22
13±5.2 Berggrena et al. 1999

Porpoise Irish Sea 1987–1989 6.19 Troisi et al. 1998

Dolphin Irish Sea 1987–1989 (2.80–15.48) Troisi et al. 1998

Striped dolphin Mediterranean Sea 1989–1990 35.6±47.7 Reich et al. 1999

Beluga whale Arctic Quebec 1989–1990 1.002±0.469 Dewailly et al. 1993

Seal Arctic Quebec 1989–1990 0.527±0.692 Dewailly et al. 1993

Bottlenose dolphin
(adult male) U.S. Gulf Coast 1990 93 Kuehl and Haebler 1995

Bottlenose dolphin
(adult female) U.S. Gulf Coast 1990 7.2 Kuehl and Haebler 1995

Bottlenose dolphin
(juvenile) U.S. Gulf Coast 1990 49 Kuehl and Haebler 1995

Bottlenose dolphin
(suckling) U.S. Gulf Coast 1990 21 Kuehl and Haebler 1995

Bottlenose dolphin
(fetus) U.S. Gulf Coast 1990 4 Kuehl and Haebler 1995

Harbor seal pup Mouth of Puget Sound 1990 (1.3–2.1) Hong et al. 1996

Harbor seal pup Head of Puget Sound 1990 (9.2–16) Hong et al. 1996

Adult harbor seal Mouth of Puget Sound 1990 (0.17–0.32) Hong et al. 1996

Adult harbor seal Head of Puget Sound 1990 (1.1–2.3) Hong et al. 1996
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Table 6-20.  Mean PCB Concentrations in Blubber of Sea Mammals (continued)

                                       

Species

                                 

Location

                   

Year

PCB
concentration
µg/g wet weighta

PCB
concentration
µg/g lipid weight

                                          

Source
Striped dolphin Aegean Sea 1991 21.52±2.76 Troisi et al. 1998

Harbor seal San Francisco Bay 1991–1992 0.050a Young et al. 1998

Beluga whale
(fetus) Alaskan North Coast 1992 1.35 Wade et al. 1997

Beluga whale
(adult female) Alaskan North Coast 1992 (0.70–2.16) Wade et al. 1997

Beluga whale
(adult male) Alaskan North Coast 1992 (5.24–9.42) Wade et al. 1997

Ringed seal
(female) Canadian Arctic 1993 0.387±0.073 Letcher et al. 1998

Ringed seal
(male) Canadian Arctic 1993 0.447±0.092 Letcher et al. 1998

Beluga whale
(adult male) St. Lawrence River 1993–1994 29.6 Muir et al. 1996b

Beluga whale
(adult female) St. Lawrence River 1993–1994 78.9 Muir et al. 1996b

Sperm whale
(male) North Sea 1994–1995 4.5 Holsbeek et al. 1999

Seal Caspian Sea 1996–1997 (1.12–19.08) Hall et al. 1999

aConcentration reported in blood; ranges in parenthesis
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PCBs have also been detected in several consumer products manufactured outside the United States.  PCB

concentrations in recycled paper products (envelopes, toilet paper, tissue paper, and cardboard boxes) of

central European origin were in the range of 5–6,000 µg/kg (ppb) (Welling et al. 1992).  PCBs

(Aroclor 1254) also were detected in both anhydrous lanolin and lanocerin and in finished cosmetic

products produced in Italy (Mariani et al. 1994).  PCB concentrations detected in the various products

included 1.2 ppm in anhydrous lanolin, 4.8 ppm in lanocerin, 0.64 ppm in anhydrous cream for children,

0.52 ppm in oil/water emulsion-emollient cream, and 3.8 ppm in water/oil emulsion-emollient cream.

6.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

PCBs are no longer manufactured or used (except under exemption) in the United States.  Nonetheless,

PCBs are present in the environment due to the recycling of the compounds released into the environment

by historic anthropogenic production activities.  The general population may be exposed to PCBs

primarily via consumption of contaminated foods, particularly fish, meat, and poultry, and inhalation

(Gunderson 1988).  No known consumer product currently manufactured in the United States contains

PCBs.  Exposure of the general population to PCBs is evidenced by the body burden of the compounds

among the nonoccupationally exposed population.  PCBs have been detected in the blood, adipose tissue,

and breast milk of nonoccupationally exposed members of the general population (EPA 1986b;

Greizerstein et al. 1999; Gunderson 1995; Ouw et al. 1976).  Overall, PCBs 138, 153, and 180 are the

most consistently detected and quantitatively dominant congeners found in human tissues (Hansen 1998). 

These three congeners have been used to monitor both geographical and temporal trends in human

exposure studies due to their high prevalence and persistence (Koopman-Esseboom et al. 1994a, 1994b;

Schecter et al. 1989).  Other congeners that are commonly detected include PCBs 28, 118, and 170.  As

the summaries in Section 6.4 indicate, there is a general overall trend for decreasing concentrations of

PCBs in most environmental media over the past 2 decades; air concentrations have decreased slightly,

and levels in water, sediments, and fish have decreased, in some cases significantly.  As noted in this

section, PCB body burdens in humans also have decreased, as evidenced by lower levels reported in

human adipose tissue, blood serum, and breast milk. 

The National Human Adipose Tissue Survey (NHATS), conducted in 1982 using packed column gas

chromatography (GC), found that the concentrations of total PCBs in composite human adipose tissue

ranged from 14 to 1,700 ng/g (0.014–1.7 ppm) (lipid basis) (EPA 1986b).  The maximum concentration

was found in a sample composite collected from the South Atlantic region (Virginia, North Carolina,

South Carolina, Georgia, and Florida).  PCBs were detected in 83% of 46 composite samples analyzed in
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the NHATS study.  In a subsequent study, Kutz et al. (1991) reported that an examination of the NHATS

data from 1970 to 1983 revealed that 93.5% of the U.S. population had detectable concentrations of

PCBs, 66.4% had concentrations <1 ppm, 28.9% had concentrations >1 ppm, and 5.1% had

concentrations >3 ppm.  The 0–14-year-old age group had the smallest percentage of individuals with

detectable concentrations of PCBs and the smallest percentage of individuals exceeding the 1 and 3 ppm

PCB concentrations; males had a higher percentage of individuals exceeding 1 ppm PCBs than did

females; and the Northeast Census Region had the greatest percentage of individuals exceeding 3 ppm.  A

time-trend analysis of the data also revealed that the percentage of the population having PCB

concentrations from 1 to 3 ppm steadily declined from over 62% in 1972 to <2% in 1984.  The percentage

of the population that had tissue levels >3 ppm also declined during this same period from a high near

10% in 1978 to zero in 1984 (Fensterheim 1993).  PCB concentrations in human adipose tissues in the

United States appear to have decreased significantly over the years.

Results of congener-specific analysis of PCBs in human adipose tissues obtained from Atlanta, Georgia,

in 1986 have been reported (Lordo et al. 1996; Patterson et al. 1994).  The sums of three coplanar PCB

congeners (77, 126, and 169) were 0.24 ng/g in 14 males with a mean age of 43 and 0.18 ng/g in

14 females with a mean age of 54.  Age was significantly correlated with the concentrations of the three

congeners such that older people had higher concentrations of PCBs than did younger individuals.  From

1990 to 1994, 105 autopsied bodies from Greenland were analyzed for PCBs (Dewailly et al. 1999). 

Researchers also found that the mean concentration of total PCBs in omental fat increased with age.  The

study found that in people ages 41–54, 55–69, and $70, mean PCB concentrations were 4,909, 5,337, and

7,357 ng/g lipid weight, respectively.  The concentrations of congener-specific PCBs in intra-abdominal,

subcutaneous, adrenal, liver, kidney, muscle, and spleen tissues obtained from five North American

patients with no known occupational exposure are also available (Schecter et al. 1989, 1994).  Differences

were observed in the PCB congener pattern of distribution within a given tissue and between the various

tissues of the donors.  On a lipid weight basis, the highest concentrations of PCBs typically were detected

in the adipose and liver tissue.  Preferential accumulation in adipose tissue was also noticed in the

Dewailly et al. (1999) study.

PCB serum levels measured from 1973 to 1996 in the general population are summarized in Table 6-21. 

Since the 1970s, researchers have noticed a decrease in PCB concentrations in human blood serum.  In a

study of 1,631 individuals from 1978 to 1979 living in the United States, the mean PCB concentration in

human blood serum was 6.4 ng/g (Kreiss et al. 1982).  Currently, mean serum PCB levels range from 
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Table 6-21. Serum Polychlorinated Biphenyl (PCB) Levels in Non-occupationally Exposed U.S. Populations 
That Do Not Consume Fish from PCB-Contaminated Waters (1973–1996)

PCB level ng/mL (ppb)

Area and 
sampling method

Number
of
subjects

Year
Arithmetic
mean

Geometric
mean

Arithmetic
standard
deviation

95%
Confidence
interval Range Reference

Nonconsumers of
Great Lakes sport fish

41 1996 1.2 0.46–2.9 Anderson et al. 1998

Infrequent male
consumers of Great
Lakes sport caught fish

57 1994–1995 1.5 0.5–9.7 Hanrahan et al. 1999

Infrequent female
consumers of Great
Lakes sport caught fish

42 1994–1995 0.9 0.5–3.3 Hanrahan et al. 1999

Females from Cornwall
and Mississauga
Ontario, Canada

35 1992 3.2b 1.3–12.0 Kearney et al. 1999

Males from Cornwall
and Mississauga
Ontario, Canada

45 1992 3.9b 1.1–12.0 Kearney et al. 1999

Los Angeles–Long
Beach, California work
forcea

738 1982–1984 5 4b 4.37 – <1–37 Sahl et al. 1985a,
1985b

Jefferson, Ohio,
volunteers

59 1983 5.8 4.4 6.5 4–8 1–45 Welty 1983

Fairmont, West
Virginia, volunteers

40 1983 6.7 5 5.3 5–8 1–23 Welty 1983

Norwood,
Massachusetts,
volunteers

990 1983 4.9 4.2 3.5 4–6 2–30 Condon 1983

Old Forge,
Pennsylvania,
volunteers

138 1981 3.6 – – – <3–43 Reid and Fox 1982
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Table 6-21. Serum Polychlorinated Biphenyl (PCB) Levels in Non-occupationally Exposed U.S. Populations 
That Do Not Consume Fish from PCB-Contaminated Waters (1973–1996) (continued)

PCB level ng/mL (ppb)

Area and
sampling method

Number
of
subjects Year

Arithmetic
mean

Geometric
mean

Arithmetic
standard
deviation

95%
Confidence
interval Range Reference

Maternity patients from
western Michigan
control group of
nonfisheaters

71 1982 4 – – – – Schwartz et al. 1983

Lake Michigan random
nonfisheaters

418 1980 – 6.6b – – <3–60 Humphrey 1983

Canton,
Massachusetts,
volunteers

10 1980 7.1 5.2 5.2 3–11 1–18 Condon 1983

Billings, Montana,
random packinghouse
workers

17 1979 7.5 5.8 6.8 4–11 2–30 Drotman 1981

Franklin, Idaho,
volunteers

105 1979 – – – – <5 Drotman 1981

Random unexposed
railroad workers at
unspecified location

19 1979 12 – – – 10–27 Chase et al. 1982

Newton, Kansas,
volunteers

7 1979 4.9 4.2 3.1 2–8 2–11 Vernon 1981

Michigan PBB cohort 1,631 1978–1979 7.7 6.4 – – <1–57 Kreiss et al. 1982
Bloomington, Indiana,
volunteers and controls

110 1977 18.8 – 10.8 17–21 6–79 Baker et al. 1980

Lake Michigan random
nonfisheaters

29 1973 17.3 15b – – <5–41 Humphrey 1983

Source:  Adapted from Kreiss 1985; Massachusetts Department of Public Health 1987; Sahl et al. 1985a, 1985b

aPre-employment survey of utility company workers
bMedian
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0.9 to 1.5 ng/mL in individuals who do not have a diet high in fish, especially fish from the Great Lakes

(Anderson et al. 1998; Hanrahan et al. 1999). 

Congener-specific analysis of PCBs in serum show that the mean concentration of three coplanar

congeners (77, 126, and 169) in the general population in the United States (sampled in 1988) is 176 pg/g

(ppt) (lipid basis) (Patterson et al. 1994).  Analysis of pooled serum samples show a decrease in the level

of three coplanar (77, 126, and 169) PCBs from 1982 to 1989 (Patterson et al. 1994).  The mean

concentration of the total non-ortho-, mono-ortho-, and di-ortho-substituted PCBs in the whole blood of

50 Vietnam veterans in Michigan measured in 1991–1992 was 167 ng/g (ppb) with a concentration range

of 50–628 ng/g (ppb) (Schecter et al. 1993).  A breakdown of total PCBs revealed that 0.227 ng/g were

contributed by the coplanar PCBs (77, 126, and 169), 50 ng/g by the mono-ortho PCBs (28, 74, 105, 118,

and 156), and 117 ng/g by the di-ortho PCBs (99, 128, 138, 153, 170, 180, 183, 185, and 187) (Schecter

et al. 1993).  The three most predominant congeners in the whole blood samples were congener

153 (40 ppb), 138 (26 ppb), and 180 (19 ppb).  The PCB levels in the veterans did not reflect exposure in

Vietnam (Schecter et al. 1993). 

PCB concentrations in human breast milk have also been closely monitored since the early 1970s (Mes

and Davies 1979; Mes et al. 1986; Newsome and Ryan 1999).  Temporal trend studies indicate that the

PCB levels detected in human breast milk have decreased over time (Lunden and Noren 1998; Schade

and Heinzon 1998).  Recent studies indicate that the mean concentration of PCBs in human breast milk

appears to range from 238 to 271 ng/g lipid weight (Kostyniak et al. 1999; Newsome et al. 1995).  For

more information concerning concentrations in human breast milk, please refer to Section 6.6 Exposures

of Children.

Since the early 1960s, the FDA has conducted Total Diet Studies, also known as the Market Basket

Surveys.  These annual studies analyze ready-to-eat foods collected in markets from cities nationwide to

determine the intake of selected contaminants in the American diet.  Tables 6-22 through 6-25 present the

results of the Total Diet Studies from 1976 to 1997 with respect to PCBs.  Since the mid-1970s,

individual diets for adult males, toddlers, and infants have been analyzed, and the total PCB levels have

shown a downward trend in concentration from the mid-1970s to the mid-1980s.  For example, the

estimated daily dietary intake of PCBs in an adult diet in 1977 was 0.016 µg/kg/day while in the study

from 1982 to 1984, the estimated daily intake was 0.0005 µg/kg/day (Gartrell et al. 1985a, 1985b, 1986a).

Temporal monitoring studies of PCBs in Total Diet Studies from 1982 to 1997 have revealed that PCB

intake has remained relatively steady (Bolger 1999; Gunderson 1995).  For example, total diet studies 
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Table 6-22.  Estimated Daily Dietary Intake (µg/kg/day) of Polychlorinated
Biphenyls for Adults, Toddlers, and Infantsa

Fiscal year Adult Toddler Infant

1982–1984 0.0005 0.0008 0.0012

1981–1982 0.003 Not detected Not detected

1980 0.008 Not detected Not detected

1979 0.014   Not detected Not detected

1978 0.027 0.099 0.011

1977 0.016 0.030 0.025

1976 Trace Not detected Trace

Source: Derived from Gartrell et al. 1985a, 1985b, 1986a, 1986b; Gunderson 1988
aFrom food components (not individual food items) analysis
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Table 6-23.  Mean Daily Intakes of PCBs Per Unit of Body Weight (µg/kg body weight/day)a,b

Children Adult males

6 months 2 years 14–16 years 25–30 years

82/84 84/86 86/91 82/84 84/86 86/91 82/84 84/86 86/91 82/84 84/86 86/91

0.001 0.001 <0.001 0.001 0.002 0.002 <0.001 0.002 <0.001 <0.001 0.001 <0.001

aGunderson 1995
bStudy years: 1982–1984, 1984–1986, 1986–1991
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Table 6-24.  Children Total Diet Studies — PCB Intakes from 265 Foods for the Years 1991–1997a

Dietary intake of PCBs µg/kg/day

6–11 months 2 years 6 years 10 year 14–16 years 14–16 years

Total Diet Study Infant Child Child Child Female Male

1991 (3rd quarter) 0.002 0.015 0.023 0.021 0.013 0.013

1993 (1st quarter) <0.001 0.003 <0.001 <0.001 <0.001 0.002

1993 (2nd quarter) 0.001 0.011 <0.001 <0.001 0.002 <0.001

1994 (1st quarter) 0.001 0.034 0.018 0.018 0.010 0.011

1994 (2nd quarter) 0.003 0.002 0.002 0.002 <0.001 <0.001

1995 (1st quarter) 0.008 0.006 0.007 0.004 0.001 0.003

1997 (3rd quarter) <0.001 0.008 0.003 0.003 0.001 0.003

Average intake 0.002 0.012 0.008 0.007 0.004 0.005

a Bolger 1999
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Table 6-25.  Adult Total Diet Studies — PCB Intakes from 265 Foods for the Years 1991–1997a

Dietary intake of PCBs µg/kg/day

25–30 years 40–45 years 60–65 years 70 years

Total Diet Study Female Male Female Male Female Male Female Male

1991 (3rd quarter) 0.007 0.008 0.006 0.009 0.008 0.012 0.008 0.012

1993 (1st quarter) <0.001 <0.001 <0.001 <0.001 0.001 0.001 0.001 0.001

1993 (2nd quarter) <0.001 0.001 0.001 0.001 <0.001 0.001 0.001 0.001

1994 (1st quarter) 0.012 0.013 0.011 0.015 0.012 0.014 0.011 0.010

1994 (2nd quarter) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1995 (1st quarter) 0.003 0.002 0.004 0.003 0.004 0.005 0.002 0.004

1997 (3rd quarter) 0.002 0.002 0.001 0.002 0.002 0.003 0.001 0.003

Average intake 0.004 0.004 0.003 0.004 0.004 0.005 0.003 0.004

a Bolger 1999c
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conducted from 1982 to 1984 for adults between the ages of 25 and 30 indicated that the mean daily

intake of PCBs was <0.001 µg/kg body weight/day while in the 1997 study, the mean was 0.002 µg/kg

body weight/day.  The FDA reported that the source of PCBs in the past was the meat-fish-poultry

composite (63–100% of total dietary intake) with fish being the major contributing source (Jelinek and

Corneliussen 1976).  This observation appears to have continued in the recent Total Diet Studies

conducted from 1991 to 1997 where meat, fish, and poultry remain the primary sources of PCBs in the

human diet with fish being the major contributing factor (Bolger 1999).  A recent market-basket study

analyzed PCB congener levels in pooled food samples from supermarkets in five U.S. cities representing

the northeast, mid-south, south, mid-west, and west (Schecter et al. 1997).  Coplanar PCB concentrations

ranged from 0.2 pg/g wet weight in a simulated vegetarian diet to 531.4 pg/g wet weight in fresh fish. 

Mono-ortho PCBs ranged from 15 pg/g wet weight in a vegetarian diet to 2,350 pg/g wet weight in fresh

fish.  Di-ortho PCBs ranged from 144 pg/g in a vegetarian diet to 4,600 pg/g in fresh fish.  Schecter and

Lingjun (1995) measured levels of mono-ortho and di-ortho PCBs in three types of fast foods sampled at

the same five representative U.S. cities.  Average total concentrations for mono-ortho PCBs were 380,

440, and 500 pg/g for hamburger, pizza, and chicken, respectively, and for di-ortho PCBs were 577, 740,

and 670 pg/g for hamburger, pizza, and chicken, respectively.  

As is the case with U.S. dietary exposure, PCB exposure via ingestion of drinking water and inhalation

has also decreased over time.  The average adult inhales .20 m3 of air per day while the average numbers

of hours a person spends outdoors, within vehicles, and indoors are approximately 1.77, 1.77, and

20.4 hours, respectively (EPA 1997d).  Assuming that outdoor air at a typical urban location contains an

average PCB concentration of 5 ng/m3 (range, 1–10 ng/m3) (Eisenreich et al. 1992), the average daily

exposure via inhalation would be 100 ng (range, 20–200 ng).  However, the concentrations of PCBs in

indoor air can be at least an order of magnitude higher than outdoor air concentrations (see Section 6.4.1)

(Balfanz et al. 1993; MacLeod 1981; Wallace et al. 1996).  It has been suggested that the emissions from

certain appliances and devices (e.g., fluorescent lighting ballasts) that have PCB-containing components

contribute to these higher indoor air concentrations.  Individuals who spend more time indoors in these

types of surroundings may be exposed to higher PCB concentrations than people who spend more time

outdoors.  The exact inhalation exposure for the general population depends on the amount of time an

individual spends outdoors and indoors.

The general population is exposed to <200 ng/day PCBs from drinking water (assuming drinking water

concentrations of <0.1 µg/L [ppb] PCBs and a consumption rate of 2 L/day).  However, the daily

exposure to PCBs via most drinking water in the United States is likely to be much lower than 200 ng,
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since PCBs were detected in only one finished groundwater supply and two finished surface water

supplies surveyed in NOMS I and II out of 113 cities surveyed nationwide.  This value (<0.1 µg/L) is

based on the NOMS study conducted from 1975 to 1977.  A study of municipal drinking water sources in

Canada from 1985 to 1988 detected PCBs in only 1 out of 280 water samples at a concentration of

0.006 µg/L (O’Neill et al. 1992).  Consequently, for persons in the general population, food consumption

and inhalation appear to represent greater sources of human exposure to PCBs than ingestion of drinking

water.

From 1970 to 1976, occupational exposure to PCBs in the United States may have affected

.12,000 individuals per year (NIOSH 1977).  PCB levels in blood, plasma, serum, and body tissues were

10–1,000 times higher in individuals exposed to PCBs in the workplace than in nonoccupationally

exposed individuals (Wolff 1985; Yakushiji et al. 1978).  Serum PCB levels in some occupationally

exposed populations are reported in Table 6-26.  Within 46 months following the cessation of PCB use,

serum PCB levels of the lower chlorinated (mostly tri- and tetra-chlorinated) PCBs in capacitor

manufacturing workers in the United States decreased by an average of 25–90%, although the higher

chlorinated congeners did not decrease significantly (Wolff et al. 1992).  A study conducted in Finland

found that the median serum levels of three co-planar PCB congeners (77, 126, and 169) in capacitor

manufacturing workers were 3–20 times higher than levels in the control population (Luotamo et al.

1993).  The same congeners in the blood of exposed Finnish laboratory personnel, however, were not

elevated above those of a control group (Hesso et al. 1992).  PCB blood levels were compared for

employees in the scrap metal industry where soils were contaminated with PCBs (Malkin 1995).  Serum

PCB levels of <1–65.3 µg/L were observed.  No difference in PCB serum levels were found between

outdoor or indoor workers.  This lack of difference was associated with the workers’ practice of eating

lunch outdoors and consequent hand-to-mouth transmission.

Occupational exposure to PCBs via inhalation was estimated to be more than an order of magnitude

higher than exposure via dermal contact in workers at a facility that recovers PCBs from transformers

(Perkins and Knight 1989).  Although occupational exposure to PCBs in the United States is no longer

due to the production of PCBs or PCB-containing products (e.g., capacitors, transformers, and electrical

equipment), it may still occur as a result of repairing electrical equipment that contains PCBs or accidents

involving such equipment (Schecter and Charles 1991; Wolff 1985).    
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Table 6-26.  Serum Polychlorinated Biphenyl (PCB) Levels in Populations with Occupational Exposure

PCB levels ng/mL (ppb)

Facility
Number of
subjects

Arithmetic
mean

Geometric
mean

95%
Confidence
interval

Range Reference

Railway car maintenance 86 33.4 – – 10–312 Chase et al. 1982
Capacitor plant 34 394.0a – 234–554 trace–1,700 Ouw et al. 1976, 1979
Capacitor plant 290 48.0a 21.0b 38–546b 1–546c Wolff et al. 1982a
Capacitor plant 80 342.0a – – 41–1,319 Maroni et al. 1981a
Capacitor plant 221 – 119.0c

25.3b
–
–

1–2,220c

1–250b
Smith et al. 1982

Public utility 14 – 24.0c

24.0c
15–39c

16–35b
5–52c

7–24b
Smith et al. 1982

Transformer repair workers
(recent exposure)

35 – 43.7d – 4.3–253 Fait et al. 1989

Transformer repair workers
(past exposure)

17 – 30.0c – 1.5–143 Fait et al. 1989

Scavenging copper from PCB-
contaminated capacitors at
waste sites

11 – 12.0 – – Stehr-Green et al. 1986b

Private utility 25 – 22.0c

29.0b
17–25c

20–43b
9–48c

7–250b
Smith et al. 1982

Utility 1,058 4.0 3.0d 3.65f <1–26 Sahl et al. 1985b

Source: Adapted from Kreiss 1985

aBlood level
bHigher-chlorinated PCBs
cLower-chlorinated PCBs
dMedian
eStandard deviation
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In addition, occupational exposure to PCBs may occur as a result of waste site cleanup or disposal

activities.  The median serum levels of two PCB congeners (77 and 81) in Finnish workers at a hazardous

waste incinerator site where PCB-containing capacitors are destroyed were 3–4 times higher than control

population levels (Luotamo et al. 1993).  The serum levels of two other coplanar congeners (126 and 169)

in incinerator workers were not significantly different from control population levels.  Elevated PCB

levels in blood (compared with background levels) were found in some exposed workers, including

firefighters, electricians, and others who entered the building following the Binghamton State Office

Building transformer fire in Binghamton, New York (Schecter 1987).  In seven firefighters, the serum

PCB levels measured approximately 10 months after the fire decreased by 20–95% from levels measured

immediately after the exposure (Schecter et al. 1994).  Compared to persons not occupationally exposed

to PCBs, electrical workers appeared to retain more of PCB congener 126 after exposure than any other

congener; however, the unusually high concentration of PCB 126 in serum of electrical workers was later

attributed to an unidentified peak by the analyst (see Hansen 1999, Appendix Table 5) (Fait et al. 1989). 

Maintenance workers and welders who work with metals coated with PCB-containing paints may also be

at higher risk of exposure because scraps from different railroad car paints were found to contain

4–625 mg/kg of Aroclor 1254 (Welsh 1995).

According to the National Occupational Exposure Study (NOES) conducted by NIOSH from 1981 to

1983, the following estimated number of workers were potentially exposed to Aroclors in the workplace:

2,214 to Aroclor 1242; 3,702 to Aroclor 1254; 991 to Aroclor 1260; and 1,558 to Aroclor 1016 (NIOSH

1989).  Occupational exposure to Aroclors occurs in miscellaneous workers in the transformer industry,

noncellulose fiber industry, semiconductor and related industries, and in sawmills and planing mills.  It

also occurs in clinical laboratory technicians and technologists of general medical and surgical hospitals. 

The NOES database does not contain information on the frequency, concentration, or duration of

occupational exposure to any of the chemicals listed.  The survey provides estimations of the numbers of

workers for whom potential exposure in the workplace is an issue.  Since this study was conducted from

1981 to 1983, it does not accurately represent current workplace exposure to PCBs. 

6.6 EXPOSURES OF CHILDREN

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from

adults in susceptibility to hazardous substances are discussed in Section 3.7 Children’s Susceptibility.
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Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways. 

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults. 

The developing human’s source of nutrition changes with age: from placental nourishment to breast milk

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s

behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their mouths,

sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993).

Children are exposed to PCBs in the same manner as the general population—primarily via consumption

of contaminated foods, particularly meat, fish, and poultry (Bolger 1999; Gunderson 1985).  Infants and

young children consume a greater amount of food per kilogram of body weight and, therefore, may have a

proportionately greater exposure to PCBs than adults (Cordle et al. 1982).  Infants and children also have

different diets than adults due to their age.  This has been reflected in the FDA total diet studies

(Gunderson et al. 1995).  Breast-fed infants may be exposed to higher than average concentrations of

PCBs because PCBs tend to accumulate in breast milk fat.  Factors that can affect the levels of PCBs in

human breast milk include mother’s age, number of deliveries and lactations, place of residence, and

changes in the mother’s weight during lactation (Czaja et al. 1999a, 1999b).  Women with the highest

number of deliveries have higher levels of PCBs in their breast milk (Czaja et al. 1997a).  However, while

lactation may be one of the means of excreting PCBs from the body, it is age rather than the number of

deliveries that seems to affect the concentration of PCBs with older women having higher concentrations. 

Also, women in industrial areas can have elevated levels of PCBs in their breast milk compared to women

living in rural areas (Czaja et al. 1997b).  It is estimated that an infant that is breast fed for 6 months will

receive 6.8–12% of its lifetime PCB body burden (Kimbrough 1995; Patandin et al. 1999).  Blood

samples were taken from 80 full-term German neonates within the first 12 hours of life, before the first

oral feeding (Lackmann et al. 1999).  The median serum concentration of total PCBs was 0.96 µg/L

(<0.30–3.14, range), with PCBs 138, 153, and 180 detected at median levels of 0.34 (<0.10–1.01),

0.42 (<0.10–1.42), and 0.17 (<0.10–0.78) µg/L, respectively.  Lanting et al. (1998a) measured the levels

of PCB congeners 118, 138, 153, and 180 in plasma from 42-month-old children (n=126) living in the

Groningen area, The Netherlands.  In 42-month-old children who were fully breast-fed for at least

6 weeks, the median total plasma PCB level 0.81 µg/L (range, 0.23–2.2), compared to the formula-fed

children that had levels of 0.18 µg/L (range, 0.07–1.49) (see Section 3.7).  
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A recent study conducted from 1991 to 1993 of human breast milk from 213 women living along Lake

Ontario in New York State determined that the mean concentration of PCBs was 271±116 ng/g lipid

weight (Kostyniak et al. 1999).  In 1992, breast milk from 497 women living in Canada had a mean PCB

concentration of 238 ng/g lipid weight (Newsome et al. 1995).  Several studies indicate that PCB

concentrations in human breast milk have decreased since the early 1970s (Hansen 1999; Lunden and

Noren 1998).  For example, in a study of human breast milk of Swedish women studied from 1972 to

1992, researchers determined that the concentration of PCBs decreased over time.  PCB concentrations in

1972, 1980, 1984–1985, 1990, and 1992 were 1,090, 780, 600, 510, and 380 ng/g lipid weight,

respectively (Lunden and Noren 1998).  In Germany, researchers studied PCB levels from 1986 to

1996 in human breast milk of women between the ages of 27 and 31 who had only given birth once. 

They found that the concentrations of PCBs in 1986, 1988, 1990, 1992, 1994, and 1996 were 1,300,

1,050, 1,000, 750, 650, and 450 ng/g lipid weight, respectively (Schade and Heinzow 1998).  Congener-

specific analysis of human milk indicates that the congeners 138, 153, 118, 180, and 105 are most

prevalent and that the three coplanar congeners (77, 126, and 169) were either not detected or detected at

concentrations <1 ng/g (ppb) on a milk fat basis (Bohm et al. 1993; Mes et al. 1993).  For a representative

trend analysis of PCB concentrations in human breast milk over time, please refer to Table 6-27.  PCB

exposure of infants whose mothers have a diet high in fish is discussed in Section 3.7 and 6.7.  In general,

mothers who consume fish contaminated with PCBs have higher levels in their breast milk compared to

nonconsumers.

Unborn children may also be at risk of higher PCB exposure, especially in areas that have been heavily

contaminated with PCBs.  To illustrate this, researchers analyzed placental cord serum of 755 infants born

to mothers residing in towns adjacent to a PCB-contaminated harbor in southeastern Massachusetts

(Altshul et al. 1999).  Infants whose cord serum was analyzed were born between 1993 and 1998 in the

towns of New Bedford, Acushnet, Fairhaven, and Dartmouth, Massachusetts.  Of the 51 PCB congeners

analyzed, only 13 were above the detection limit (0.01 ng/g serum).  The median concentration of PCBs

was 0.56 ng/g serum (Altshul et al. 1999).  Researchers found that the relative predominance of less

chlorinated congeners in the cord blood was generally consistent with the characteristics of the

contaminated site.  PCB concentrations were also measured in cord blood from both 134 women who

consumed Great Lakes fish and 145 women who had never consumed Great Lakes fish (Stewart et al.

1999).  Although researchers did not find any difference between fish consumption levels and total PCBs

in umbilical cord serum, it was established that fish eaters had marked elevations of the most heavily

chlorinated PCB homologues.  In particular, levels of hepta- to nonachlorobiphenyls were greater in fish

eaters than non-fish eaters (Stewart et al. 1999).  Another study examined PCB concentrations in nine 
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Table 6-27.  Mean Concentration of PCBs in Human Breast Milk

Location
Sample
Size Year

PCB
concentration
(ng/g lipid)a

PCB
concentration 
(ng/g milk) Source

National Canadian Study No data
100
210
412
497

1970
1975
1982
1986
1992 238

6
12
26
6.35
7.21

Mes and Davies 1979
Mes and Davies 1979
Mes et al. 1986
Mes et al. 1993
Newsome et al. 1995

National Sweden Study 135
153
431
102
120
60
60
40

1972
1976
1980
1984–1985
1988–1989
1990
1991
1992

1,090
910
780
600
650
510
410
380

Lunden and Noren 1998

Akwesasne Indian Reservation 19
38
40

1986–1989
1990
1991–1992

602
352
254

Fitzgerald et al. 1998

Warren and Schoharie County,
New York (rural)

52
57
45

1986–1989
1990
1991–1992

375
404
318

Fitzgerald et al. 1998

Northern Germany
(age 27–31, primiparae)

15
68
84
43
29
14

1986
1988
1990
1992
1994
1996

1,300
1,050
1,000
750
650
450

Schade and Heinzow 1998
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Table 6-27.  Mean concentration of PCBs in Human Breast Milk (continued)

Location
Sample
Size Year

PCB
concentration
(ng/g lipid)a

PCB
concentration 
(ng/g milk) Source

Zagreb, Croatia 40
54
45

1987–1990
1991–1993
1994–1995

243b

213b

212b

Krauthacker et al. 1998

16 Counties in New York state
adjacent to Lake Ontario

213 1991–1993 271±116 8.28±4.66 Kostyniak et al. 1999

New York State 7 1991–1993 (239–428) 3.5–14.1 Greizerstein et al. 1999
Helsinki, Finland (urban) 20 1992–1994 296 Kiviranta et al. 1999
Kuopio, Finland (rural) 64 1992–1993 198 Kiviranta et al. 1999
New Bedford Harbor,
Massachusetts (near superfund
site)

4 1993 (1,107–2,379) Korrick and Altshul 1998

Murmansk, Russia
(industrialized area)

15 1993 429.4 Polder et al. 1998

Monchegorsk, Russia
(industrialized area)

15 1993 490.5 Polder et al. 1998

Keewatin, Northern Canada 12 1996–1997 247 Newsome and Ryan 1999

aRanges in parenthesis
aMedian



PCBs 573

6.  POTENTIAL FOR HUMAN EXPOSURE

stillborn fetuses from the Netherlands in 1993 and found that median (range) concentration of PCBs in

adipose tissue was 235 (97–768) ng/g lipid weight (Lanting et al. 1998b). 

As indicated above, PCB measurements of breast milk and placental cord blood have been used as

surrogate measures of exposure in studies of children.  Cord blood is the most direct marker of fetal

exposure, but because of its relatively low fat content, it requires sensitive analytical methods for accurate

PCB analysis; analysis of breast milk does not present this difficulty.  Analytical techniques have

improved enormously in recent years, such that cord blood analysis of PCBs is now more accurate and

reliable, but still of concern due to the low concentration of fat in cord blood.

For most young children, it appears that the dietary intake of PCBs has reached a steady state in the

United States.  During the 1980s, dietary intake of PCBs for infants (6–11 months) declined from 0.011 to

0.0012 µg/kg/day, and dietary intake of PCBs for toddlers (2 years) declined from 0.099 to

0.0008 µg/kg/day (Gartrell et al. 1985a, 1985b, 1986a, 1986b; Gunderson 1988).  In the most recent study

conducted in 1997, the estimated dietary intakes for infants (6 months) and toddlers (2 years) are

<0.001 and 0.008 µg/kg/day, respectively (Bolger 1999).  Assuming that the average infant weighs 9 kg,

the average daily dietary exposure would be <0.009 µg.  Assuming that the average toddler weighs 13 kg,

the average daily dietary exposure would be 0.104 µg.  See Tables 6-22 through 6-25 in Section 6.5 for

more details.  A potential source of dietary intake of PCBs for infants may also come from the

consumption of contaminated baby formulas.  In a study of eight soybean infant formulas obtained in

Spain, researchers discovered detectable quantities of PCBs (Ramos et al. 1998).  The mean total

concentration of PCBs in soybean infant formula was 10.25 ng/g lipid weight.  Of the 15 congeners

analyzed for, PCB 101 contributed the most to the total amount of PCBs.

Additional exposure to PCBs could occur for children who live near hazardous waste sites.  Since

children spend a lot of time playing on the ground, both indoors and out, they come into more contact

with contaminants found on dust and dirt particles.  They may be exposed to PCBs by dermal contact

with PCB-contaminated soil and by ingesting contaminated soil from their unwashed hands and other

hand-to-mouth behavior.  The determination of PCBs in dust and dirt can therefore be important for

predicting children’s exposure.  However, quantitative information regarding the bioavailability and

amount of PCBs that children are exposed to through contact with contaminated soils are unavailable.

Between 1994 and 1995, house dust and yard soil were analyzed for PCB concentrations from 34 homes

surrounding New Bedford Harbor, Massachusetts during the dredging of PCB-contaminated sediments
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(Vorhees et al. 1999).  House dust samples were collected from the carpet, while yard soil was collected

from the main entryway.  The results indicated that house dust samples were 10 times higher

(260–23,000 ng/g) than yard soil concentrations (15–1,800 ng/g).  Although yard soil concentrations from

neighborhoods closest to the harbor were significantly higher than comparison neighborhoods distant

from the harbor, house dust concentrations did not differ significantly between the two locales (Vorhees

et al. 1999).  In general, the house dust samples contained higher concentrations of the more volatile, less

chlorinated PCBs than the soil samples.  The results of the house dust data were compared to results

obtained from homes that were not located near known PCB sources.  PCBs measured in house dust in

nine Seattle, Washington homes had concentrations ranging from 240 to 760 ng/g and eight Columbus,

Ohio, homes had concentrations ranging from 210 to 1,900 ng/g (Vorhees et al. 1999).  Clearly, PCB

concentrations were generally lower in these locations compared to the New Bedford Harbor

neighborhood homes.  Street dust and dirt samples, analyzed in August 1993, from the streets of Buffalo,

New York, also contained detectable amounts of PCBs (Irvine and Loganathan 1998).  Total PCB

concentrations for the dust and dirt samples ranged from 90 to 1,700 ng/g, dry weight.  In every case, the

higher-chlorinated congeners were detected more frequently and in greater concentrations.  In particular,

PCBs 153, 138, 101, 118, and 180 contributed >50% of the  total concentration of PCBs in each sample

(Irvine and Loganathan 1998).  Residing in proximity to incinerators may also increase exposure levels

for children.  Blood samples from 298 children living near a toxic waste incinerator in Germany had a

mean concentration of PCBs of 0.49 µg/L (Osius et al. 1999).  Given that PCB congeners have logKoc

values ranging from 3.27 to 6.87 (Horzempa and DiToro 1983; Meylan et al. 1992), they will generally

adsorb strongly to soil and dust particles.  This should decrease bioavailability of PCBs.  More scientific

data, however, are necessary to determine the degree of PCB exposure through hand-to-mouth activities. 

This is suggested as a data need for future study.

Consumption of contaminated groundwater may be an additional source of PCB exposure for children. 

PCBs have been detected in groundwater samples at 500 of the 1,598 NPL sites where they were detected

in some environmental media (HazDat 2000). 

Indoor air at schools could be a potential source of PCB exposure for children.  Indoor air in seven public

buildings (schools and offices) in Minnesota was monitored during 1984 for Aroclors 1242, 1254, and

1260 (Oatman and Roy 1986).  The mean total Aroclor concentration (±1 standard deviation) in the

indoor air of the three buildings using PCB transformers (457±223 ng/m3) was found to be nearly twice as

high as that in the air of the four buildings not using PCB transformers (229±106 ng/m3).  The Aroclor
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levels detected in the indoor air of all seven buildings were significantly higher than those detected in

ambient outdoor air (Balfanz et al. 1993; Eisenreich et al. 1992; MacLeod 1981; Oatman and Roy 1986).  

Children may also be exposed to PCBs through play activities involving PCB containing materials. 

Children who had played with parts of a capacitor that had once contained PCBs had elevated serum PCB

(similar to Aroclor 1242) levels compared with a background population consisting of other household

members and a reference group of persons in the same geographical area (Wolff and Schecter 1991).  The

serum PCB levels in the exposed children declined to about half of the initial values over a period of

11 months.  Exposure could also occur if children were to play near an area where there was a transformer

fire.  Although there are no data on children, elevated PCB levels in blood were found in some workers

who entered a building following a transformer fire (Schecter 1987).  

PCBs have been detected in several consumer products manufactured outside the United States, and it has

not been determined whether any of these products would be likely to be imported into the United States. 

Many of these products could be used by children.  PCB concentrations detected in various products

include 1.2 ppm in anhydrous lanolin, 4.8 ppm in lanocerin, 0.64 ppm in anhydrous cream for children,

0.52 ppm in oil/water emulsion-emollient cream, and 3.8 ppm in water/oil emulsion-emollient cream

(Welling et al. 1992).  Various fish oils used as dietary supplements were collected from around the world

between 1994 and 1995 and analyzed for PCB levels (Jacobs et al. 1998).  Researchers found that PCB

congeners 138, 153, and especially 118 were detected most frequently and in the highest concentrations. 

None of the samples, however, exceeded the FDA regulatory limit of 2.0 ppm for total PCBs.  In fact,

total PCB concentrations ranged from <5 to 1,132 µg/L with a mean of 332.0 µg/L (Jacobs et al. 1998). 

Due to the lack of data concerning the amount of these products that are used by children, it is difficult to

determine the degree of importance these items have on a child’s exposure to PCBs.

Studies also have indicated that PCBs may be transported from the workplace to the home.  Children

living with parents who work with PCBs (i.e., occupations associated with hazardous waste) may have

higher exposure levels.  There have been several cases reported of the transport of PCBs from the

workplace to the home and in some cases, the secondary exposure of family members.  PCBs with a

pattern resembling Aroclor 1254 were found in the blood of two railway maintenance workers who

repaired transformers (77 and 101 ng/mL).  The PCB levels for the wives who laundered their husbands’

clothes were not elevated, but their PCB pattern resembled the Aroclor 1254 pattern of their husbands,

suggesting that the PCBs found in the women’s blood were derived from contact with their husbands

(Fischbein and Wolff 1987).  In Indiana, PCBs were released into the municipal sewage treatment plant
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by an electrical manufacturing firm.  PCBs were found in the blood serum of sewage treatment workers

(75.1 ppb), their family members (33.6 ppb), community residents (24.4 ppb), and people who applied

sludge from the plant in their yards (17.4 ppb) (Baker et al. 1980).  Thus, the worker’s family members

had higher concentrations of PCBs in their blood serum than the other nonoccupational groups.  Based on

these observations, children living in homes of parents who are exposed to PCBs may in turn be exposed

through contaminated clothing and shoes.

6.7 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

In addition to individuals who are occupationally exposed to PCBs (Section 6.5), there are several groups

within the general population with potentially high exposures (higher than background levels) to PCBs. 

These groups include recreational and subsistence fishers who typically consume larger amounts of

locally caught fish than the general population; Native American populations such as the North American

Inuits or other subsistence hunters/fishers; breast-fed infants of mothers who consume large amounts of

contaminated fish or wild game; farmers and their families who were exposed to PCB-contaminated foods

via food stored in PCB contaminated silos; and individuals living in proximity to incinerators, other PCB-

disposal facilities, or the 500 current or former NPL hazardous waste sites where PCBs have been

detected (HazDat 2000).

Consumption of sportfish, particularly from waters contaminated with PCBs, will increase the level of

human exposure to PCBs.  PCB exposures for adults and children associated with the consumption of

contaminated fish are available for residents of the Great Lakes region (Anderson et al. 1999; Hanrahan et

al. 1999), Massachusetts (Massachusetts Department of Public Health 1987), Michigan (Anderson 1989;

Courval et al. 1996; Hovinga et al. 1992; Humphrey 1983; Humphrey and Budd 1996; Schwartz et al.

1983), New York (Fitzgerald et al. 1996); Wisconsin (Anderson 1989; Fiore et al. 1989), northern Illinois

(Pellettieri et al. 1996), and Alabama (Anderson 1989; Kreiss et al. 1981) as well as for populations in

Canada (Ryan et al. 1997).  Direct relationships are found between serum PCB levels and the quantities of

fish consumed or numbers of fish meals consumed (Fiore et al. 1989; Hovinga et al. 1993; Humphrey and

Budd 1996; Schwartz et al. 1983).  One recent study monitored the PCB concentrations in blood serum

from both frequent and infrequent consumers of Great Lakes sport fish (Hanrahan et al. 1999).  It was

found that the mean concentration of PCBs in blood of 252 males who were frequent consumers was

4.8 ng/mL while in 57 males who were infrequent consumers, the concentration was 1.5 ng/mL.  A

similar study conducted in 1992 compared PCB blood serum levels between males from Cornwall and

Mississauga, Canada who consumed waterfowl and fish from Lake Ontario and non-consumers (Kearney



PCBs 577

6.  POTENTIAL FOR HUMAN EXPOSURE

et al. 1999).  The PCB concentrations in blood serum of 101 male consumers and 45 non-consumers were

5.5 and 3.9 ng/mL wet weight, respectively.  A multivariate regression analysis was used to show that the

significantly elevated serum PCB levels observed in sportfish eaters in Michigan compared with controls

was due to historic fish consumption rather than recent consumption (Hovinga et al. 1993).  In a study of

maternity patients from western Michigan, Schwartz et al. (1983) reported an increase in serum PCB

levels in women who consumed larger numbers of fish meals per year than those who consumed no fish

meals per year.  For example, in the control group of non-fish eaters, the mean serum PCB level was

4 ppb.  However, for women consuming 6–11, 12–23, 24–51, and 52–183 fish meals per year, the mean

serum PCB levels were 5.5, 5.5, 5.9, and 9.0 ppb, respectively.  A recent multimedia study characterized

environmental exposures to PCBs among residents in nine homes in the Lower Rio Grand Valley of

Texas (Berry et al. 1997; Butler et al. 1997).  As part of this study, PCB blood serum concentrations were

obtained and compared to the National Health and Nutrition Examination Survey II (NHANES II) 95th

percentile.  Blood plasma PCB concentrations for two individuals with maximum values, as

Aroclor 1260, exceeded the NHANES II 95th percentile for PCBs.  Upon further investigation, it was

found that the residents caught and ate carp from a nearby irrigation ditch.  Analysis of the fish showed

high PCB concentrations of 399 mg/kg (ppm), indicating a likely source for the high blood serum

concentration in these individuals.  For all of the other participants in the study, blood serum PCB

concentrations were less than 4.2 µg/L, the NHANES II median value.  PCBs were not detected in

drinking water or dietary samples other than the fish samples.  Serum PCB levels were 2.5 times higher in

people who regularly eat fish (consumption rate of >24 pounds/year [>11 kg/year]) compared to those

who occasionally or never eat fish (consumption rate of 0–6 pounds/year [0–2.7 kg/year]) (Humphrey

1988).  For more information concerning PCB serum levels in people who consume fish, please refer to

Table 6-28. 

Recreational and subsistence fishers within the general population consume larger quantities of fish and

shellfish than the general population.  Because of this, these populations are at greater risk of exposure to

PCBs and other chemical contaminants if the waters they fish frequently are contaminated.  The EPA

advises states to use a screening value of 0.01 ppm of total PCBs (sum of Aroclors) as a criteria to

evaluate their fishable waterbodies (EPA 1993h).  Currently, 678 advisories have been issued by

35 states, the District of Columbia, and American Samoa restricting the consumption of PCB-

contaminated fish and shellfish (EPA 1999l).  In one study, however, of 8,306 Great Lakes sportfishers

surveyed, only about 8.4% of them consumed fish from the Great Lakes (Tilden et al. 1997).  Of those, 
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Table 6-28.  Serum Polychlorinated Biphenyl (PCB) Levels in Non-occupationally Exposed 
U.S. Populations that Consume Fish from PCB-contaminated Waters (1973–1995)

PCB level ng/mL (ppb)

Population

Number
of
subjects Year

Arithmetic
mean

Geometric
mean

Arithmetic
standard
deviation Range Reference

Frequent male consumers
of Great Lakes sport
caught fish

252 1994–1995 4.8 0.7–58.2 Hanrahan et al.
1999

Frequent female
consumers of Great Lakes
sport caught fish

187 1994–1995 2.1 0.5–12.1 Hanrahan et al.
1999

Native American Indian
males from Akwesasne
near the St. Lawrence
River in New York,
Ontario, and Quebec

139 1992–1995 4.9 2.8 5.6 <0.10–31.7 Fitzgerald et al.
1999

Sport fisherman who ate
fish from Lake Michigan

10 1993 8.6 3.6–15.2 Anderson et al.
1998

Sport fisherman who ate
fish from Lake Huron

11 1993 5.7 1.3–12.9 Anderson et al.
1998

Sport fishermen who ate
fish from Lake Erie

11 1993 2.2 1.2–3.2 Anderson et al.
1998

Females from Cornwall
and Mississauga Ontario,
Canada

51 1992 3.4a 0.7–23.0 Kearney et al.
1999

Males from Cornwall and
Mississauga Ontario,
Canada

101 1992 5.5a 0.9–21.0 Kearney et al.
1999

Lake Michigan volunteers
eating <6 lbs sportfish
annually

95 1989 – 6.8 – 2–42.1 Hovinga et al.
1993
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Table 6-28. Serum Polychlorinated Biphenyl (PCB) Levels in Non-occupationally Exposed U.S.
Populations that Consume Fish from PCB-contaminated Waters (1973–1995) (continued)

PCB level ng/mL (ppb)

Population

Number
of
subjects Year

Arithmetic
mean

Geometric
mean

Arithmetic
standard
deviation Range Reference

Lake Michigan volunteer
sportfishers eating >24 lbs
sportfish annually

112 1989 – 19.0 – 4.9–173.8 Hovinga et al.
1993

Wisconsin anglers that
consumed both sport-
caught fish meals and
meals of species listed on
PCB consumption
advisory

191 1985–1988 – – – – Fiore et al. 
1989

19.6 fish meals;
   7.1 advisory fish meals
25.3 fish meals;
   10.9 advisory fish meals
32.0 fish meals; 
   12.8 advisory fish meals
33.3 fish meals; 
   16.9 advisory fish meals

6.x107 <0.6

0.6–2.0

2–5.0

>5.0

Maternity patients from
western Michigan

193 1982 5.5 4.6a 3.7 – Schwartz et al.
1983

   6–11 fish meals/year
   12–23 fish meals/year
   24–51 fish meals/year
   52–183 fish meals/year

5.5
5.5
5.9
9.0

–
–
–
–

–
–
–
–

–
–
–
–

New Bedford,
Massachusetts, known
exposure to contaminated
seafood

110 1981–1982 13.34 9.48a 14.02 1.40–87.97 Massachusetts
Department of
Public Health
1987



Table 6-28. Serum Polychlorinated Biphenyl (PCB) Levels in Non-occupationally Exposed U.S.
Populations that Consume Fish from PCB-contaminated Waters (1973–1995) (continued)

PCB level ng/mL (ppb)

Population

Number
of
subjects Year

Arithmetic
mean

Geometric
mean

Arithmetic
standard
deviation Range Reference
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New Bedford,
Massachusetts, random
sample

840 1981–1982 5.84 3.88a 7.78 0.38–154.2 Massachusetts
Department of
Public Health
1987

Lake Michigan volunteer
sportfishers

572 1980 –  21.0a – <3–203 Humphrey
1983

Lake Michigan volunteer
sportfishers

90 1973 72.7 56.0a – 25–366 Humphrey
1983

Triana, Alabama,
volunteer sportfishers

458 1973 22.2 17.2 22.3 3–158 Kreiss et al.
1981

Source:  Adapted from Kreiss 1985; Massachusetts Department of Public Health 1987; Sahl et al. 1985a, 1985b

aMedian
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58% of males were aware of a health advisory, while only 39% of women were aware of a health

advisory.  It appears that although health advisories do exist, there is a need to better communicate these

warnings to the public.  The number of waterbodies under advisory for PCBs in each state is shown in

Figure 6-5.     

Elevated PCB concentrations have also been detected in human adipose tissue from populations with diets

high in fish and seafood.  Levels of PCBs were determined in liver, brain, omental fat, and subcutaneous

abdominal fat samples collected from 105 deceased Inuit Greenlanders between 1992 and 1994 (Dewailly

et al. 1999).  The population studied represented individuals who had a history of a diet high in sea

mammal fat and fish.  Of the 14 congeners analyzed for, PCBs 138, 153, and 180 were found in the

highest concentrations in all tissue samples and represented 63–68% of total PCB concentration.  The

mean concentration of total PCBs in omental fat samples from 41 Greenlanders was 5,719 µg/kg lipid

basis (range=1,019–12,716 µg/kg lipid basis).  Using the same analytical methods, the total

concentrations of PCBs 138, 153, and 180 were compared to adipose tissue from 17 women living in

Quebec City, Canada from 1991 to 1992.  Researchers found that PCB concentrations in the Greenlanders

were 18 times higher than those from Canada.  The study also found that older individuals had higher

levels of PCBs in their adipose tissue.  For example, the mean PCB concentrations for people ages 41–54,

55–69, and $70 years were 4,909, 5,337, and 7,357 µg/kg lipid basis, respectively (Dewailly et al. 1999). 

In general, PCBs accumulated preferentially in omental/subcutaneous fat followed by liver, and

accumulated the least in brain tissue.

Fat extracted from the Ooligan fish is a widely consumed traditional condiment and medicine among the

indigenous people of coastal British Columbia.  The average total PCB concentrations of 24–57 ng/g

(ppb) lipid were reported in Ooligan fish fat and in fish from various coastal locations in the region (Chan

et al. 1996).  High consumption patterns of these products could increase PCB exposure of the native

peoples of this region.  In the summer of 1996, research was conducted to estimate the daily average

intake of PCBs from consumption of local fish by the Mohawk community at the Kahnawake reservation,

located south of Montreal, Canada (Chan et al. 1999).  A total of 131 fish, representing 6 species, were

caught and analyzed for total PCB concentrations.  The mean concentration of PCBs in the fish ranged

from 29.23 to 153.89 ng/g wet weight.  Based on an average diet of 23 g of fish/day (compared to

1.2 g/day in the average Canadian diet), the estimated daily intake of PCBs were 0.026 µg/kg body

weight/day for men and 0.033 µg/kg body weight/day for women.  Based on an average body weight of

81 kg for men and 65 kg for women, the daily intake of PCBs for the Mohawk Indians would be

2.106 and 2.145 µg, respectively (Chan et al. 1999).  Similar results were found in a study conducted in 
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Figure 6-5.  1998 Fish Advisories for Polychlorinated Biphenyls
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1994 of the Dene and Metis Inuits of Western Northwest Territories, Canada whose diet consists mainly

of herbivorous animals and fish (Berti et al. 1998).  Researchers analyzed their dietary intake and found

that the mean dietary intake of PCBs was 0.023 µg/kg/day.  Researchers noted that individuals with diets

high in whale blubber were at increased risk of high PCB exposure.  Some examples of other populations

that have diets high in fish and sea mammals include Alaskan Inuits who consume 304 g/day (Wolfe and

Walker 1987), recreational anglers from Michigan who consume 27 g/day (Hovinga et al. 1992), and

Indian tribes from Oregon and Washington who consume 58.7 g/day (CRITFC 1994).  Since the average

daily intake of fish in the U.S. diet is 6.2 g/day (EPA 1993h), these high fish consuming populations

represent communities at higher risk for PCB exposure.

Infants that are breast fed by women living in the these communities may also be exposed to higher PCB

concentrations.  It is estimated that an infant that is breast fed for 6 months will receive 6.8–12% of its

lifetime PCB body burden in that period (Kimbrough 1995; Patandin et al. 1999).  For example, the diet

of the Mohawk Indians from the Akwesasne reservation in New York has been impacted by the General

Motors Foundry Mill, which released PCBs into the St. Lawrence River (Fitzgerald et al. 1998).  Fish

consumed by the Mohawk Indians come from the St. Lawrence River and have consequently been

contaminated.  Comparison studies were conducted to determine whether PCB levels in breast milk

differed from that of the general population that was not affected by the mill.  The study found that in

milk samples collected in 1986–1989, the mean concentration of PCBs in American Indian milk was

602 ng/g lipid weight, while in the control group, the mean concentration was 375 ng/g lipid weight

(Fitzgerald et al. 1998).  From 1991 to 1992, however, PCB levels decreased to a mean of 254 ng/g lipid

in Mohawk Indian breast milk, while in the control group, it only decreased to 318 ng/g lipid weight.  The

reduction in breast milk PCB concentrations paralleled a corresponding decrease in local fish

consumption (Fitzgerald et al. 1998).  The authors found that from 1986 to 1992, the number of fish

meals consumed by pregnant Mohawk women decreased from 10.7 meals per year in 1986–1989, to

3.6 meals per year in 1990, and to 0.9 meals per year in 1991–1992.  No such decreasing trend in

consumption was noted among the Caucasian control group whose PCB levels did not change

significantly over the course of the study.  The mean concentration of total PCBs in human milk from

native Inuit women who consumed large quantities of marine mammal tissue was 1,052 ng/g lipid weight

in a 1989–1990 study (Dewailly et al. 1993).  This was 7 times greater than levels measured in Caucasian

women from southern Quebec (157 ng/g, lipid basis).  The concentrations of PCB congeners in breast

milk from a remote maritime population from Arctic Quebec (Inuit women) were compared with those of

control Caucasian women in Quebec, Canada (Dewailly et al. 1994).  Di-ortho congeners (138, 153, 170,

and 180), mono-ortho congener (118), and non-ortho coplanar congeners (126 and 169) were detected at
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concentrations of 862.5, 58.7, and 0.455 ng/g lipid weight in Inuit women compared to 106, 17.4, and

0.121 ng/g lipid weight in Caucasian women.  Because of their high consumption of marine mammal

tissues and seafood, the Inuit women have high concentrations of PCBs in their breast milk, in spite of the

remoteness of Arctic Quebec (Dewailly et al. 1993, 1994).  Daily PCB intake for native northern Quebec

women was calculated to be 0.3 µg/kg (ppb) body weight while daily intake among infants was calculated

to be 10 µg/kg due to breast feeding.  This level is 143 times greater than the reference dose (RfD) of

0.07 µg/kg body weight established by the EPA (Ayotte et al. 1995).  In general, these studies indicate

that lactating women whose diets are high in contaminated fish can potentially increase the PCB exposure

for their breast-fed infants.  For more information concerning PCB concentrations in human breast milk,

please refer to Table 6-27 in Section 6.6.

Unborn children may also be at risk of higher PCB exposure, especially in areas that have been heavily

contaminated with PCBs.  To illustrate this, researchers analyzed placental cord serum of 755 infants born

to mothers residing in towns adjacent to a PCB-contaminated harbor in southeastern Massachusetts

(Altshul et al. 1999).  Infants whose cord serum was analyzed were born between 1993 and 1998 in the

towns of New Bedford, Acushnet, Fairhaven, and Dartmouth, Massachusetts.  Of the 51 PCB congeners

analyzed, only 13 were above the detection limit (0.01 ng/g serum).  The median concentration of PCBs

was 0.56 ng/g serum (Altshul et al. 1999).  Researchers found that the relative predominance of less

chlorinated congeners in the cord blood was generally consistent with the characteristics of the

contaminated site.  PCB concentrations were also measured in cord blood from both 134 women who

consumed Great Lakes fish and 145 women who had never consumed Great Lakes fish (Stewart et al.

1999).  Although researchers did not find any difference between fish consumption levels and total PCBs

in umbilical cord serum, it was established that fish eaters had marked elevations of the most heavily

chlorinated PCB homologues.  In particular, levels of hepta- to nonachlorobiphenyls were greater in fish

eaters than non-fish eaters (Stewart et al. 1999).  Another study examined PCB concentrations in nine

stillborn fetuses from the Netherlands in 1993 and found that median (range) concentration of PCBs in

adipose tissue was 235 (97–768) ng/g lipid weight (Lanting et al. 1998b). 

Similarly, Native American populations such as the Inuit of Alaska or other subsistence hunters

(particularly those living in high-latitude areas of the United States) may be exposed to higher levels of

PCBs in wild game (e.g., beluga whales, seals, polar bears, and other game species) (Dewailly et al. 1993;

Kuhnlein et al. 1995; Schantz et al. 1993c).  Because these populations typically are hunters of the highest

trophic levels, they are particularly exposed to PCBs (Ayotte et al. 1995).  Kuhnlein et al. (1995)

compared PCB concentrations in the diet of Arctic indigenous women from both eastern and western
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Canada.  These authors reported that PCB intakes in the western Arctic population were lower than the

eastern Arctic population because of the food preferences for caribou, moose, and fish as compared to

ringed seals, caribou, narwhal, and walrus.  Mean total blood plasma PCB concentrations among

499 Inuit adults from Nunavik in the Quebec Arctic was 4.1 mg/kg (ppm) lipid weight, compared to

0.13 mg/kg lipid weight for control samples from individuals in southern Quebec (Ayotte et al. 1997). 

Hing (1998) summarized data from northern and Arctic Canadian studies associated with exposure to

PCBs from consumption of native foods.  Mean total PCB concentrations in traditional foods, expressed

as µg/g (ppm) wet weight, were 0.080, 1.90, 0.006, 0.010, 0.052, 0.290, and 0.006, respectively, for

marine mammal meat, marine mammal blubber, terrestrial mammal meat, terrestrial mammal organs, fish,

birds, and plants.  Based on dietary habits among two individual communities, total dietary PCB intakes

were estimated to be 16 µg/day from marine mammal meat, 57 µg/day from marine mammal blubber,

1.2 µg/day from terrestrial mammal meat, 0.3 µg/day from terrestrial mammal organs, 0.4 µg/day for fish,

0.4 µg/day for birds, and 0 µg/day for plants.  Total estimated PCB intakes for the two communities were

6.0 and 7 µg/day, respectively.  Samples from herds of Yukon Territory and Northwest Territory caribou

in Canada showed relatively low non-ortho PCB concentrations, considered equivalent to background

levels, although PCB congener 126 and 169 concentrations were higher among caribou sampled from

eastern herds (Bathurst, Northwest Territory), probably due to differences in atmospheric transport

patterns (Hebert et al. 1996).  Wilson et al. (1995) also reported high concentrations of PCBs in two fish

species from remote Arctic lakes in Alaska.  The most abundant group of organochlorine compounds

detected in the fish were PCBs.  Concentrations of 6.6 and 1.3 ng/g (ppb) wet weight were detected in

lake trout and grayling muscle tissue, respectively.  While the problem of PCB contamination in the

Arctic is clearly greater in the eastern Arctic, it is increasingly being detected in Alaska as well.  Clearly,

increased exposure of native hunting and fishing peoples to PCBs can occur, and their infants are also at

risk of greater exposure via consumption of PCB-contaminated breast milk. 

During the 1940s and 1950s, concrete silos on many Midwest farms were coated on the inside with

sealants containing the PCB mixture Aroclor 1254.  Over time, the sealant peeled off and became mixed

with silage used to feed beef and dairy cattle.  Farmers and their families who lived on farms where PCB-

containing sealants were used in silo construction, and who regularly ate beef and dairy products

produced on their own farms, were exposed to PCB-contaminated foods (Hansen 1987a; Humphrey

1983).  Most of these silos, however, have been dismantled and removed.  The high serum PCB levels

(100–200 µg/L [ppb]) detected in the most exposed individuals, however, suggests that monitoring should

be continued (Humphrey 1983).  Schantz et al. (1994) monitored serum PCB levels in Michigan mothers

and children from farms with PCB-contaminated silos.  These authors reported blood serum PCB levels
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of 9.6 ng/mL (ppb) for mothers and 6.8 ng/mL (ppb) for children.  Maternal serum PCB levels and the

number of weeks of breast-feeding accounted for 47% of the variance in the children's serum PCB levels,

confirming that breast milk was a primary source of the PCB exposure for the children.  

Another population that may receive higher PCB exposures than the general population includes people

who live in the vicinity of incinerators, PCB disposal facilities, or hazardous waste sites.  PCB

concentrations measured downwind from a landfill were at least an order of magnitude higher than those

measured upwind from the landfill, although effective dilution reduced concentrations of PCBs in air

samples monitored 15 km from the landfill to a level comparable or even slightly lower than urban air

levels (Hermanson and Hites 1989).  This dilution effect was also evident from the observed decrease in

the atmospheric concentrations of PCBs within a short distance from another landfill during remediation

(Hermanson and Hites 1989).  This study suggests that people who reside in the immediate vicinity of

PCB-containing landfills may be exposed to PCBs in the air at levels higher than the general population. 

Despite the potential for individuals living near processing facilities or hazardous waste sites to be

exposed to higher levels of PCBs in air, water, and soil, higher PCB levels in human tissues have not been

conclusively demonstrated (i.e., elevated levels of PCBs in the serum/blood of the susceptible

population).  One possible explanation for the low prevalence of elevated PCB levels in the serum/blood

of people who live near these contaminated sites is that most of these people are not exposed to PCBs at

elevated levels or that the PCB concentrations to which they are exposed are not completely bioavailable. 

Another explanation is that, unlike occupational exposure scenarios where concentrations can be orders of

magnitude higher than background levels, slightly elevated environmental exposure may not result in

appreciable elevation of PCB levels in serum/blood.  Beginning in 1982, pilot studies involving a total of

766 subjects were conducted at 12 hazardous waste sites in the United States to determine human

exposure to PCBs (Stehr-Green et al. 1988).  Although environmental PCB contamination levels as high

as 2.5 ppb in well water and 330,000 ppb in soil samples were measured, serum PCB levels in people

from 10 of the 12 sites were not any higher than serum PCB levels in unexposed individuals in the

general population.  The higher serum PCB levels found in people at two sites may be attributable to the

historic prevalence of occupationally related exposures.  Another study that evaluated the PCB exposure

of 89 individuals living near a toxic waste site in Paoli, Pennsylvania, also reported similar serum PCB

levels in exposed individuals and unexposed populations (ATSDR 1987). 

Individuals living near processing sites or NPL sites where PCBs have been detected may also be exposed

to higher levels of PCBs in their drinking water if they obtain tap water from wells located near these

sites.  PCBs have been detected in groundwater samples at 192 of the 500 NPL sites where they were
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detected in some environmental media (HazDat 2000).  Consumption of contaminated groundwater,

therefore, may be an additional source of PCB exposure for both adults and children.  Children and adults

may also receive higher PCB exposures from dermal contact if they play or work with PCB-contaminated

soils.  In an in vivo study with Rhesus monkeys, percutaneous absorption of Aroclor 1242 and 1254 from

a clay loam soil containing 0.9% organic matter was determined to be in the range of 13.8–14.1% (Wester

et al. 1993).  In addition, children and adults may receive potentially higher oral exposures from ingestion

of PCB-contaminated soils from their unwashed hands, while playing or working in PCB-contaminated

areas.

6.8 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of PCBs is available.  Where adequate information is not

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the

initiation of a program of research designed to determine the health effects (and techniques for developing

methods to determine such health effects) of PCBs.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

6.8.1 Identification of Data Needs

Physical and Chemical Properties.    Some of the physical and chemical properties (i.e.,

octanol/water partition coefficient [Kow], Henry's law constant, reaction rate constants) often useful in

estimating environmental fate and transport processes for PCBs are available primarily for the Aroclors as

mixtures and not for the individual congeners (see Table 4-2) (Burkhard et al. 1985; EPA 1979h, 1985b;

Hollifield 1979; Paris et al. 1978).  The experimental determination of the physical and chemical

properties of many more of the individual congeners is needed for accurately predicting the

environmental fate of the individual congeners.
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Production, Import/Export, Use, and Release and Disposal.    PCBs are no longer produced,

imported/exported, or used on an industrial scale in the United States.  The available literature contains

adequate documentation of their past production (Durfee 1976; EPA 1976a; IARC 1978; Kimbrough

1987), import/export volume (Durfee 1976; EPA 1988c; IARC 1978; USITC 1978, 1979, 1980, 1982),

use (EPA 1976a; IARC 1978; Safe 1984; Welsh 1995), release (Durfee 1976; EPA 1979e; Larsson 1985;

Liberti et al. 1992; Mackay 1989; Morselli et al. 1985; Murphy et al. 1985; Swackhamer and Armstrong

1986; Tiernan et al. 1983; TRI93 1995), and disposal (Arbon et al. 1994; Baukal et al. 1994; Chuang et al.

1995; EPA 1979e, 1995a; IRPTC 1985; Timberlake and Garbaciak 1995; TRI93 1995; Zhang and

Rusling 1995; Zhang et al. 1993).  There are current EPA regulations regarding the disposal of PCBs;

however, information on current disposal practices in the case of accidental transformer leakage would be

useful. 

Environmental Fate.    A number of studies indicate that PCBs are very persistent in the environment

(Brown et al. 1988; EPA 1979h, 1983c; Gan and Berthouex 1994; Portier and Fujisaki 1988).  The

volatilization of PCBs from soil and water, followed by dry/wet deposition of airborne PCBs into soil and

water, results in the continuous recycling of undegraded PCBs in the environment (Macdonald et al.

2000; Wania and Mackay 1993, 1996).  Sediment is a repository for PCBs that can later be released to air

and water.  However, some critical data regarding the potential for long-term release of PCBs from

sediments and the role of deep ocean sediments as an ultimate sink for PCBs are lacking.  There is a lack

of quantitative data on the photodegradation potential of PCBs in air, water, and soil in the presence of

natural sunlight.  Information on the concentrations of chlorinated benzoic acids in the vicinity of PCB

sources is need to access the degree of importance of OH-radical reactions in the atmosphere for

degrading PCBs (Brubaker and Hites 1998).  No extensive and systematic studies have been done on the

influence of different types of soil/sediment (including with different PCB adsorption properties) on the

reductive dehalogenation of PCBs (Wiegel and Wu 2000).  Since the toxicity and the environmental fate

of PCBs depend on specific PCB congeners, development of more data regarding congener-specific fate

and transport of PCBs in the environment are needed.

Bioavailability from Environmental Media.    The absorption and distribution of PCBs as a result of

inhalation, ingestion, and dermal exposure are discussed in Sections 3.3.1, 3.3.2, and 3.3.3.  Few studies

that describe the bioavailability of PCBs from ambient air, surface water and groundwater, or soil exist. 

Additional studies determining the effect of particle size and organic matter content on the bioavailability

of PCBs from soil and the role of microparticle-sorbed PCBs on the bioavailability of PCBs from
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drinking water are needed.  Such studies would be useful in assessing the health effects of PCBs on

people living near hazardous waste sites.

Food Chain Bioaccumulation.    Based on available information, estimates can be made about the

bioaccumulation of PCBs in fish, shellfish, and marine mammals (Andersson et al. 1988; ASTER 1996;

EPA 1983c; Kuehl and Haebler 1995; Kuehl et al. 1994; Lake et al. 1995a, 1995b; Porte and Albaiges

1993; Salata et al. 1995; Schantz et al. 1993a; Zhang et al. 1983), the bioconcentration potential from soil

to plants (Bohm et al. 1999; Lober et al. 1994; O’Connor et al. 1990; Schönherr and Riederer 1989) and

from atmospheric vapors and particulates to plants (Jones and Duarte-Davidson 1997; O’Connor et al.

1990; Thomas et al. 1998; Ye et al. 1992a).  The existing data indicate that PCBs bioaccumulate

significantly in aquatic and terrestrial food chains and biomagnify in predators, due to consumption of

contaminated prey.  More information on bioaccumulation and biomagnification of PCB congeners in

edible fish and shellfish species is needed in assessing human health risks.

Exposure Levels in Environmental Media.    The relative importance of different routes of

exposure to PCBs in the past (late 1970s through early 1980s) is detailed in the current literature.  FDA

studies indicate that the dietary intake of PCBs has steadily decreased since 1978 (Gartrell et al. 1985a,

1985b, 1986a).  According to these studies, the major contributing factor in dietary PCB intake has

changed from fish to meat in recent years (Gunderson 1988).  However, the FDA dietary intake values are

estimated for marketed foods and do not provide an indication of PCB intake from consumption of fish

obtained by sport and subsistence fishing.  Despite recent studies by Berry et al. (1997) and Buckley et al.

(1997), more recent data on the concentrations of PCBs in foods, collected using a market-basket

approach, are needed to determine whether concentrations of PCBs in foods consumed by the general

population have declined further since the mid-1980s.  Data on the PCB concentrations in foods grown in

contaminated areas, particularly in the vicinity of hazardous waste sites, are also needed.  Also, more data

on congener-specific PCB analysis of food, especially plant products, would be useful.  Recent

investigations also show that the concentration of PCBs in indoor air can be at least an order of magnitude

higher than outdoor air (Balfanz et al. 1993; Vorhees et al. 1997; Wallace et al. 1996).  Therefore, due to

the decreased intake of PCBs from food in recent years, it is possible that the intake from inhalation

exposure may currently exceed PCB intake from food.  However, a direct comparison of the importance

of exposure from inhalation and diet is difficult because the reported data do not always include the same

PCBs (e.g., Aroclor 1016, 1254, etc.) for the purpose of quantifying the total PCB concentrations and in

evaluating the subsequent intake.  It would be useful to conduct further research to resolve this important

issue.  More recent monitoring data on the concentrations of total PCBs as well as congeners in air in
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urban areas near hazardous waste sites and incinerators are needed.  More recent survey data on PCB

concentrations in finished drinking water nationwide would be helpful in assessing the importance of this

exposure route.  Congener-specific analysis of drinking water would also be useful in determining

exposure risks, particularly for the dioxin-like congeners.

Exposure Levels in Humans.    PCB levels are reported in the current literature for blood (Schecter

et al. 1993, 1994), serum (Anderson et al. 1998; Fitzgerald et al. 1999; Hanrahan et al. 1999; Hovinga et

al. 1992, 1993; Kearney et al. 1999; Massachusetts Department of Public Health 1987; Patterson et al.

1994), breast milk (Dekoning and Karmaus 2000; Fitzgerald et al. 1998; Kostyniak et al. 1999; Newsome

and Ryan 1999; Newsome et al. 1995; Schade and Heinzow 1998), and adipose tissue of the general

population (Dewailly et al. 1999; EPA 1986b; Fensterheim 1993; Jensen 1989; Kutz et al. 1991; Ouw et

al. 1976; Patterson et al. 1994; Schecter et al. 1989, 1991, 1994) and occupationally exposed individuals

(Fait et al. 1989; Perkins and Knight 1989; Schecter and Charles 1991; Schecter et al. 1994; Welsh 1995;

Wolff 1985; Yakushiji et al. 1978).  However, few systematic surveys have ever been conducted in the

United States to evaluate the trend of PCB concentrations in human tissues over the years, and the reasons

for the apparent slower decrease in PCB concentrations in tissues (compared to the more rapid decrease in

environmental levels) are not completely known.  It would be helpful to develop a database of

information on congener-specific PCB levels in tissues of exposed and control cases for studying clinical

and epidemiological outcomes.  In particular, a comprehensive study that monitors congener specific

concentrations in fish species and relates them directly to congener levels in human tissue would be

extremely useful.  Additional data regarding the concentrations of PCBs in body fluids or tissues of

people who reside near hazardous waste sites are needed.  This information is necessary for assessing the

need to conduct health studies on these populations.

Exposures of Children.    Children may be exposed to PCBs by a variety of exposure pathways.  The

most important pathway appears to be consumption of contaminated foods, particularly meat, fish, and

poultry (Gunderson 1988).  Children can also be exposed to PCBs from mother’s milk (Fitzgerald et al.

1998; Kimbrough 1995; Patandin et al. 1999; Rogan et al. 1987; Wickizer et al. 1981).  More data are

needed on the levels of PCB exposure in nursing women from occupational situations or consumption of

fish or wild game and of from those of the general population.  Exposure and body burden studies related

to consumption of fish in the U.S. population are needed to determine exposure levels, particularly in

children of recreational and subsistence fishers.  Exposure and body burden studies are also needed in

Native American communities that consume high levels of game and marine mammals.  Information

related to the exposure of children living near hazardous waste sites is also needed.  In particular,
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information related to the potential for children to be exposed to PCBs bound to soil and dust particles

through pica or unintentional hand-to-mouth activity within homes located in these areas.  Quantitative

information regarding the bioavailability and amount of PCBs that children are exposed to through

contact with contaminated soils are unavailable.  Therefore, any information concerning this subject

would be useful in evaluating children’s exposure.

Additional information on weight-adjusted intakes would be helpful for determining the health risks for

young children, particularly those in Native American populations.  Infants and young children consume

a greater amount of food per kilogram of body weight and, therefore, may have a proportionately greater

exposure to PCBs than adults (Cordle et al. 1982).  

Child health data needs relating to susceptibility are discussed in Section 3.12.2 Identification of Data

Needs: Children’s Susceptibility.

Exposure Registries.    No exposure registries for PCBs were located.  This substance is not currently

one of the compounds for which a subregistry has been established in the National Exposure Registry. 

The substance will be considered in the future when chemical selection is made for subregistries to be

established.  The information that is amassed in the National Exposure Registry facilitates the

epidemiological research needed to assess adverse health outcomes that may be related to the exposure to

this substance.

Information is particularly needed on the size of the populations potentially exposed to PCBs through

contact with contaminated media in the vicinity of hazardous waste sites.  The development of an

exposure registry would provide a useful reference tool in assessing exposure levels and frequencies.  It

would also facilitate the conduct of epidemiological or health studies to assess any adverse health effects

resulting from exposure to PCBs.  In addition, a registry developed on the basis of exposure sources

would allow an assessment of the variations in exposure levels from one source to another and the effect

of geographical, seasonal, and regulatory action on the level of exposure within a certain source.  These

assessments, in turn, would provide a better understanding of the needs for research or data acquisition on

the current exposure levels.
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6.8.2 Ongoing Studies

A search in Federal Research in Progress (FEDRIP 2000) identified ongoing research studies that may fill

some of the data needs discussed in Section 6.8.1.  These studies are listed in Table 6-29.
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Table 6-29.  Ongoing Studies on Environmental Fate and Treatment of
Polychlorinated Biphenyls

Investigator Affiliation Title Sponsor
Bopp, Richard Mount Sinai School of

Medicine
New York, New York

Sources and pathways of persistent
chlorinated hydrocarbon exposure in New
York City

NIEHS

Bush, Brian Wadsworth Center Adsorption/desorption of PCBs on
Hudson River clay

National Center for
Research Resources

Custer, Christine M Upper Midwest
Environmental Sciences
Center

Bioaccumulation and effects of PCBs on
tree swallows nesting along the
Housatonic River, Massachusetts

U.S. EPA, Boston,
Massachusetts and U.S.
Fish and Wildlife Service

Estes, James A Western Ecological
Research Center

Monitoring program for environmental
contaminants in the nearshore marine
ecosystem at Adak Island, Alaska

U.S. Department of
Agriculture, Cooperative
State Research Service

Fischer, Lawrence Michigan State University Health hazards from groundwater
contamination

NIEHS

Hansen, LG Veterinary Bioscience,
University of Illinois

Identification of PCB congeners
associated with fish consumption

U.S. Department of
Agriculture, Cooperative
State Research Service

Hickey, William J University of Wisconsin
Madison, Wisconsin

Research on molecular and biochemical
diversity of chlorobenzoate degrading
bacteria

NSF, Division of
International Programs

Hong, Chia-swee State University of New
York 
Albany, New York

Photocatalytic remediation of  PCB-
contaminated water and sediment

NIEHS

Huwe, JK Agricultural Researcher
Service

Dioxins and other environmental
contaminants in food

U.S. Department of
Agriculture

Landrigan, Philip J Mount Sinai School of
Medicine
New York, New York

Study the current urban sources,
environmental distribution and toxic
effects on human health of PCBs in New
York City

National Institute of
Environmental Health
Sciences

Manny, Bruce A Great Lakes Science
Center

Contamination of surface soils and
wildcelery tubers at Grassy Island in the
Wyandotte National Wildlife Refuge in the
Detroit River

U.S. Department of
Agriculture, Cooperative
State Research Service

Matthews, HB NIEHS, NIH
RTP, North Carolina

Bioavailability of PCBs from soil NIEHS

Mora, Miguel A Columbia Environmental
Researcher Center

Effects of environmental contaminants on
major wildlife species of the lower Rio
Grande Valley, Texas

Department of the
Interior

Rhee, G-Yull State University of New
York 
Albany, New York

Bioremediation of  PCB- contaminated
sediments in the St. Lawrence River

NIEHS

Richmond, Milo E New York Cooperative
Fish and Wildlife
Research Unit

Organochlorine and metal contaminants
in Hudson River mammals

New York State

Santerre, CR Food and Nutrition
Purdue University

Xenobiotics in farm-raised and wild fish Indiana State

Sarofim, Adel F Massachusetts Institute
of Technology

The formation of PCBs during the
pyrolysis and oxidation of wastes at
Superfund sites

NIEHS

Table 6-29.  Ongoing Studies on Environmental Fate and Treatment of
Polychlorinated Biphenyls (continued)
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Investigator Affiliation Title Sponsor
Tiedje, J Michigan State

University, Crop and Soil
Sciences
East Lansing, Michigan

Microbial ecology of soil and
biodegradation

U.S. Department of
Agriculture, Cooperative
State Research Service

Source: FEDRIP 2000

EPA = Environmental Protection Agency; NIEHS = National Institute of Environmental Health Sciences;
NIH = National Institute of Health; NSF = National Science Foundation; RTP = Research Triangle Park
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The purpose of this chapter is to describe the analytical methods that are available for detecting, and/or

measuring, and/or monitoring PCBs, its metabolites, and other biomarkers of exposure and effect to

PCBs.  The intent is not to provide an exhaustive list of analytical methods.  Rather, the intention is to

identify well-established methods that are used as the standard methods of analysis.  Many of the

analytical methods used for environmental samples are the methods approved by federal agencies and

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  Other

methods presented in this chapter are those that are approved by groups such as the Association of

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA). 

Additionally, analytical methods are included that modify previously used methods to obtain lower

detection limits, and/or to improve accuracy and precision.

Methodology for PCB analysis includes several steps: sample collection and storage, extraction, cleanup,

and determination (EPA 1995c, 1999k; Hess et al. 1995).  Care must be taken to assure that the sample

collection follows quality assurance protocols and that equipment and containers are free from

contamination.  Most sample collections are by grab sampling; however, PCBs may be concentrated from

water or air onto sorbents.  PCBs are typically separated from the sample matrix by solid-phase extraction

(SPE), separatory funnel extraction, continuous liquid/liquid extraction (CLLE), Soxhlet extraction, or

Soxhlet/Dean-Stark extraction.  PCBs may be difficult to extract from oily matrices in which they are

soluble.  Some problems that may occur during extraction include evaporative losses during

concentration, sorption onto labware, and contamination of samples.  Cleanup steps are necessary to

remove compounds that may interfere with the determination.  Chromatography (e.g., gel permeation,

silica gel, Florisil, activated carbon, high-performance liquid) is often used to remove matrix

interferences, and sometimes to fractionate PCBs into several groups.  Cleanup by chromatography has

been used extensively to separate the non-ortho and the mono-ortho CBs from the remaining congeners

before quantitative analysis (Hess et al. 1995).  The identification and quantitation of PCBs are most often

accomplished by gas chromatographic (GC) techniques.  Capillary or high resolution gas chromatography

(HRGC) columns capable of separating a substantial proportion of the congeners are indispensable, and

GC detectors possessing high selectivity and sensitivity for the PCBs are required.  The more universal

and less sensitive flame-ionization detector (FID) is used much less often than the electron capture

detector (ECD), which has exceptional sensitivity to multiply chlorinated compounds.  The mass

spectrometer-selected-ion-monitoring (MS-SIM) or ion-trap mass spectrometer (ITMS) detectors have

sensitivities somewhat lower than ECD, and they have even greater selectivity for PCBs and can
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distinguish and individually measure homologs that may coelute on a particular HRGC column (EPA

1999k). 

Some methods in use are multi-residue methods in which PCBs along with many other analytes such as

pesticides, are determined.  In general, PCB methods analyze for Aroclor mixtures, PCB homologs, or

individual PCB congeners.  Until recently, packed column GC/ECD was used most often for the

determination of PCBs as Aroclor mixtures.  The Webb-McCall technique was used for quantitation.  The

weight percent and homolog identification were determined for several Aroclors.  Response factors were

generated to calculate the amount in each sample peak; with packed columns, each peak contains several

congeners.  The amounts found in each sample peak were then summed (Webb-McCall 1973). 

Alternately, the total area in the Aroclor region of the chromatogram was used for quantitation.  However,

Aroclor analyses are estimations that are prone to error as a result of the subjective assignment of Aroclor

speciation and response factors.  Also, the practice of comparing CB patterns in environmental samples

with those of technical mixtures can be misleading since mixtures emanating from different sources are

mixed at differing rates by diffusion, evaporation, and adsorption onto solids.  Many congeners are

metabolized, while others bioconcentrate in lipophilic material.  Therefore, the final pattern in the

environment is often highly modified and may not resemble the original commercial formulation or

mixture of formulations (Draper et al. 1991; Duinker and Hillebrand 1979; Hess et al. 1995).  The

maximum detection limits (MCLs) for Aroclors vary in the range of 0.054–0.90 µg/L in water and

57–70 µg/kg in soils (EPA 1995c).  Another approach is to determine PCBs by level of chlorination (or

homolog group).  One PCB for each homolog (isomer group) is typically used for calibration.  Total PCB

concentration is obtained by summing isomer group concentrations (Alford-Stevens et al. 1986). 

However, since the congener distribution is not determined with this method, an accurate calculation of

PCB toxic equivalency (TEQ) can not be accessed.  Recently, capillary or HRGC has made it possible to

achieve lower detection limits and better separation of individual PCB congeners for quantitation (Frame

1997; Mullin et al. 1984; Newman et al. 1998), although complete separation of all PCB congeners on a

single column has not yet been achieved (Duebeleis et al. 1989).  The commonly used capillary columns

(DB-5, C-18, DB-1701, SE-54, SIL-8, SP-2330, and CP-SIL-8) provide poor or no resolution for the

following groups of congeners: 15/18, 28/31, 49/52, 66/95, 77/110, 84/90/101, 118/149, 138/163/164,

105/132/153, 170/190, and 182/187 (Liem 1999; Schantz et al. 1993b).  Nevertheless, the trend is toward

congener-specific analysis by HRGC.  Recent advances include analytical methods that are able to

quantify individual PCBs congeners to enable TEQ calculations (EPA 1999k;  Frame 1999; Patterson et

al. 1994).  EPA Method 1668 (Revision A ) is the current methodology used to measure individual PCB

congeners in water, soil, sediment, and tissue by HRGC/high resolution mass spectrometry (HRMS) 
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(EPA 1999k).  Estimated detection limits (EDL) of selected PCB congeners range from 109 to 193 pg/L

for water and 11–19 ng/kg for soil, tissue, and  mixed-phase samples.  EDLs are listed in Table 7-1 for

EPA Method 1668 (Revision A; EPA 1999k).  This method has been used to measure specific PCBs in

EPA projects such as the assessment of PCBs in fish consumed by four Native American tribes in the

Columbia River Basin in Washington state (EPA 1996f).  As for all analytical methods, determining the

quality and usability of Aroclor, PCB homolog, or specific congener data by formal data validation

procedures is recommended; EPA has developed data validation guidelines for HRGC/ECD Aroclor data

and HRGC/LRMS (low resolution mass spectrometry) PCB specific congener data (EPA 1994h, 1995g). 

7.1 BIOLOGICAL SAMPLES

The quantitation of PCBs in biological samples usually consists of three distinct steps: extraction of PCBs

from the sample matrix by a solvent or a combination of solvents; cleanup of PCBs from impurities on

single or multiple columns; and finally, quantitation by GC with a suitable detector.  A summary of some

available methods for biological samples is shown in Table 7-2.

PCBs are extracted from blood or serum by solvent extraction techniques using hexane (EPA 1980;

Needham et al. 1980), benzene (Mes et al. 1994, 1995a, 1995b, 1995c), or mixed solvents such as

hexane/ethyl ether (Koopman-Esseboom et al. 1994b; Luotamo et al. 1985; Needham et al. 1981), or by

solid phase micro-extraction techniques (Poon et al. 1999).  A variety of adsorbents may be used for

cleanup and/or fractionation of extracts: deactivated silica gel (Burse et al. 1989), Florisil (Mes et al.

1994, 1995a, 1995b, 1995c), alumina (Koopman-Esseboom et al. 1994b), or multiple columns (Patterson

et al. 1989).  GC/ECD is used most often for determination of biological samples (Burse et al. 1989; Mes

et al. 1994, 1995a, 1995b; NIOSH 1984b; Schantz et al. 1994).  Confirmation by mass spectrometry is

recommended (Burse et al. 1994; Mes et al. 1994).  Detection limits are in the low- to sub-ppb range

(Luotamo et al. 1985; Mes et al. 1994, 1995a, 1995b; Needham et al. 1981; NIOSH 1984b; Poon et al.

1999).  Recovery, where reported, ranges from .80 to 96% (Koopman-Esseboom et al. 1994b; Mes et al.

1994; Needham et al. 1980, 1981; NIOSH 1984b; Poon et al. 1999).  The accuracy and precision of the

results of PCB analysis in serum using a packed column GC/ECD method were studied in a collaborative

study.  The mean recovery (for Aroclor 1254) was 82.2%; inter-laboratory precision was <21% for

samples spiked at 10–100 ng/mL (Burse et al. 1989).  Cord blood, which is the most direct marker of fetal

exposure, requires especially sensitive analytical methods for accurate PCB analysis because of its 
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Table 7-1.  EPA Method 1668-Estimated Method Detection Limits (EMDL) and
Estimated Minimal Levels (EML) of Selected PCB Congenersa,b

Detection limits and minimal levels-matrix and concentrationc

Water (pg/L) Otherd (ng/kg) Extract (pg/µL)

Congener EMDL EML EMDL EML EML

77 169 500 17 50 20

105 109 200 11 20 10

114 120 500 12 50 20

118 193 500 19 50 20

123 150 500 15 50 20

126 136 500 14 50 20

156 132 500 13 50 20

157 132 500 13 50 20

167 115 500 11 50 20

169 161 500 16 50 20

180 136 500 14 50 20

189 177 500 18 50 20

aSource: EPA 1999k
bfor SPB-Octyl gas chromatography column
cEMDLs and EMLs with common laboratory interferences present.  Without interferences, EMDLs and EMLs will be
respectively, 5 and 10 pg/L for aqueous samples, and 0.5 and 1.0 ng/kg for soil, tissue, and mixed-phase samples,
and EMLs for extracts will be 0.5 pg/µL.
dsoil, tissue, and mixed-phase samples

EMDL = estimated method detection limits; EML = estimated minimal levels; EPA = U.S. Environmental Protection
Agency
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Table 7-2.  Analytical Methods for Determining Polychlorinated Biphenyls in Biological Samples

Sample matrix Preparation method
Analytical method Sample

detection limit
Percent
recovery Reference

Serum Extraction with mixed solvents;
treatment with methanolic KOH;
extraction with hexane; cleanup on
silica gel column

HRGC/ECD 1.0 ng/mL on
1 mL sample

>80 at 25–400 ng/mL NIOSH 1984b
(method 8004)

Serum Extraction with mixed solvents;
cleanup on silica gel column

GC/ECD No data 82.2 (average) Burse et al. 1989

Serum Solvent extraction; cleanup on
10% silver nitrate on silica gel
column

GC/ECD No data 93.7 at 41 µg/L Needham et al.
1980

Serum Extraction with mixed solvents;
cleanup on hydrated silica gel
column for separation of PCBs
from PBBs

GC/ECD 2.5 ng/mL 95.3 at 100 µg/L and
105–127 at 10 µg/L

Needham et al.
1981

Serum Extraction with diethyl ether and
hexane; wash of extract with
sulfuric acid; cleanup on silica
column 

HRGC/EC 0.1 ng/mL 85 at 25–125 ng/mL Luotamo et al.
1985

Serum (congener
specific)

Addition of surrogate congener
standard PCB 46 and 142,
extraction with hexane, cleanup
with Florisil.

HRGC/ECD 1 pg/g (PCB
200) - 634 pg/g
(PCB 99)

95.1±12.5 (PCB 153) Greizerstein et
al. 1997

Serum Extraction with SPME; thermal
desorption of PCBs into GC
column

GC/ECD 1.0 ppb (total
PCBs)

<93 Poon et al. 1999

Blood Solvent extraction; cleanup on
Florisil

GC/ECD;
confirmation by
HRGC/MS-SIM

2 ng/g 81–96 Mes et al. 1994

Plasma Solvent extraction; cleanup on
alumina

Dual column
HRGC/ECD

0.01 ng/g >95 Koopman-
Esseboom et al.
1994b
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Table 7-2.  Analytical Methods for Determining Polychlorinated Biphenyls in Biological Samples (continued)

Sample matrix Preparation method
Analytical method Sample

detection limit
Percent
recovery Reference

Serum (congener
specific)

Extraction of 13C-labeled PCB-
spiked sample with ethanol/
hexane; wash of extract with
concentrated sulfuric acid; cleanup
and fractionation by multi-column
chromatography

HRGC/NICI/MS
and IDMS

2 ppq 605 for PCB-77a, 48 for
PCB-126, and 16 for
PCB-169

Patterson et al.
1989

Blood Methanolic KOH hydrolysis;
extraction with hexane; cleanup on
silica gel and alumina column if
necessary

GC/ECD 2 pg 100±4 at 1.09–109 ng/g Que Hee et al.
1983

Adipose tissue Solvent extraction; cleanup on
sulfuric acid/silica gel and 10%
silver nitrate/silica gel columns

GC/ECD No data 91–93 at 3 µg/g Smrek and
Needham 1982

Adipose tissue Extraction with acetone/hexane;
fractionation by GPC; cleanup on
Florisil column

Two dimensional
HRGC/MS

No data >80 at 10–500 ng/g Le Bel and
Williams 1986

Adipose tissue
and serum
(congener
specific)

Extraction of 13C-labeled PCB-
spiked sample with ethanol/
hexane; wash of extract with
concentrated sulfuric acid; cleanup
and fractionation by multi-column
chromatography

HRGC/ID/HRMS No data No data Patterson et al.
1994

Human milk Extraction with mixed solvents;
cleanup on Florisil-silicic acid
column

HRGC/ECD No data 94 at ng/mL Mes et al. 1984;
Safe et al. 1985b

Human milk
(congener
specific)

Extraction with ethanol/hexane;
clean up on Florisil column;
fractionation on porous graphitic
carbon

HRGC/ECD 3 pg/g 90–104 Hong et al.
1992a

Human milk
(congener
specific)

Addition of surrogate congener
standard PCB 46 and 142,
extraction with hexane, cleanup
with Florisil.

HRGC/ECD 1 pg/g (PCB
200) - 129 pg/g
(PCB 48)

No data Greizerstein et
al. 1997
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Sample matrix Preparation method
Analytical method Sample

detection limit
Percent
recovery Reference
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Human milk Fat separation; cleanup on
adsorption columns

HRGC/ECD 0.4 ng/g fat No data Abraham et al.
1994

Human hair
(congener
specific)

Ultrasonic extraction with
acetone/hexane; wash of extract
with concentrated sulfuric acid and
alkaline hydrolysis; cleanup on
Florisil column; fractionation on
carbon column

HRGC/ECD No data No data Zupancic-Kralj et
al. 1992

Liver, kidney, brain
tissue (Rhesus
monkeys)

Homogenization; solvent
extraction; cleanup on Florisil

GC/ECD 12–33 ng/g 78–100 (corn oil) Mes et al.
1995a, 1995b

Tissue (congener
specific)

Homogenized; extracted in
methylen chloride:hexane (1:1)
using Soxhlet extractor; cleanup
using sulfuric acid and
chromatography

HRGC/HRMS See Table 7-1 No data EPA 1999k
(method 1668)

aThe high recovery for PCB 77 was due to interference from other congeners. The low recovery for PCB 126 and PCB-169 is not critical since ID/MS makes
correction for recovery unnecessary.

ECD = electron capture detector; GC = gas chromatography; GPC = gel permeation chromatography; HRGC = high resolution gas chromatography; HRMS=high
resolution mass spectroscopy; ID/HRMS = isotope dilution high resolution mass spectrometry; IDMS = isotope dilution mass spectrometry; KOH = potassium
hydroxide; MS = mass spectrometry; MS-SIM = mass spectrometer-selected-ion-monitoring; NICI/MS = negative ion chemical ionization mass spectrometry;
PBBs = polybrominated biphenyls; PCBs = polychlorinated biphenyls



PCBs 602

7.  ANALYTICAL METHODS

relatively low fat content.  Analysis of breast milk does not present this difficulty.  While analytical

techniques have improved enormously in recent years, the low concentration of fat in cord blood may still

present difficulties in achieving accurate and reliable PCB levels. 

Methods for determining PCBs in adipose tissue are similar to those for blood.  Solvent extraction is used

to separate the PCBs along with other soluble organics from the tissue.  The PCBs are then separated

from the lipids, usually by column chromatographic techniques.  Most procedures include a step for

determining the percent fat since results are often reported on a percent fat basis.  Very little performance

data are available for PCBs in adipose tissue.  Detection limits of 51–144 ng/g have been reported for

adipose tissue from Rhesus monkeys (Mes et al. 1994, 1995b).

A congener-specific analysis of a commercial PCB preparation and the PCB composition of a human milk

sample were reported originally by Safe et al. (1985b).  Recent studies have demonstrated the analysis of

non-ortho coplanar and mono-ortho coplanar PCBs in breast milk (Dewailly et al. 1991) and coplanar

PCBs in serum and adipose tissue (Patterson et al. 1994).  Determination of these congeners (PCBs 77,

126, 169) is useful in assessing the toxic potential of breast milk for infants.

Recently, supercritical fluid extraction (SFE) has been utilized for extraction and cleanup of biological

samples.  The procedure is quick and avoids the use of flammable or toxic organic solvents (Anitescu and

Tavlarides 1998; Djordjevic et al. 1994).  Packed-column GC techniques are still widely used; however,

HRGC has made it possible to achieve better separation of PCB congeners for quantitation (Ballschmiter

and Zell 1980; Mullin et al. 1984).

The congeners to be determined in samples may be selected on the basis of their abundance in the

samples, their toxicity, or the availability of analytical standards.  The coplanar, non-ortho-substituted

congeners are PCB-77, PCB-126, and PCB-169.  The mono-ortho-substituted congeners, PCB-28,

PCB-74, PCB-105, PCB-118, and PCB-156, are also frequently determined, along with the non-ortho-

substituted PCB congeners.  PCBs 138, 153, and 180 are frequently measured in higher amounts than

other congeners (Safe 1993; Schecter et al. 1994) and are often included in sets of congeners for

quantitation.

Variables in sampling methods greatly influence results.  For example, PCB levels in milk fat may

decrease during lactation, with maternal age and weight, and with number of children born (Jensen 1987). 

It has been shown by Lawton et al. (1985b) that random error, inter-laboratory variations in procedure, 
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and methods used for reporting data may have considerable impact on the reported PCB levels in human

tissues.  Caution should be exercised when comparing exposure estimates or health effect studies reported

by different investigators unless similar analysis methodologies are employed.  Also, without the

separation and quantitation of individual PCB congeners during analysis, PCB concentrations can not be

directly correlated to toxic equivalency.  Currently, EPA Method 1668 (Revision A) is a standard method

for analysis of individual PCB congeners  in biological tissues (EPA 1999k).

7.2 ENVIRONMENTAL SAMPLES

An overview of PCB analysis, including sampling technique, extraction, cleanup procedures, and

quantification is reported in EPA Method 1668 (Revision A; EPA 1999k).  A summary of representative

methods is shown in Table 7-3.  The table includes methods that have been standardized by NIOSH,

EPA, American Society for Testing and Materials (ASTM), AOAC, and Food and Drug Administration

(FDA).  Most of these methods were developed for the determination of Aroclors (noncongener-specific

PCBs) in environmental samples.

Air samples are usually collected by pumping air through a sampler containing a glass fiber filter and

adsorbent trap to separate the particle bound and vapor phase fractions.  Adsorbents used most often

include Florisil (Lin and Que Hee 1985, 1987; NIOSH 1984a), XAD-2 (EPA 1988b; Hippelein et al.

1993), and polyurethane foam (PUF) (Bremle and Larsson 1998; EPA 1988b).  Florisil traps are solvent

desorbed (Lin and Que Hee 1985, 1987; NIOSH 1984a) and XAD-2 traps are Soxhlet extracted (Bremle

and Larsson 1998; EPA 1988b; Hippelein et al. 1993).  PCBs are determined by GC/ECD (Bremle and

Larsson 1998; EPA 1988b; Irvine and Loganathan 1998; Lin and Que Hee 1985, 1987; NIOSH 1984a) or

HRGC/MS (Hippelein et al. 1993).  Detection limits depend upon the volume of air sampled; however,

detection limits in the low ng/m3 (EPA 1988b) to low pg/m3 (Hippelein et al. 1993) have been reported. 

Recovery, where reported, is good (>80%) (Bremle and Larsson 1998; Brownlow and Que Hee 1985;

EPA 1988b; Irvine and Loganathan 1998; Lee et al. 1996; Lin and Que Hee 1985, 1987).

EPA Method 1668 (Revision A ) is the current methodology used to measure specific toxic, dioxin-like

PCB congeners in surface, ground, and drinking water by HRGC/HRMS (EPA 1999k).  Drinking water

samples are typically extracted with solvent prior to analysis by GC/ECD,  HRGC/ECD, and

HRGC/HRMS (EPA 1989c, 1999k).  Detection limits are in the sub-ppb range and recovery is good

(>80%) (EPA 1989c).  Preconcentration techniques may be used for extraction of large water volumes,

thus lowering the method detection limit (Leister and Baker 1994; Swackhamer and Armstrong 1987).  



PC
Bs

604
7.  AN

ALYTIC
AL M

ETH
O

D
S

Table 7-3.  Analytical Methods for Determining Polychlorinated Biphenyls in 
Environmental Samples

Sample matrix Preparation method Analytical method
Sample detection
limit

Percent
recovery Reference

Air (occupational) Adsorption on glass fiber filter and Florisil;
hexane desorption

GC/ECD 0.0006 mg/m3 for
50 L sample

No data NIOSH 1984a
(method 5503)

Air Adsorption on water-deactivated Florisil;
hexane desorption; perchlorination 

GC/ECD No data 84–103 at
4–49 µg/m3

Lin and Que Hee
1985, 1987

Air Adsorption on Florisil or Chromosorb 102 or
Tenax GC or XAD-2; hexane desorption

GC/ECD 10 µg/m3 for
4 L sample

>80 at 300 µg/m3 Brownlow and 
Que Hee 1985

Ambient Air Sample collection on glass fiber filter and
PUF cartridge; Soxhlet extraction; alumina
column cleanup

GC/ECD >1 ng/m3 36–94 EPA 1988b (method
TO-4)

Ambient air
(target
congeners)

Sample collection on glass fiber filter and
XAD-2 trap; Soxhlet extraction; adsorption
column cleanup and fractionation

HRGC/MS low pg/m3

(calculated)
No data Hippelein et al. 1993

Water (congener
specific)

Extracted using SPE, SFE, CLLE; cleanup
using sulfuric acid and chromatography

HRGC/HRMS See Table 7-1 No data EPA 1999k (method
1668)

Drinking water Extraction with hexane  HRGC/ECD 0.08–0.15 µg/L 84–97 (tap water) EPA 1989c (method
505)

Finished drinking
water and
groundwater

Extraction with methylene chloride; solvent
exchange to methyl tert-butyl ether

GC/ECD or
HRGC/ECD

No data No data EPA 1989c (method
508)

Drinking water
(screening)

Extraction with methylene chloride; solvent
exchange to chloroform; perchlorination to
decachlorobiphenyl

GC/ECD or
HRGC/ECD

0.14–0.23 µg/L 82–136 ng/g EPA 1989c (method
508A)

Drinking water Extraction on SPE cartridges or disks;
elution with methylene chloride

HRGC/MS 0.045–0.24 µg/L 65–100 EPA 1987f (method
525)

Drinking water
(congener
specific)

Sample spiked with 13C-labeled PCBs;
solvent extraction of sample (filtered water
and particles); cleanup and fractionation by
adsorption chromatography 

HRGC/HRMS 0.02–0.04 pg/L No data Miyata et al. 1993
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Table 7-3.  Analytical Methods for Determining Polychlorinated Biphenyls in 
Environmental Samples (continued)

Sample matrix Preparation method Analytical method
Sample detection
limit

Percent
recovery Reference

Rain water
(congener
specific)

Passage through filter and XAD-2 resin;
solvent extraction; cleanup on Florisil
column

2-dimensional
HRGC/ECD

<1–30 pg/L 79–83 Leister and Baker
1994

Waste water Extraction with methylene chloride;
exchange to hexane; cleanup on Florisil
column; removal of elemental sulfur if
necessary

GC/ECD 0.065 µg/L
(PCB-1242)

88–96 at
25–110 µg/L

EPA 1982a, 1988b
(method 608)

Waste water Extraction with methylene chloride GC/MS 30–36 µg/L
(PCB-1221, 1254)

77–80 at
5–2,400 µg/L

EPA 1982a (method
625)

Lake water Passage through glass fiber filter and
XAD-2; Soxhlet extraction; cleanup on
alumina and silica gel column

HRGC/ECD No data 93 Swackhamer and
Armstrong 1987

Sea water
(congener
specific)

Collection of particulate and filtered water in
a pressurized extraction-filtration system;
cleanup with sodium hydroxide, alumina,
and silica column

HRGC/ECD 0.1–3.0 ng/L 67–106 Kelly et al. 1993

Soil, sediments,
and other solid
sample matrices

Extraction with hexane/acetone; cleanup on
Florisil column; desulfurization if necessary

GC/ECD <1 µg/g No data EPA 1994f (method
8080A)c

Soil, sediments,
and other solid
sample matrices
(congener
specific)

Filtered and homogenized; extracted using
Soxhlet/Dean-Stark extractor; cleanup
using sulfuric acid and chromatography

HRGC/HRMS See Table 7-1 No data EPA 1999k (method
1668)

Solid wastes
(Aroclors or
congeners)

Soxhlet extraction; sulfuric acid/potassium
permanganate cleanup

HRGD/ECD;
confirmation on
second column

57–70 µg/kg (soil) 62–125 (multiple
lab)

EPA 1995c (Method
8082)c

Hazardous
wastes

Extraction with hexane/acetone; cleanup on
silica gel column; desulfurization by copper
or mercury if necessary

HRGC/ECD 60–70 µg/kg 104–107 (for soil) Lopez-Avila et al.
1988
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Sample matrix Preparation method Analytical method
Sample detection
limit

Percent
recovery Reference
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Soil/sediment
(low level)

Extraction with methylene chloride/acetone
(1:1); cleanup by gel permeation and micro-
alumina column

GC/ECD 80 µg/kg (required
quantitation limit)

No data EPA 1987a (CLP)b

Sediment
(congener
specific)

Ultrasonic extraction with acetone/hexane;
sulfur removal; cleanup on Florisil;
fractionation by HPLC 

HRGC/ECD No data 70–93 Fuoco et al. 1993

Sediment Supercritical fluid extraction; mini-Florisil
column cleanup sulfur removal

HRGC/ECD;
confirmation by MS

No data .90 Lee and Peart 1994

Railcar paint
scrapings

Extraction with 90% methylene
chloride/10% methanol; cleanup on Florisil
column 

HRGC/ECD 1 mg/kg 74–86 Welsh 1995

Fly ash Soxhlet extraction; optional column cleanup GC/ECD or GC/MS-
SIM

No data 80–100 Ko…an et al. 1994

Fish (congener
specific)

Extraction of homogenized tissue with
petroleum ether/ethyl acetate; cleanup by
gel permeation chromatography

HRGC/NICI/MS 0.2–3 pg 65–115 Schmidt and
Hesselberg 1992

Fish (congener
specific)

Homogenized; extracted in methylene
chloride:hexane (1:1) using Soxhlet
extractor; cleanup using sulfuric acid and
chromatography

HRGC/HRMS See Table 7-1 No Data EPA 1999k (method
1668)

Fish, fish egg,
and bird egg
(congener
specific)

Extraction of homogenized 13C-PCB labeled
tissues with methylene chloride; removal of
lipid by gel permeation or dialysis; cleanup
by multi-layer and multiple chromatography;
fractionation by HPLC 

HRGC/ECD 0.1–0.73 ng/g
(lipid)

62–92 Schwartz et al. 1993

Mammal blubber Sample ground; solvent extraction; micro-
Florisil column cleanup

dual column
HRGC/ECD

30 µg/kg 95.2 (mean) Newman et al. 1994

Marine animals Microextraction GC/ECD 1 ng 95 (Aroclor 1254) Wirth et al. 1994
Cow's milk
(congener
specific)

Mixing of sample fortified with 13C-labeled
PCBs with sodium oxalate and methanol;
solvent extraction; cleanup and
fractionation by porous carbon and alumina

HRGC/MS 0.1–0.5 pg/g (fat)
for tetra- to hexa-
congeners of PCB

50–60 Van der Velde et al.
1994
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Eggs, fish Supercritical fluid extraction combined with
Florisil separation

GC/ECD No data 91–95 Alley and Lu 1995

Fatty foods Solvent extraction; liquid-liquid partitioning;
cleanup on Florisil column

GC/ECD No data No data AOAC 1990

aThis method converts the different congeners to decachlorobiphenyl and cannot differentiate between commercial mixtures (e.g., Aroclor 1242, 1260).
bAs required by Contract Laboratory Program
cMethod 8080A is proposed for deletion from SW-846; method 8082 is proposed for inclusion in SW-846.

CLLE = continuous liquid/liquid extraction; ECD = electron capture detection; GC = gas chromatography; HPLC = high performance liquid chromatography; HRGC = high resolution
gas chromatography; HRMS = high resolution mass spectrometry; MS = mass spectrometry; NICI/MS = negative ion chemical ionization mass spectrometry; ng = nanogram (10-9 g);
pg = picogram (10-12 g); PUF = polyurethane foam; SIM = selected ion monitoring; SFE= separatory funnel extraction; SPE = solid phase extraction
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Detection limits in the low pg/L range have been reported (Leister and Baker 1994).  Some of the

methods are noncongener-specific; that is, the results are reported as PCB mixtures (Aroclors) (EPA

1982a, 1989c), and some are congener-specific (EPA 1987f, 1999k; Kelly et al. 1993; Leister and Baker

1994; Miyata et al. 1993).  EPA Method 508A, which converts all of the PCBs to decachlorobiphenyl, is

a screening method for quantifying total PCBs (EPA 1989c).  The method is likely to show interference

due to perchlorination of biphenyl or related compounds (EPA 1991b) and the method cannot quantify

individual commercial Aroclors in a PCB mixture.  Some waters, particularly surface and waste waters,

may require cleanup on adsorption columns prior to analysis (EPA 1982a, 1988b; Miyata et al. 1993). 

SPE media may be used, reducing the use of flammable or toxic solvents (EPA 1987f).

Soil, sediment, and solid waste samples are usually Soxhlet extracted (EPA 1994f, 1995c, 1999k). 

Ultrasonic extraction with various solvent combinations (Fuoco et al. 1993) and SFE (Lee and Peart

1994) are utilized as well.  Recoveries using these methods are comparable to Soxhlet extraction

(80–100%).  Cleanup procedures include sulfur removal (EPA 1994f; Fuoco et al. 1993; Lee and Peart

1994; Lopez-Avila et al. 1988) and separation on adsorbent columns (Bandh et al. 1996; EPA 1994f;

Fuoco et al. 1993; Lee and Peart 1994; Lopez-Avila et al. 1988).  HRGC/ECD is used most often for

determination of PCBs (Fuoco et al. 1993; Lee and Peart 1994; Lopez-Avila et al. 1988).  Detection limits

are generally in the ppb range (60–80 µg/kg) (EPA 1987a, 1995c; Lopez-Avila et al. 1988).  Recovery of

62–125% of PCBs in clay and soil samples has been reported for a multiple lab study (EPA 1995c). 

Methods using the enzyme-linked immunosorbent assay are commercially available for screening PCB

contamination in soils (Baek 1993; EPA 1995d).  These methods are inexpensive and have a fast

turnaround time.  

Methods are available for measuring the concentration of PCBs in fish and animal tissues.  Tissues are

homogenized, and then dried by blending with anhydrous sodium sulfate prior to Soxhlet or column

extraction (EPA 1999k; Newman et al. 1994).  Direct extraction has also been utilized (Schwartz et al.

1993).  After cleanup, PCBs are determined by HRGC/ECD (Schwartz et al. 1993), dual column

HRGC/ECD (Newman et al. 1994), or HRGC/MS (Schmidt and Hesselberg 1992).  A micro extraction

method for very small sample masses (25 µg) has been developed (Wirth et al. 1994).  A limit of

detection of 1 ng/kg sample, and good recovery (95%) and precision were reported (Wirth et al. 1994). 

Few methods are available for the determination of PCBs in foods.  Little performance data have been

reported as well.  A method is available for the determination of Aroclors in poultry fat, fish, and dairy

products (AOAC 1990).
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A number of Standard Reference Materials (SRMs) with certified PCB congener concentrations are

available from the National Institute of Standards and Technology (NIST); these include SRM 1588,

PCBs in Cod Liver Oil; SRM 1939, PCBs in River Sediment; SRM 1941, PCBs in Marine Sediment; and

SRM 1974, PCBs in Mussel Tissue (Schantz et al. 1993a, 1993b).  These SRMs are useful in validating

the accuracy of methods for the determination of PCBs, and for verifying that the method remains within

acceptable levels of error in during analysis.  A summary of available SRMs with certified PCB

concentrations is shown in Table 7-4.  SRMs with non-certified concentration data for PCBs are included

in the table as well.

7.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of PCBs is available.  Where adequate information is not

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the

initiation of a program of research designed to determine the health effects (and techniques for developing

methods to determine such health effects) of PCBs. 

 

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

7.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect.    Several investigators have

used whole blood, serum, breast milk, and hair as biomarkers for environmental exposure to PCBs

(Brown and Lawton 1984; Fait et al. 1989; Furst et al. 1994; Luotamo 1988; Safe et al. 1985b; Zupancic-

Kralj et al. 1992).  Consequently, levels of PCBs in these media can provide estimates of exposure to

PCBs.  Analytical methods of satisfactory accuracy are available for determining congener- and

noncongener-specific PCBs in blood, serum, breast milk, and human hair; these methods are shown in

Table 7-2.  Some methods for determining biomarkers are shown in Table 7-5.  The method developed by

several investigators can be used for the determination of the three non-ortho substituted PCB congeners 
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Table 7-4.  NIST Standard Reference Materials for the Determination of Polychlorinated Biphenyls (PCBs)a

SRM Description PCBs certified PCBs quantified

1589 PCBs (as Aroclor 1260) in human serum 1b

1588 Organics in cod liver oil Surrogate for a tissue extract with high lipid
content

4 43

1649 Urban dust/organics Air particulate material 10

1939 PCB congeners in river sediment Sediment with high levels of PCB congeners 3 17

1941a Organics in marine sediment Collected in Baltimore Harbor 15

1974 Organics in mussel tissue Frozen powder-like homogenate 13

1945 Whale blubber Frozen blubber homogenate 26

aSource: Schantz et al. 1993a
bcertified as Aroclor 1260

NIST = National Institute of Standards and Technology



PC
Bs

611
7.  AN

ALYTIC
AL M

ETH
O

D
S

Table 7-5.  Analytical Methods for Determining Biomarkers for Polychlorinated Biphenyls

Sample matrix Preparation method
Analytical
method

Sample
detection
limit

Percent
recovery Reference

Liver and adipose
tissue of gray seal
(methyl sulfone
metabolite)

Homogenization; extraction with
methylene chloride/cyclohexane;
removal of lipids by dialysis;
cleanup by gel permeation
chromatography; fractionation on
carbon and Florisil columns

HRGC/ECNI/MS No data No data Buser et al. 1992

Serum (major
metabolites of
PCB-77)

Solvent extraction; methylation;
partition with H2SO4

HRGC/ECD and
HRGC/MS

No data low nmol/mL Morse et al. 1995

ECD = electron capture detection; ECNI = electron capture negative ionization; HRGC = high resolution gas chromatography; MS = mass spectrometry
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(77, 126, and 169) in human milk, adipose tissue, and serum at levels normally found in these tissues of

control population (Harrad et al. 1992; Hong et al. 1992a; Patterson et al. 1989, 1994). 

While blood, serum, breast milk, adipose tissue, and hair have been used as biomarkers of exposure, the

possible equivalency of these biomarkers has not been intensively investigated.  At least two of these

biomarkers, serum and breast milk, did not appear to give equivalent measures of exposure even when

expressed on a lipid basis.  (The theory of equivalency is based on the assumption that the steady state

concentration of a persistent lipophilic substance in different body compartments is the same when

expressed on a lipid basis.)  Greizerstein et al. (1999) compared levels of PCB congeners between serum

and milk from seven women in the New York Angler Study.  The congener profiles for serum and milk

samples were similar for each individual, but different among all subjects.  The sum of the congener

concentrations was used to estimate the total PCB concentration.  The ratio of serum to milk

concentrations in the women ranged from 0.18 to 1.66 with a mean of 0.65±0.49, showing no consistency

among individuals.  Considerable differences were also found in the lipid-adjusted concentrations of

PCBs among individuals.  The range of lipid-adjusted serum-to-milk ratios was 1.1–2.8 with a mean of

1.9±0.5.  The lipid-adjusted serum levels were also >1 for the most abundant congeners, PCBs 118, 153,

138, and 180.  The lipid-adjusted ratios of these four non-planar congeners in serum and milk were

similar to those found by Koopman-Esseboom et al. (1994b) in a study involving 418 mother-infant pairs. 

This latter study found that correlation coefficients between PCB congener levels (PCBs 118, 138, 153,

and 180) in maternal plasma, human milk (lipid-basis), and cord plasma were highly significant within

one biological sample (0.71–0.98) as well as between different biological samples.  However, the

correlation between other PCB congeners in human milk varied considerably.  The study by Greizerstein

et al. (1999) was small and collection of blood and milk samples was not uniform for all subjects. 

Therefore, more data are needed to establish whether equivalency factors can be established between

various measures of body burden so as to allow normalization of measurements between different studies.

Biomarkers of effects of exposure to PCBs are detailed Chapter 3 (Section 3.8.1).  No single effect or

combination of effects that could be used specifically as an indicator of exposure to PCBs are being

developed to screen large numbers of food samples for PCBs and related compounds (J.K. Huwe et al. of

Agricultural Research Service, Fargo, North Dakota).  New screening methods for trace detection of

PCBs in the environment and feeds are being developed by M. Franek et al. (Ministerstvo Zemedelstvi,

Czech Republic).  Development and application of semipermeable membrane devices (SPMDs) as

environmental dosimeters for PCB contaminants in water, air, sediment, and soil is the subject of ongoing
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research by Huckins and Petty at Columbia Environmental Research Center in Missouri.  Also at the

Columbia Environmental Research Center, C. Orazio et al. are developing analytical methods for

determining PCBs in environmental matrices.  A reliable method for continuous monitoring of PCBs in

incinerator stack gas emissions using resonance-enhanced multiphoton ionization spectroscopy in

conjunction with time-of-flight mass spectroscopy (REMPI/TOFMS) is the topic of current research by

T.A. Cool at Cornell University.  No additional information or ongoing studies regarding analytical

methods for determining PCBs in environmental and biological samples resulting from exposure were

located.  Accordingly, new and improved analytical methods for trace detection of PCBs that could be

used specifically as indicators of exposure in environmental and biological samples to PCBs are needed.
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Table 8-1 summarizes international, national, and state regulations and guidelines on human exposure to

PCBs.

ATSDR has derived an MRL of 0.03 µg/kg/day for intermediate-duration oral exposure to PCBs.  The

intermediate oral MRL is based on a LOAEL of 0.0075 mg/kg/day for neurobehavioral effects in infant

monkeys that were exposed to a PCB congener mixture representing 80% of the congeners typically

found in human breast milk from birth to 20 weeks of age (Rice 1997, 1998, 1999b; Rice and Hayward

1997, 1999a).  An uncertainty factor of 300 was applied (10 for extrapolating from a LOAEL to a

NOAEL, 3 for extrapolating from monkeys to humans, and 10 for human variability).

ATSDR has derived an MRL of 0.02 µg/kg/day for chronic-duration oral exposure to PCBs.  The chronic

oral MRL is based on a LOAEL of 0.005 mg/kg/day for immunological effects in adult monkeys that

were evaluated after 23 and 55 months of exposure to Aroclor 1254 (Tryphonas et al. 1989, 1991a).  An

uncertainty factor of 300 was applied (10 for extrapolating from a LOAEL to a NOAEL, 3 for

extrapolating from monkeys to humans, and 10 for human variability).

EPA has verified an oral reference dose (RfD) of 0.02 µg/kg/day for Aroclor 1254 (IRIS 2000) based on

dermal/ocular and immunological effects in monkeys, and an oral RfD of 0.07 µg/kg/day for Aroclor

1016 based on reduced birth weight in monkeys (IRIS 2000).

The EPA has determined that PCBs are probable human carcinogens and assigns them the cancer weight-

of-evidence classification B2 (IRIS 2000).  The EPA has developed an approach for assessing cancer risk

from environmental PCBs by considering both toxicity and environmental processes (Cogliano 1998;

EPA 1996c; IRIS 2000). This approach uses animal studies of commercial PCB mixtures to develop a

range of human cancer potency estimates and then considers the effect of environmental processes to

determine appropriate values for representative classes of environmental mixtures.  Additional discussion

on EPA’s cancer risk assessment, including the cancer slope factors and their corresponding exposure

pathways, is provided in Chapter 3 (Section 3.2.8.3.2).  IARC has determined that PCBs are probably

carcinogenic to humans (Group 2A) (IARC 1987).  The Department of Health and Human Services

(DHHS) concluded that PCBs are reasonably anticipated to be carcinogenic in humans based on sufficient

evidence of carcinogenicity in animals (NTP 2000).
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OSHA requires employers of workers who are occupationally exposed to PCBs to institute engineering

controls and work practices to reduce and maintain employee exposure at or below permissible exposure

limits (PELs).  The employer must use engineering and work practice controls, if feasible, to reduce

exposure to or below an 8-hour time-weighted average (TWA) of 1 mg/m3 for chlorodiphenyl (54%

chlorine).  Respirators must be provided and used during the time period necessary to install or implement

feasible engineering and work practice controls (OSHA 1998a).

The Food and Drug Administration (FDA) sets tolerance limits for PCBs as “unavoidable poisonous or

deleterious substances” in both animal and human food, and food-packaging materials (FDA 1998c).

PCBs haves been designated as a hazardous substance pursuant to the Comprehensive Environmental

Response, Compensation, and Liability Act (CERCLA) of 1980 (EPA 1998i) and as a toxic chemical

under Section 313 of Title III of the Superfund Amendments and Reauthorization Act (SARA) of 1986

(EPA 1998i).  Title III of SARA is also known as "The Emergency Planning and Community Right-to-

Know Act (EPCRA) of 1986."  As a chemical subject to the emergency planning and release reporting

requirements of EPCRA, owners and operators of certain facilities that have PCBs on their sites in

amounts exceeding a specified reporting threshold are required to report annually releases of PCBs to any

environmental medium (EPA 1998d).  The owners and operators of these facilities are also required to

immediately report releases of PCBs to any environmental media if the amount released exceeds the

“reportable quantity” of 1 pound (0.454 kg) (EPA 1998h).  The statutory sources for designating PCBs as

CERCLA hazardous substance are sections 311(b)(4) and 307(a) of the Clean Water Act (CWA), and

section 112 of the Clean Air Act (CAA).  The statutory reportable quantity for PCBs established by

Section 102 of CERCLA is 10 pounds (4.54 kg) (EPA 1998h).

PCBs are regulated by the Clean Water Effluent Guidelines as stated in Title 40.  Sections 400–475, of

the Code of Federal Regulations (CFR).  For each point source category, PCBs may be regulated as a

group of chemicals controlled as Total Toxic Organics or may have a specific Regulatory Limitation. 

The point source categories for which PCBs are controlled as a Total Toxic Organic include

electroplating (EPA 1981) and metal finishing (EPA 1983a).  The point source category for which PCBs

has a specific regulatory limitation is steam electric power generating (EPA 1982b).

If waters and their sediments become contaminated from sources such as atmospheric deposition and

discharges from industrial, municipal, or agricultural operations, toxic substances could concentrate in the

tissue of fish and wildlife.  Currently, 679 advisories restricting the consumption of PCB-contaminated
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fish, shellfish, and wildlife have been issued in 37 states and in one U.S. Territory (American Samoa)

(EPA 2000b).

The Toxic Substances Control Act (TSCA) bans manufacturing, processing, and distributing PCBs in

commerce.  It also bans the use of PCBs outside of totally enclosed systems (EPA 1998a).  In addition to

authorizing the EPA to regulate PCBs, TSCA also provides the EPA with the authority to modify these

bans if it is shown that such modifications would not present unreasonable risks to human health and the

environment.  On June 29, 1998, the EPA published amendments in the Federal Register to the regulatory

requirements for the manufacture, processing, distribution in commerce, use, cleanup, storage, and

disposal of PCBs (EPA 1998a).  These amendments add regulatory provisions authorizing certain uses of

PCBs; authorizing the manufacture, processing, and distribution in commerce of PCBs for use in research

and development activities; specifying additional alternatives for the cleanup and disposal of PCBs; and

clarifying the processing for disposal exemption.  These amendments also add sections establishing

standards and procedures for disposing of PCB remediation waste and certain products manufactured with

PCBs; establishing procedures for determining PCB concentration; establishing standards and procedures

for decontamination; establishing controls over the storage of PCBs for reuse; and establishing a

mechanism for coordinating TSCA disposal approvals for the management of PCB wastes among various

Federal programs.  They also update several marking, recordkeeping, and reporting requirements.

The amendments contained in the final rule will be codified in the CFR at 40 CFR 750 and 40 CFR 761. 

The final rule authorizes certain uses of PCBs and materials contaminated with PCBs to continue if

exposures can be controlled, and if removal and disposal of the material would be costly or impractical. 

More flexibility in selecting disposal technologies for PCBs is also allowed, and the list of available

decontamination procedures has been expanded.  The final rule allows disposal of PCBs from

decontamination activities, but does not require previously needed disposal approval (EPA 1998a).  The

amendments add provisions for disposing of PCB remediation waste and certain products containing

PCBs.  TSCA does not allow state disposal rules for PCBs to be preempted, particularly if the method of

disposal is described.

Some of the substances regulated by the requirements in 40 CFR 761 are dielectric fluids, solvents, oil,

waste oils, heat transfer fluids, hydraulic fluids, paints or coatings, sludges, slurries, sediments, dredge

spoils, soils, and materials containing PCBs as a result of spills.  The regulatory applicability for these

substances depends in part on the concentration of PCBs present (EPA 1998a).  Numerical standards are

usually expressed as the weight of PCBs per weight of liquid (e.g., milligrams per liter) or non-liquid 
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matrix (e.g., milligrams per kilogram).  The final rule provides two option for determining what

regulatory requirements apply to materials PCB-containing materials.  The first option requires that the

PCB concentration be determined (weight-to-weight or weight-to-volume) and then the regulatory

requirements for the found concentration and the type of material are applied.  Unless it is otherwise

noted in the regulation, the weight or volume is determined using the total weight of the material and not

the calculated weight or volume of PCBs within the substance.  For non-liquid PCBs, the concentration

must be determined on a dry weight basis.  The concentration of PCBs in liquids and multi-phasic

materials must determined on a wet weight basis and an analysis of each phase, respectively.  The second

option allows an assumption to be made that the PCB concentration is $500 ppm.  When the second

option is chosen, it would not be necessary to determine the PCB concentration; however, the most

restrictive regulatory requirements will need to be met.

Although there are exceptions, such as waste oils used for energy recovery, PCB wastes are generally

regulated for disposal under TSCA at concentrations of $50 ppm.  The requirements for the disposal of

PCB liquids and PCB items will be codified at 40 CFR 761.60.  Disposal requirements for PCB

remediation waste or PCB bulk product waste will be codified in 40 CFR 761.61 and 761.62,

respectively.  When the components of a waste are PCBs and non-PCB contaminants, and the PCB

component is approved for disposal, the non-PCB component must meet the requirements of all other

applicable statues or regulatory authorities prior to disposal (EPA 1998a). 
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Table 8-1.  Regulations and Guidelines Applicable to PCBs

Agency Description Information References
INTERNATIONAL
Guidelines:

IARC Carcinogenic classification Group 2A a IARC 1987
NATIONAL
Regulations and
Guidelines:
a. Air

ACGIH TLV for occupational
exposure (8-hour TWA)
Aroclor 1242 - (53469-21-9)
Aroclor 1254 - (11097-69-1)

1 mg/m3

0.5 mg/m3

ACGIH 1998

NIOSH REL (10-hour TWA)
Chlorodiphenyl (42%
chlorine) - (53469-21-9)
Chlorodiphenyl (54%
chlorine) - 
(11097-69-1)

0.001 mg/m3

0.001 mg/m3

NIOSH 2000

OSHA PEL (8-hour TWA)
Aroclor 1242 (53469-21-9)
Aroclor 1254 (11097-69-1)

1 mg/m3

0.5 mg/m3

OSHA 1998a
29 CFR
1910.10003

PEL (TWA)  for shipyards
Aroclor 1242 (53469-21-9)
Aroclor 1254 (11097-69-1)

1 mg/m3

0.5 mg/m3

OSHA 1998b
29 CFR
1915.1000

PEL (TWA)  for construction
Aroclor 1242 (53469-21-9)
Aroclor 1254 (11097-69-1)

1 mg/m3

0.5 mg/m3

OSHA 1998c
29 CFR
1926.55

b. Water
EPA Drinking water standard for

PCBs
5x10-4 ppm EPA 1999e

40 CFR
141.32

MCL for community water
systems and non-transient,
non-community water
systems for PCBs

5x10-4 mg/L EPA 1999g
40 CFR
141.61

MCLG for PCBs 0 mg/L EPA 1999f
40 CFR
141.50

MCL
Concentration at cancer risk of
10-4

Cancer classification

5x10-4 mg/L
5x10-4 mg/L

B2b

EPA 1996d
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Table 8-1.  Regulations and Guidelines Applicable to PCBs (continued)

Agency Description Information References
NATIONAL (cont’d)

Human health consumption of:
water and organismc

organism onlyc
1.7x10-4 µg/L
1.7x10-4 µg/L

EPA 1999a

Groundwater PQLd 50 µg/L EPA 1999c
40 CFR 264
App. IX

Universal Treatment Standards
waste water standarde

non-waste water standarde
0.10 mg/L2

10 mg/kg3

EPA 1998e
40 CFR 268.48

FDA Bottled water
PCBs (1336-36-3) 0.0005 mg/L

FDA 1999a
21 CFR
165.110

c. Food
FDA Tolerances for PCB residues

Infant and junior foods
eggs
milk (fat basis)
manufactured dairy products 
(fat basis)
fish and shell fish (edible 
portion; excludes head, 
scales, viscera, and 

inedible bones)
poultry (fat basis)

0.2 ppm
0.3 ppm
1.5 ppm
1.5 ppm

2 ppm

3 ppm

FDA 1996c

Action level for PCB residues in
red meat on a fat basis

3 ppm FDA 1996b

Use of PCBs in the production,
handling, and storage of animal
feeds which then transfer to
human food produced by
animals

Yes FDA 1998a
21 CFR 500.45

Indirect food additives,
manufacturing of food-
packaging material

Yes FDA 1998b
21 CFR 509.15

Temporary tolerances for
residues of PCBs as
unavoidable environmental or
industrial contaminants

FDA 1998c
21 CFR 509.30 

Finished animal feed for food-
producing animals (except feed
concentrates, feed supplements,
and feed premixes)

0.2 ppm
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Table 8-1.  Regulations and Guidelines Applicable to PCBs (continued)

Agency Description Information References
NATIONAL (cont’d)
c. Food

Animal feed components of
animal origin, including fishmeal
and other by-products of marine
origin and in finished animal
feed concentrates, supplements,
and premixes intended for food-
producing animals

2 ppm

Paper food-packaging material
intended for or used with
finished animal feed and any
components intended for animal
feeds

10 ppm

d. Other
 ACGIH Aroclor 1242 (53469-21-9)

Biological Exposure Index
Carcinogenic classification

No data
No data

ACGIH 1998

Aroclor 1254 (11097-69-1)
Biological Exposure Index
Carcinogenic classification

No data
A3f

EPA Aroclor 1254 (11097-69-1)
Carcinogenic classification

Oral slope factor

RfD (oral)

Evaluation
incomplete

See PCBs

2x10-5 mg/kg-day

IRIS 2000

Aroclor 1248 (12672-29-6)
Carcinogenic classification

Oral slope factor

RfD (oral)

Evaluation
incomplete

See PCBs

Not verified

IRIS 2000

Aroclor 1016 (12674-11-2)
Carcinogenic classification

Oral slope factor

RfD (oral)

Evaluation
incomplete

See PCBs

7x10-5 mg/kg-day

IRIS 2000
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Table 8-1.  Regulations and Guidelines Applicable to PCBs (continued)

Agency Description Information References
NATIONAL (cont’d)
d. Other (cont’d)

EPA
Polychlorinated biphenyls
(PCBs) (1336-36-3)

Carcinogenic classification

Oral slope factor
Environmental exposure routes:

High risk and persistence

Low risk and persistence

Lowest risk and persistence

RfD (oral)

B2g

2.0 per
(mg/kg)/day
0.4 per
(mg/kg)day
0.07 per
(mg/kg)/day
See Aroclor 1016,
1248, and 1254

IRIS 2000

Reportable quantity pursuant to
Section 311 of the Clean Water
Act

1 pound EPA 1999h
40 CFR 117.3

Toxic Pollutant Effluent
Standards and Prohibitions

Yes EPA 1998a
40 CFR 129.4

Toxics Chemical Release
effective date under section
372.30

1/1/87 EPA 1999d
40 CFR 372.65

PCB waste regulated under
Toxic Substance Control Act

Yes EPA 1998b
40 CFR 261.8

Toxic pollutant designated
pursuant to section 307(a)(1) of
the Act

Yes EPA 1999j
40 CFR 401.15

Hazardous substance in
accordance with section
311(b)(2)(A) of the Act

Yes EPA 1999i
40 CFR 116.4

Hazardous constituent Yes EPA 1998r
40 CFR 261,
app. viii

Application to land used for the
production of food chain crops
and animal feed

Yes EPA 1998q
40 CFR 257.3-5

USC List of hazardous air pollutants Yes USC 1999
42 USC 7412

Manufacture of PCB

Process or distribution in
commerce

Banned 2 years
after 1/1/77
Banned 2.5 years
after 1/1/77

USC 1998
15 USC 2605
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Table 8-1.  Regulations and Guidelines Applicable to PCBs (continued)

Agency Description Information References
STATE
Regulations and
Guidelines:
a. Air:

HI List of hazardous air pollutants Yes UATW 1999d
AL Human health consumption of:

water and organismh

organism onlyi

for Aroclor 1016 (12674-11-2)
Aroclor 1221 (11104-28-2)
Aroclor 1232 (11141-16-5)
Aroclor 1242 (53469-21-9)
Aroclor 1248 (12672-29-6)
Aroclor 1254 (11097-69-1)
Aroclor 1260 (11096-82-5)

9.7x10-8 mg/L
9.7x10-8 mg/L

UATW 1999a

AZ PCBs (1336-36-3)
Oral HBGL
MCL
Aroclor (12674-11-2)
Oral HBGL

0.005 µg/L
0.5 µg/L

0.49 µg/L

FSTRAC 1999

CO Groundwater for PCBs (1336-
36-3)

0.005 µg/L CDC 1999c

Human health consumption of
PCBs (1336-36-3):

water and organism
water only

4.4x10-5 µg/L
0.005 µg/L

CDC 1999d

HI MCL for community and non-
transient, and non-community
water systems
PCBs (1336-36-3)

5x10-4 mg/L UATW 1999b

Freshwater
Acute
Chronic

2.0 µg/L
0.014 µg/L

UATW 1999c

Saltwater
Acute
Chronic

10 µg/L
0.03 µg/L

Fish consumption 7.9x10-5 µg/L
ID Primary water standard 5x10-4 mg/L UATW 1999e
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Table 8-1.  Regulations and Guidelines Applicable to PCBs (continued)

Agency Description Information References
STATE (cont’d)
b. Water: Acceptable water concentrations

KS Aquatic life
Acute
Chronic

Public health
Food procurement
Domestic water supply

2 mg/L
0.014 mg/L

7.9x10-6 mg/L
0.5 mg/L

CDC 1999e

NJ Groundwater quality criteria
for PCBs (1336-36-3)

0.02 µg/L CDC 1999a

c. Fish and Wildlife Advisory for PCBj: EPA 2000b
AL Fish
AR Fish
CT Fish
DE Fish
HI Fish
IA Fish
IN Fish
KY Fish
LA Fish
MA Fish, turtles, and

frogs
ME Fish
MI Fish
MO Fish
MS Fish
NJ Fish
NY Fish, and

waterfowl
OH Fish
PA Fish
RI Fish
SC Fish
TN Fish
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Table 8-1.  Regulations and Guidelines Applicable to PCBs (continued)

Agency Description Information References
STATE (cont’d)
c. Fish and Wildlife Advisory for PCBj: (cont’d) EPA 2000b

TX Fish
VA Fish
WI Fish

aProbably carcinogenic to humans
bSufficient evidence from animal studies to assume probable human carcinogen
cThis criterion is based on carcinogenicity of 10-6 risk.  Alternate risk levels may be obtained by moving the decimal
point (e.g., for a risk level of 10-5, move the decimal point in the recommended criterion one place to the right.)
dPQL: practical quantitation limit; this PQL is an average value for PCB congeners.
eThe waste water and non-waste water standard applies to all PCB isomers.
fConfirmed animal carcinogen with unknown relevance to humans
gProbable human carcinogen
hderived from equation 18 for consumption of water and fish which is as follows:

Conc. (mg/L) = (HBW x RL)/(CPF x [(FCR x BCF) + WCR])
Where: 
HBW = human body weight, set at 70 kg
RL = risk level, 1x10-5 
CPF = cancer potency factor, 7.7 (kg-day)/mg
FCR = fish consumption rate, set at 0.030 kg/day
BCF = bioconcentration factor, given in appendix A, 31200 l/kg
WCR = water consumption rate, 2 l/kg

iderived from equation 19 for consumption of fish only which is as follows:
Conc. (mg/L) = {HBW x RL}/(CPF x FCR x BCF)
Where:
HBW = human body weight, set at 70 kg
RL = risk level, 1x10-5 
CPF = cancer potency factor, 7.7 (kg-day)/mg
FCR = fish consumption rate, set at 0.030 kg/day
BCF = bioconcentration factor, given in appendix A, 31200 l/kg

jThis information, current as of 2000, is based on the EPA Fish and Wildlife Advisory Database searched 8/00 on
the Internet at http://www.epa.gov/OST/fishadvice/.   For more detailed information, consult your state public health
or natural resources department.  A fish or wildlife advisory will specify the bodies of water or hunting areas with
restrictions.  The advisory will indicate the species and size of fish or game of concern.  The advisory may
completely ban consumption or recommend limiting the number of servings of a certain fish or wildlife species to
less than a particular frequency.  The advisory may indicate that only certain parts of the fish or game should be
consumed and recommend preparation methods to minimize exposure.  The advisory may have stricter
restrictions than for the general public to protect pregnant women, nursing mothers, and young children.  Each
state, Native American tribe, or U.S. territory chooses its own criteria for issuing fish and wildlife advisories.

CFR = Code of Federal Regulations; EPA = Environmental Protection Agency; FDA = Food and Drug
Administration; HBGL = health based guidance levels for drinking water; IARC = International Agency for
Research on Cancer; IRIS = Integrated Risk Information System; MCL = maximum contaminant limit;
MCLG = maximum contaminant limit goal; NIOSH = National Institute of Occupational Safety and Health;
OSHA = Occupational Safety and Health Administration; PEL = permissible exposure limit; PQL = practical
quantitation limit; RfD = oral reference dose; REL = recommended exposure release; TLV = threshold limit value;
TWA = time-weighted average; USC = United States Code
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Absorption—The taking up of liquids by solids, or of gases by solids or liquids.

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the
surfaces of solid bodies or liquids with which they are in contact.

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by a sediment or soil (i.e., the solid phase)
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or
sediment.

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a
specified magnitude of changes in a specified adverse response.  For example, a BMD10  would be the
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be
10%. The BMD is determined by modeling the dose response curve in the region of the dose response
relationship where biologically observable data are feasible.   

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological
or epidemiological data to calculate a BMD.

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms
at a specific time or during a discrete time period of exposure divided by the concentration in the
surrounding water at the same time or during the same period.

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples.  They have
been classified as markers of exposure, markers of effect, and markers of susceptibility.

BZ number—A system of sequential numbers for the 209 PCB congeners introduced in 1980 by
Ballschmiter and Zell that identifies a given congener simply and precisely.  Also referred to as congener,
IUPAC, or PCB number.

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces
significant increases in the incidence of cancer (or tumors) between the exposed population and its
appropriate control.

Carcinogen—A chemical capable of inducing cancer.

Case-Control Study—A type of epidemiological study which examines the relationship between a
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is
identified and compared to a similar group of people without outcome.
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Case Report—Describes a single individual with a particular disease or exposure.  These may suggest
some potential topics for scientific research but are not actual research studies.

Case Series—Describes the experience of a small number of individuals with the same disease or
exposure.  These may suggest potential topics for scientific research but are not actual research studies.

Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed
group.

Congener—A single, unique, well-defined chemical compound in the PCB category.  The name of the
congener specifies the total number of chlorine substituents and the position of each chlorine.

Congener number—A system of sequential numbers for the 209 PCB congeners introduced in 1980 by
Ballschmiter and Zell that identifies a given congener simply and precisely.  Also referred to as BZ, PCB,
or IUPAC number.

Cross-sectional Study—A type of epidemiological study of a group or groups which examines the
relationship between exposure and outcome to a chemical or to chemicals at one point in time.

Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human
health assessment.

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result
from exposure to a chemical prior to conception (either parent), during prenatal development, or
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point
in the life span of the organism.

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a
toxicant and the incidence of the adverse effects.

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to
a chemical; the distinguishing feature between the two terms is the stage of development during which the
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero
death.

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water
levels for a chemical substance based on health effects information.  A health advisory is not a legally
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials.

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of
disease or other health-related conditions within a defined human population during a specified period.  
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Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of
affected cells, can be expressed as a mutagenic, clastogenic or carcinogenic event because of specific
alteration of the molecular structure of the genome.

Half-life—A  measure of rate for the time required to eliminate one half of a quantity of a chemical from
the body or environmental media.

Homolog—Subcategories of PCB congeners having the same number of chlorine substituents.  For
example, the 42 tetrachlorobiphenyls are congeners with 4 chlorine substituents in all possible
arrangements.

Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or
irreversible health effects.

Incidence—The ratio of individuals in a population who develop a specified condition to the total
number of individuals in that population who could have developed that condition in a specified time
period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the
Toxicological Profiles.

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from
exposure to environmental agents such as chemicals.

Immunological Effects—Functional changes in the immune response.

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube.

In Vivo—Occurring within the living organism.

IUPAC number—A system of sequential numbers for the 209 PCB congeners introduced in 1980 by
Ballschmiter and Zell that identifies a given congener simply and precisely.  Also referred to as BZ,
congener, or PCB number.

Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air which has been
reported to have caused death in humans or animals.

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for a
specific length of time is expected to cause death in 50% of a defined experimental animal population.

Lethal Dose(LO) (LDLO)—The lowest dose of a chemical introduced by a route other than inhalation that
has been reported to have caused death in humans or animals.

Lethal Dose(50) (LD50)—The dose of a chemical which has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical
is expected to cause death in 50% of a defined experimental animal population.
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Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study,
or group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the
lymph nodes, spleen, and thymus.

Malformations—Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and
duration of exposure.

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a minimal risk
level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty
factors. The default value for a MF is 1.

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific
population.

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time.

Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s
DNA.  Mutations can lead to birth defects, miscarriages, or cancer.

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of
death or pathological conditions.

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a
chemical.

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen between
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not
considered to be adverse.

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical
in n-octanol and water, in dilute solution.

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances
and a disease or condition) which represents the best estimate of relative risk (risk as a ratio of the
incidence among subjects exposed to a particular risk factor divided by the incidence among subjects who
were not exposed to the risk factor).  An odds ratio of greater than 1 is considered to indicate greater risk
of disease in the exposed group compared to the unexposed.

Organophosphate or Organophosphorus Compound—A phosphorus containing organic compound
and especially a pesticide that acts by inhibiting cholinesterase.
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Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA)
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek.

Pesticide—General classification of chemicals specifically developed and produced for use in the control
of agricultural and public health pests.

Pharmacokinetics—The science of quantitatively predicting the fate (disposition) of an exogenous
substance in an organism. Utilizing computational techniques, it provides the means of studying the
absorption, distribution, metabolism and excretion of chemicals by the body.

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models: data-based
and physiologically-based.  A data-based model divides the animal system into a series of compartments
which, in general, do not represent real, identifiable anatomic regions of the body whereby the
physiologically-based model compartments represent real anatomic regions of the body.

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically-based dose-
response model which quantitatively describes the relationship between target tissue dose and toxic end
points.  These models advance the importance of physiologically based models in that they clearly
describe the biological effect (response) produced by the system following exposure to an exogenous
substance. 

Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments
representing organs or tissue groups with realistic weights and blood flows.  These models require a
variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar
ventilation rates and, possibly membrane permeabilities.  The models also utilize biochemical information
such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also called
biologically based tissue dosimetry models.

Prevalence—The number of cases of a disease or condition in a population at one point in time. 

Prospective Study—A type of cohort study in which the pertinent observations are made on events
occurring after the start of the study.  A group is followed over time.

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the
incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food, and
µg/m3 for air).

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health
(NIOSH) time-weighted average (TWA) concentrations for up to a 10-hour workday during a 40-hour
workweek.

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups)
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime. 
The inhalation reference concentration is for continuous inhalation exposures and is appropriately
expressed in units of mg/m3 or ppm.

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious
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 effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level
(NOAEL-from animal and human studies) by a consistent application of uncertainty factors that reflect
various types of data used to estimate RfDs and an additional modifying factor, which is based on a
professional judgment of the entire database on the chemical.  The RfDs are not applicable to
nonthreshold effects such as cancer.

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a
24-hour period.

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result
from exposure to a chemical.  The toxicity may be directed to the reproductive organs and/or the related
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior,
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of
this system.

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing
records and/or examining survivors of the cohort.

Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical.

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or
inherited characteristic, that is associated with an increased occurrence of disease or other health-related
event or condition.

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed
group compared to the unexposed.

Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 min
continually.  No more than four excursions are allowed per day, and there must be at least 60 min
between exposure periods.  The daily Threshold Limit Value - Time Weighted Average (TLV-TWA) may
not be exceeded.

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen—A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect. 
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit
(STEL), or as a ceiling limit (CL).
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Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour
workday or 40-hour workweek.

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Toxicokinetic—The study of the absorption, distribution and elimination of toxic compounds in the
living organism.

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to
account for (1) the variation in sensitivity among the members of the human population, (2) the
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of one can be used;
however a reduced UF of three may be used on a case-by-case basis, three being the approximate
logarithmic average of 10 and 1.

Xenobiotic—Any chemical that is foreign to the biological system.
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ATSDR MINIMAL RISK LEVEL AND WORKSHEETS

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C.

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L.

99–499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly

with the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances

most commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological

profiles for each substance included on the priority list of hazardous substances; and assure the initiation

of a research program to fill identified data needs associated with the substances.

The toxicological profiles include an examination, summary, and interpretation of available toxicological

information and epidemiologic evaluations of a hazardous substance.  During the development of

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration

of exposure.  MRLs are based on noncancer health effects only and are not based on a consideration of

cancer effects.  These substance-specific estimates, which are intended to serve as screening levels, are

used by ATSDR health assessors to identify contaminants and potential health effects that may be of

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or

action levels.

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor

approach.  They are below levels that might cause adverse health effects in the people most sensitive to

such chemical-induced effects.  MRLs are derived for acute (1–14 days), intermediate (15–364 days), and

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently,

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method

suitable for this route of exposure.  MRLs are generally based on the most sensitive chemical-induced end

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level

above the MRL does not mean that adverse health effects will occur.
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MRLs are intended only to serve as a screening tool to help public health professionals decide where to

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that

are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants,

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies

because relevant human studies are lacking.  In the absence of evidence to the contrary, ATSDR assumes

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons

may be particularly sensitive.  Thus, the resulting MRL may be as much as a hundredfold below levels

that have been shown to be nontoxic in laboratory animals.

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the

Division of Toxicology, expert panel peer reviews, and agencywide MRL Workgroup reviews, with

participation from other federal agencies and comments from the public.  They are subject to change as

new information becomes available concomitant with updating the toxicological profiles.  Thus, MRLs in

the most recent toxicological profiles supersede previously published levels.  For additional information

regarding MRLs, please contact the Division of Toxicology, Agency for Toxic Substances and Disease

Registry, 1600 Clifton Road, Mailstop E-29, Atlanta, Georgia 30333.
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MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name: PCBs 
CAS Number: 11097-69-1
Date: September 2000
Profile Status: Final
Route: [ ] Inhalation   [X] Oral
Duration: [ ] Acute   [ X] Intermediate   [ ] Chronic
Key to Figure: 87k
Species: Monkey

Minimal Risk Level:  0.03   [X] µg/kg/day   [ ] ppm

Reference:  Rice 1997, 1998, 1999b; Rice and Hayward 1997, 1999a

Experimental design:  A series of studies were conducted that investigated effects of postnatal exposure to
a PCB congener mixture, representing 80% of the congeners present in breast milk in Canadian women,
on learning in monkeys.  Groups of five and eight male monkeys were orally administered doses of 0 or
0.0075 mg/kg/day, respectively, from birth to 20 weeks of age.  The daily dose was divided into thirds
and administered prior to the first three daily feedings via syringe to the back of the mouth.  The dose
level represents the approximate daily intake of a nursing human infant whose mother’s milk contained
50 ppb PCBs (the Health Canada guideline for maximum concentration in breast milk).  At the end of the
dosing period (i.e., at 20 weeks of age), the levels of PCBs in fat and blood in the treated monkeys were
1.7–3.5 ppm and 1.84–2.84 ppb, respectively.  Corresponding values in the control monkeys were
0.05–0.20 ppm and 0.30–0.37 ppb.  Beginning at 3 years of age, the monkeys were tested on a series of
nonspatial discrimination reversal problems followed by a spatial delayed alternation task.  Additional
testing was done at 4.5 and 5 years of age.

Effects noted in study and corresponding doses:    Treated monkeys showed decreased median response
latencies and variable increases in mean response latencies across three tasks of nonspatial discrimination
reversal.  There was no difference in overall accuracy of the tests or correlation between performance and
tissue levels of PCBs.  Treated monkeys also displayed retarded acquisition of a delayed alternation task
and increased errors at short delay task responses.  These findings were interpreted as a
learning/performance decrement rather than an effect on memory per se.  In a separate portion of this
study (Rice 1997), treated monkeys displayed shorter mean interresponse times when compared with
controls.  The increase in pause time for fixed-interval performance emerged more slowly across
48 sessions in treated monkeys.  For fixed-ratio performance tasks, the control monkeys decreased their
mean pause time across 10 sessions, whereas the treated monkeys did not.  Rice (1997) interpreted these
results as suggesting learning deficit, perseveration, and/or inability to inhibit inappropriate responding as
a result of postnatal PCB exposure.  Testing of these monkeys at 4.5–5 years of age showed that treated
animals performed in a less efficient manner than controls under a differential reinforcement of low rate
(DRL) schedule of reinforcement (Rice 1998).  There were no differences between groups on the
accuracy of performance on a series of spatial discrimination reversal tasks, although some treated
monkeys made more errors than others on certain parts of the experiment.  Further tests conducted at
about 5 years of age did not find treatment-related effects on a series of concurrent RI-RI (random
interval) schedules of reinforcement (Rice and Hayward 1999a).  This schedule was designed to study
behavior in transition (learning) as well as at steady state.  However, there was a difference between
treated and control monkeys on performance on a progressive ratio (PR) schedule.  Rice and Hayward
(1999a) stated that this finding may be indicative of retarded acquisition of the steady-state PR
performance in treated monkeys.
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Dose and end point used for MRL derivation:  The tested dose level, 0.0075 mg/kg/day, is a less serious
LOAEL for neurobehavioral toxicity.  This LOAEL is a particularly appropriate basis for MRL derivation
due to the human relevance of the tested PCB mixture (a congener mixture analogous to that in human
breast milk), dose level (approximate daily intake of a nursing human infant whose mother’s milk
contained 50 ppb PCBs), and resulting PCB tissue and blood levels (near background concentrations
found in the general human population).  Support for the LOAEL is provided by the occurrence of
minimal immunological alterations in the same monkeys at 0.0075 mg/kg/day (Arnold et al. 1999), as
well as clinical signs of toxicity (ocular and dermal changes) and decreased antibody responses in
offspring of monkeys that were exposed to a similar dose level of Aroclor 1254 (0.005 mg/kg/day) for
approximately 46 weeks during gestation and nursing (Arnold et al. 1995); these studies are summarized
below in the other pertinent information section. 

[ ] NOAEL   [X] LOAEL

Uncertainty Factors used in MRL derivation:

[X]  10 for use of a LOAEL
[X]   3 for extrapolation from animals to humans
[X]  10 for human variability

Was a conversion factor used from ppm in food or water to a mg/body weight dose?

No

If an inhalation study in animals, list conversion factors used in determining human equivalent dose:  

NA

Was a conversion used from intermittent to continuous exposure?  

No

Other additional studies or pertinent information that lend support to this MRL:

The monkeys that were evaluated for neurodevelopmental toxicity by Rice and coworkers were also
tested for other kinds of effects earlier in life (Arnold et al. 1999).  Following exposure to
0.0075 mg/kg/day of the simulated human milk congener mixture during the first 20 weeks of life, the
monkeys were periodically examined for the following endpoints for at least the following 46 weeks:
bone development (at birth); general health status; formula intake; food and water consumption; body
weight; tooth eruption; somatic measurements; and hematology, serum biochemistry, and immunology
indices.  Immunological assessment of the infants was started at 22 weeks of age and included IgM and
IgG antibody production following immunization with SRBC, lymphoproliferative activity of peripheral
leucocytes in response to mitogens (PHA, ConA, and PWM), numbers of peripheral leucocytes and their
subsets, and NK cell activity.  Few statistically significant changes were observed in any of the monitored
parameters.  Anti-SRBC titers were reduced in the treated monkeys but not significantly different from
controls.  Absolute mean numbers of B lymphocytes were significantly lower in treated monkeys (no
change in mean percent), but the effect was transient because it was not observed when re-evaluated in
the monkeys at 1 year of age.  The investigators concluded that, overall, the effects on the infant immune
system were mild and of unclear biological significance due to large inter-animal variability related to
small numbers of animals.
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In another study (Arnold et al. 1995), oral exposure of adult female monkeys for approximately
44 months (total exposure; pre-conception, gestation, and lactation) to a similarly low dose
(0.005 mg/kg/day) of an Aroclor PCB mixture resulted in immunological and dermal/ocular effects in
their offspring.  Groups of 16 female Rhesus monkeys self-ingested capsules containing Aroclor 1254 in
a glycerol/corn oil mixture (1:1) in doses of 0, 0.005, 0.02, 0.04, or 0.08 mg/kg/day.  After 25 months of
exposure, approximately 90% of the animals had attained an apparent pharmacokinetic steady state with
respect to adipose concentrations of PCBs.  After 37 months of exposure, the females were mated with
untreated males, and dosing was continued throughout breeding and gestation and into the first part of the
lactation period.  Maternal treatment was discontinued when the infants were 7 weeks old (to preclude
ingestion of the mother’s dosing capsule) and resumed after the infants were weaned at age 22 weeks. 
Mothers were dosed with PCBs for 37 months prior to mating, and infants born to these mothers were
exposed for a duration of approximately 46 weeks (average 24 weeks gestation plus 22 weeks nursing). 
Study end points included numbers of impregnations, live infants, postpartum deaths, abortions,
suspected resorptions, stillbirths, and gestation length.  On the day of parturition all infants were x-rayed
to ascertain osseus development.  Body weight, clinical health, hematology, and serum biochemistry were
periodically evaluated in the infants and maternal animals during the lactation period, and subsequently in
the dams until the infants were 78 weeks old and in the infants until they were 122 weeks old.  The
offspring were also evaluated for changes in tooth eruption and anthropometric measurements throughout
the study, and immunological changes when they were 20 and 60 weeks old.  Four immunological tests
were performed: IgM and IgG antibodies to SRBC; lymphocyte proliferation response to PHA, ConA,
and PWM mitogens; mixed lymphocyte culture assay (one-way); and natural killer cell activity.  Most of
the control and all treated offspring were autopsied at 122 weeks of age. 

PCB-related effects were induced in the adult monkeys and their offspring (Arnold et al. 1995). 
Conception rate was significantly reduced at 0.02 mg/kg/day and higher doses.  Because this effect
occurred in the adult animals that were mated after 37 months of exposure, 0.02 mg/kg/day is a serious
LOAEL for reproductive toxicity for chronic-duration exposure.  Exposure during gestation and lactation
resulted in both fetal toxicity and postnatal effects in the offspring.  Fetal mortality was increased at
0.02 mg/kg/day and higher doses.  Incidence rates for fetal mortality (combined abortions, suspected
resorptions, and stillbirths) were 2/11, 5/10, 3/4, 2/6, and 4/5 in impregnated monkeys in the 0, 0.005,
0.02, 0.04, and 0.08 mg/kg/day groups, respectively, and displayed a significant increasing dose-related
trend (p=0.040).  Statistical comparison of the treated and control groups showed that the fetal mortality
incidence rates were increased at 0.02 mg/kg/day (p=0.077) and significantly increased at 0.08 mg/kg/day
(p=0.036).  The precision of this statistical comparison is limited by the small numbers of animals, which
obscures the high response rate in the 0.02 mg/kg/day group (i.e., that there were 3 fetal deaths in
4 impregnated animals, and that the combined incidence of fetal and neonatal deaths was 4/4).  Evaluation
of the offspring, limited by the small numbers of surviving animals, showed mild clinical manifestations
of PCB exposure and some immunological test differences at 0.005 and 0.04 mg/kg/day (no infants
survived beyond postpartum week 2 in the other dose groups).  The major clinical signs in the surviving
exposed offspring were inflammation and/or enlargement of the tarsal (Meibomian) gland, nail lesions,
and gum recession.  For example, in the control, 0.005, and 0.04 mg/kg/day dose groups, incidences of
tarsal gland inflammation and/or enlargement were 1/9, 4/4, and 3/3; incidences of nail bed prominence
were 0/9, 3/4, and 3/3; incidences of elevated nails were 0/9, 2/4, and 2/3; incidences of nails folding on
themselves were 0/9, 1/4, and 3/3; and incidences of gum recession were 0/9, 1/4, and 2/3. 
Immunological alterations in the exposed offspring mainly included suppressed antibody responses to
SRBC.  IgM antibody levels to SRBCs were significantly reduced in comparison to controls at 0.005 and
0.04 mg/kg/day at week 22 (p=0.056 and 0.023, respectively) and week 23 (p=0.043 and 0.029,
respectively), and at 0.005 mg/kg/day at weeks 61, 62, and 63 (p=0.028, 0.043, and 0.056, respectively). 
IgM titers were also suppressed at 0.04 mg/kg/day during weeks 61, 62, and 63, but statistical
significance was precluded by the small number of infants (n=2) in this group.  Other immunological
changes included significantly reduced mitogen (ConA)-induced lymphocyte proliferation compared to
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controls at 0.04 mg/kg/day at weeks 28 and 60 (p=0.036 and 0.053, respectively).  Although evaluation of
the offspring data is complicated by the small number of animals, it is highly relevant that the clinical and
immunological effects in the infants are similar to those observed in their chronically exposed dams at the
same dose levels as low as 0.005 mg/kg/day (Arnold et al. 1993a, 1993b; Tryphonas et al. 1989, 1991a,
1991b).  The effects on the dams are detailed in the in the worksheet for the chronic oral MRL.

Evidence that the 0.0075 mg/kg/day less serious LOAEL is an appropriate dose level for intermediate-
duration MRL derivation is provided by the observation that the next highest tested dose level in monkeys
(or any other species) is 0.02 mg/kg/day (Arnold et al. 1995), which is a serious LOAEL for fetal
mortality as indicated above.

Agency Contact (Chemical Manager):  Obaid Faroon
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MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name: PCBs 
CAS Number: 11097-69-1
Date: September 2000
Profile Status: Final
Route: [ ] Inhalation   [X] Oral
Duration: [ ] Acute   [ ] Intermediate   [X] Chronic
Key to Figure: 148k
Species: Monkey

Minimal Risk Level:  0.02   [X] µg/kg/day   [ ] ppm

Reference:  Tryphonas et al. 1989, 1991a

Experimental design: (human study details or strain, number of animals per exposure/control groups, sex,
dose administration details):

Groups of 16 female Rhesus monkeys self-ingested capsules containing Aroclor 1254 in a glycerol/corn
oil mixture (1:1) in doses of 0, 0.005, 0.02, 0.04, or 0.08 mg/kg/day.  The monkeys were challenged with
injected sheep red blood cells (SRBC) at 23 months of exposure and received a secondary challenge with
SRBC at 55 months.  The animals had achieved an apparent pharmacokinetic steady state at 23 months
based on PCB concentrations in blood and fat.  End points examined at 23 months (Tryphonas et al.
1989) included:  antibody titers (IgG and IgM) to SRBC, lymphocyte transformation in response to two
mitogens (PHA and ConA), quantitation of T- and B-lymphocytes, total serum immunoglobulin levels
(IgG, IgM, and IgA), serum proteins, and serum hydrocortisone level.  End points examined at 55 months
(Tryphonas et al. 1991a, 1991b) included: body weights, IgM and IgG titers in response to secondary
immunization with SRBC, lymphocyte proliferation in response to three mitogens (PHA, ConA, and
PWM), mix lymphocyte culture assay, phagocytic activity of peripheral blood monocytes following
stimulation with phorbol myristate acetate (PMA) or Zymosan, interleukin 1 production in response to
E. coli, lymphocyte subpopulation analysis, antibody response to pneumococcus antigens, serum
hydrocortisone level, serum complement activity, natural killer cell activity, levels of serum thymosins,
interferon production by Con A-stimulated leukocytes, and tumor necrosis factor production.  As
indicated below in the other pertinent information section, clinical health findings (Arnold et al. 1993a)
and reproduction and offspring findings (Arnold et al. 1995) were also reported for the monkeys that were
tested for immunotoxicity.

Effects noted in study and corresponding doses:

IgM (all doses except 0.02 mg/kg/day) and IgG (all doses) antibody levels to SRBC were significantly
reduced compared to controls after 23 months, although no clear dose-response relationships were
observed (Tryphonas et al. 1989).  Secondary challenge with SRBC after 55 months showed decreasing
dose-related trends in the IgM and IgG anamnestic responses, although only IgM was significantly lower
than controls at all dose levels (Tryphonas et al. 1991a).  Other immunologic changes included alterations
in lymphocyte T-cell subsets characterized by a significantly decreased ratio of T-inducer/helper (CD4)
cells to T-cytotoxic/suppressor (CD8) cells, due to reduced CD4 and increased CD8 cells, at
0.08 mg/kg/day (not tested at lower doses) after 23 months.  No effects on total lymphocytes or B-cells
were found, indicating that T-cells were preferentially affected by the PCBs, although there were no
exposure-related changes in T-cell subsets after 55 months suggesting that adaptation had occurred. 
Statistically significant dose-related trends, but no significant differences between exposed and control
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groups, were observed after 55 months for decreasing lymphocyte proliferation in response to mitogens
(PHA and ConA, but not PWM), increasing NK cell activity, increasing levels of serum thymosin
alpha-1, decreasing phagocytic activity of peripheral blood monocytes following activation with PMA,
and increasing total serum complement activity.

Dose and end point used for MRL derivation:  The lowest dose level tested, 0.005 mg/kg/day, is a
LOAEL for decreased antibody response.  Interpretation of the adversity of this effect is complicated by a
lack of data on immunocompetence and the essentially inconclusive findings in the other tested end
points; however, support for the 0.005 mg/kg/day LOAEL is provided by mild clinical manifestations of
toxicity at the same dose.  As indicated below in the other pertinent information section, eyelid and
toe/finger nail changes were observed in some monkeys at doses as low as 0.005 mg/kg/day (Arnold et al.
1993a).

[ ] NOAEL   [X] LOAEL

Uncertainty Factors used in MRL derivation:

[X]  10 for use of a LOAEL
[X]   3 for extrapolation from animals to humans
[X]  10 for human variability

Was a conversion factor used from ppm in food or water to a mg/body weight dose?

No

If an inhalation study in animals, list conversion factors used in determining human equivalent dose:  

NA

Was a conversion used from intermittent to continuous exposure?  

No

Other additional studies or pertinent information that lend support to this MRL:

No other studies investigated immunological effects of chronic exposure to PCBs.  Intermediate-duration
studies, however, have conclusively shown that oral exposure to commercial PCB mixtures can induce
morphological and functional alterations in the immune system of rats, mice, guinea pigs, and monkeys. 
Effects in the non-primate species occurred at relatively high doses (generally $4 mg/kg/day) and
included decreased thymus and spleen weights in rats, mice, and guinea pigs exposed to Aroclors 1260,
1254, or 1248 (Allen and Abrahamson 1973; Bonnyns and Bastomsky 1976; Smialowicz et al. 1989;
Street and Sharma 1975; Vos and Van Driel-Grootenhuis 1972); reduced antibody responses to tetanus
toxoid in guinea pigs exposed to Clopen A-60, keyhole limpet hemocyanin in rats exposed to
Aroclor 1254, and SRBC in mice exposed to Aroclor 1242 (Exon et al. 1985; Loose et al. 1977, 1978a,
1978b, 1979; Vos and Van Driel-Grootenhuis 1972); increased susceptibility to infection by Moloney
leukemia virus in mice exposed to Aroclor 1254 or 1242, herpes simplex virus in mice exposed to
Kanechlor 500, and bacterial endotoxin and malarial parasite in mice exposed to Aroclor 1242 (Imanishi
et al. 1980; Koller 1977; Loose et al. 1979); reduced skin reactivity to tuberculin in guinea pigs exposed
to Clopen A-60 (Vos and Van Driel-Grootenhuis 1972); and reduced NK cell activity in rats exposed to
Aroclor 1254 (Smialowicz et al. 1989; Talcott et al. 1985).



PCBs A-9

APPENDIX A

Intermediate-duration oral studies of Aroclors in monkeys confirm the observations of PCB
immunotoxicity in rats, mice, and guinea pigs, indicate that non-human primates are more sensitive than
the other species, and support the findings of the chronic immunotoxicity study in monkeys (Tryphonas et
al. 1989, 1991a, 1991b) used as the basis of the chronic oral MRL.  Results of intermediate-duration
studies in monkeys included decreased antibody responses to SRBC, increased susceptibility to bacterial
infections, and/or histopathological changes in the thymus, spleen, and lymph nodes in adult monkeys
and their offspring at 0.1–0.2 mg/kg/day doses of Aroclor 1254 and 1248 (Abrahamson and Allen 1973;
Allen and Barsotti 1976; Allen et al. 1980; Barsotti et al. 1976; Thomas and Hinsdill 1978; Truelove et al.
1982; Tryphonas et al. 1986a).  Additionally, results of studies in infant monkeys are consistent with the
data in adults showing immunosuppressive effects of Aroclor 1254 at doses as low as 0.005 mg/kg/day. 
Evaluation of in utero and lactationally exposed offspring from the monkeys in the Tryphonas et al.
(1989, 1991a, 1991b) studies indicated exposure-related reductions in IgM antibody levels to SRBC and
mitogen-induced lymphocyte transformation that paralleled the findings in the maternal animals (Arnold
et al. 1995).

Support for the chronic LOAEL of 0.005 mg/kg/day is provided by clinical observations on the same
monkeys that were immunologically evaluated by Tryphonas et al. (1989, 1991a, 1991b).  Examinations
of the monkeys exposed to 0.005–0.08 mg/kg/day Aroclor 1254 during the first 37 months of the study
showed characteristic dose-related ocular and dermal effects, including eye exudate, inflammation and/or
prominence of the tarsal (Meibomian) glands, and various finger and toe nail changes (Arnold et al.
1993a).  Statistical analyses found significant increasing dose-related trends in incidence rates, total
frequency of observed occurrences and/or onset times for these effects, with some treated and control
group comparisons showing significant differences at doses as low as 0.005 mg/kg/day.  Effects that were
significantly increased in the 0.005 mg/kg/day group included increased total frequencies of inflamed
and/or prominent tarsal glands, toenail separations, and elevated toenails.  Additionally, monkeys from
this study that were mated after 37 months of exposure and continued to be exposed to $0.005 mg/kg/day
Aroclor 1254 through gestation and lactation had offspring with clear clinical signs of PCB intoxication,
manifested as inflammation and/or enlargement of the tarsal glands, nail lesions, and gum recession
(Arnold et al. 1995).  Further, the next highest dose level in this study (0.02 mg/kg/day) is a chronic
serious LOAEL for reproductive toxicity (reduced conception rate) (Arnold et al. 1995).  Conception rate,
adjusted for the total number of matings, was significantly lower than controls at 0.02, 0.04, and
0.08 mg/kg/day (p=0.009, 0.039, and 0.005, respectively), but not at 0.005 mg/kg/day (p=0.085).  Similar
results were noted after adjustment for the number of matings with positive sires.  There was a significant
(p=0.017) decrease in conception rate with increasing dose with both types of mating adjustments. 
Percentages of impregnations (number impregnated/number available) in the 0, 0.005, 0.02, 0.04, and
0.08 mg/kg/day groups were 69, 63, 27, 43, and 33%, respectively.  The $0.02 mg/kg/day doses in this
study are also serious effect levels for developmental toxicity (fetal mortality), as discussed in the
worksheet for the intermediate-duration oral MRL.  

Agency Contact (Chemical Manager):  Obaid Faroon
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USER'S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language.  Its intended
audience is the general public especially people living in the vicinity of a hazardous waste site or
chemical release.  If the Public Health Statement were removed from the rest of the document, it would
still communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern.  The
topics are written in a question and answer format.  The answer to each question includes a sentence that
will direct the reader to chapters in the profile that will provide more information on the given topic.

Chapter 2

Relevance to Public Health

The Relevance to Public Health section provides a health effects summary based on evaluations of
existing toxicologic, epidemiologic, and toxicokinetic information.  This summary is designed to present
interpretive, weight-of-evidence discussions for human health endpoints by addressing the following
questions.

1. What effects are known to occur in humans?

2. What effects observed in animals are likely to be of concern to humans?

3. What exposure conditions are likely to be of concern to humans, especially around hazardous
waste sites?

The section covers endpoints in the same order they appear within the Discussion of Health Effects by
Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect.  Human data are
presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  In vitro
data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered
in this section.  If data are located in the scientific literature, a table of genotoxicity information is
included.

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer
potency or perform cancer risk assessments.  Minimal risk levels (MRLs) for noncancer end points (if
derived) and the end points from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public
health are identified in the Data Needs section.
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